首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dreher C  Prodöhl A  Weber M  Schneider D 《FEBS letters》2007,581(14):2647-2651
In vivo and in vitro requirements for the formation of cytochrome b(6) were examined to analyze the mechanisms of transmembrane b-type cytochrome formation. After heterologous expression of spinach cytochrome b(6), formation of the holo-cytochrome was observed within the E. coli inner membrane. The transmembrane orientation of cytochrome b(6) appeared not to be critical for heme binding and holo-cytochrome formation. Furthermore, in vitro reconstitution of cytochrome b(6) was possible under oxidizing as well as under reducing conditions. Taken together these observations strongly indicate that transmembrane b-type cytochromes can spontaneously assemble in vitro as well as in a membrane.  相似文献   

2.
The folding and stabilization of α-helical transmembrane proteins are still not well understood. Following cofactor binding to a membrane protein provides a convenient method to monitor the formation of appropriate native structures. We have analyzed the assembly and stability of the transmembrane cytochrome b559′, which can be efficiently assembled in vitro from a heme-binding PsbF homo-dimer by combining free heme with the apo-cytochrome b559′. Unfolding of the protein dissolved in the mild detergent dodecyl maltoside may be induced by addition of SDS, which at high concentrations leads to dimer dissociation. Surprisingly, absorption spectroscopy reveals that heme binding and cytochrome formation at pH 8.0 are optimal at intermediate SDS concentrations. Stopped-flow kinetics revealed that genuine conformational changes are involved in heme binding at these SDS concentrations. GPS (Global Protein folding State mapping) NMR measurements showed that optimal heme binding is intimately related to a change in the degree of histidine protonation. In the absence of SDS, the pH curve for heme binding is bell-shaped with an optimum at around pH 6-7. At alkaline pH values, the negative electrostatic potential of SDS lowers the local pH sufficiently to restore efficient heme binding, provided the amount of SDS needed for this does not denature the protein. Accordingly, the higher the pH value above 6-7, the more SDS is needed to improve heme binding, and this competes with the inherent tendency of SDS to dissociate cytochrome b559′. Our work highlights that, in addition to its denaturing properties, SDS can affect protein functions by lowering the local pH.  相似文献   

3.
Folding, assembly and stability of alpha-helical membrane proteins is still not very well understood. Several of these membrane proteins contain cofactors, which are essential for their function and which can be involved in protein assembly and/or stabilization. The effect of heme binding on the assembly and stability of the transmembrane b-type cytochrome b'559 was studied by fluorescence resonance energy transfer. Cytochrome b'559 consists of two monomers of a 44 amino acid long polypeptide, which contains one transmembrane domain. The synthesis of two variants of the b'559 monomer, each carrying a specific fluorescent dye, allowed monitoring helix-helix interactions in micelles by resonance energy transfer. The measurements demonstrate that the transmembrane peptides dimerize in detergent in the absence and presence of the heme cofactor. Cofactor binding only marginally enhances dimerization and, apparently, the redox state of the heme group has no effect on dimerization.  相似文献   

4.
Both experimental and statistical searches for specific motifs that mediate transmembrane helix-helix interactions showed that two glycine residues separated by three intervening residues (GxxxG) provide a framework for specific interactions. Further work suggested that other motifs of small residues can mediate the interaction of transmembrane domains, so that the AxxxA-motif could also drive strong interactions of alpha-helices in soluble proteins. Thus, all these data indicate that a motif of two small residues in a distance of four might be enough to provide a framework for transmembrane helix-helix interaction. To test whether GxxxG is equivalent to (small)xxx(small), we investigated the effect of a substitution of either of the two Gly residues in the glycophorin A GxxxG-motif by Ala or Ser using the recently developed GALLEX system. The results of this mutational study demonstrate that, while a replacement of either of the two Gly by Ala strongly disrupts GpA homo-dimerization, the mutation to Ser partly stabilizes a dimeric structure. We suggest that the Ser residue can form a hydrogen bond with a backbone carbonyl group of the adjacent helix stabilizing a preformed homo-dimer. While (small)xxx(small) serves as a useful clue, the context of adjacent side-chains is essential for stable helix interaction, so each case must be tested.  相似文献   

5.
We have analyzed the role of individual heme-ligating histidine residues for assembly of holo-cytochrome b6, and we show that the two hemes bL and bH bind in two subsequent steps to the apo-protein. Binding of the low-potential heme bL is a prerequisite for binding the high-potential heme bH. After substitution of His86, which serves as an axial ligand for heme bL, the apo-protein did not bind heme, while substitution of the heme bL-ligating residue His187 still allowed binding of both hemes. Similarly, after replacement of His202, one axial ligand to heme bH, binding of only heme bL was observed, whereas replacement of His100, the other heme bH ligand, resulted in binding of both hemes. These data indicate sequential heme binding during formation of the holo-cytochrome, and the two histidine residues, which serve as axial ligands to the same heme molecule (heme bL or heme bH), have different importance during heme binding and cytochrome assembly. Furthermore, determination of the heme midpoint potentials of the various cytochrome b6 variants indicates a cooperative adjustment of the heme midpoint potentials in cytochrome b6.  相似文献   

6.
A hallmark of membrane protein structure is the large number of distorted transmembrane helices. Because of the prevalence of bends, it is important to not only understand how they are generated but also to learn how to predict their occurrence. Here, we find that there are local sequence preferences in kinked helices, most notably a higher abundance of proline, which can be exploited to identify bends from local sequence information. A neural network predictor identifies over two-thirds of all bends (sensitivity 0.70) with high reliability (specificity 0.89). It is likely that more structural data will allow for better helix distortion predictors with increased coverage in the future. The kink predictor, TMKink, is available at http://tmkinkpredictor.mbi.ucla.edu/.  相似文献   

7.
Molecular dynamic simulations have been performed for wild-type Hydrogenobacter thermophilus cytochrome c(552), a b-type variant of the protein, and the apo state with the heme prosthetic group removed. In the b-type variant, Cys 10 and Cys 13 were mutated to alanine residues, and so the heme group was no longer covalently bound to the protein. Two 8-ns simulations have been performed for each system at 298 and 360 K. The simulations of the wild-type protein at 298 K show a very close agreement with experimental NMR data. A fluxional process involving the side chain of Met 59, which coordinates to the heme iron, is observed in accord with proposals from NMR studies. Overall, the structure and dynamical behavior of the protein during the simulations of the b-type variant is closely similar to that of the wild-type protein. However, side chains in the heme-binding site show larger fluctuations in the b-type variant simulation at 360 K. In addition, structural changes are seen for a number of residues close to the heme group, particularly Gly 22 and Ser 51. The simulations of the apo state show significant conformational changes for residues 50-59. These residues form a loop region, which packs over the heme group in the wild-type protein and hydrogen bonds to the heme propionate groups. In the absence of heme, in the apo state simulations, these residues form short but persistent regions of beta-sheet secondary structure. These could provide nucleation sites for the conversion to amyloid fibrils.  相似文献   

8.
To understand general aspects of stability and folding of c-type cytochromes, we have studied the folding characteristics of cytochrome c553 from Desulfovibrio vulgaris (Hildenborough). This cytochrome is structurally similar but lacks sequence homology to other heme proteins; moreover, it has an abnormally low reduction potential. Unfolding of oxidized and reduced cytochrome c553 by guanidine hydrochloride (GuHCl) was monitored by circular dichroism (CD) and Soret absorption; the same unfolding curves were obtained with both methods supporting that cytochrome c553 unfolds by an apparent two-state process. Reduced cytochrome c553 is 7(3) kJ/mol more stable than the oxidized form; accordingly, the reduction potential of unfolded cytochrome c553 is 100(20) mV more negative than that of the folded protein. In contrast to many other unfolded cytochrome c proteins, upon unfolding at pH 7.0 both oxidized and reduced heme in cytochrome c553 become high-spin. The lack of heme misligation in unfolded cytochrome c553 implies that its unfolded structure is less constrained than those of cytochromes c with low-spin, misligated hemes.  相似文献   

9.
The gene nirM, coding for cytochrome c-551 in Pseudomonas stutzeri substrain ZoBell, was engineered to mutate Met61, the sixth ligand to the heme c, into His61, thereby converting the typical Met-His coordination of a c-type cytochrome into His-His, typical of b-type cytochromes. The mutant protein was expressed heterologously in Escherichia coli at levels 3-fold higher than in Pseudomonas and purified to homogeneity. The mutant retained low-spin visible spectral characteristics, indicating that the strong field ligand His 61 was coordinated to the iron. The physiochemical properties of the mutant were measured and compared to the wild-type properties. These included visible spectra, ligand binding reactions, stability to temperature and chemical denaturant, oxidation-reduction potentials, and electron-transfer kinetics to the physiological nitrite reductase of Pseudomonas. Despite a change in potential from the normal 260 mV to 55 mV, the mutant retained many of the properties of the c-551 family.  相似文献   

10.
Bérczi A  Caubergs RJ  Asard H 《Protoplasma》2003,221(1-2):47-56
Summary.  The plant plasma membrane (PM) contains more than one b-type cytochrome. One of these proteins has a rather high redox potential (can be fully reduced by ascorbate) and is capable of transporting electrons through the PM. Four genes encoding proteins with considerable homology to the sequences of cytochrome b 561 proteins in the animal chromaffin granule membrane have recently been identified in the genome of Arabidopsis thaliana. In order to characterize the cytochrome b 561 located in the Arabidopsis PM, first PM vesicles were purified by aqueous polymer two-phase partitioning from the leaves of 9-week-old A. thaliana. PM proteins were solubilized by nonionic detergent, and the fully ascorbate-reducible b-type cytochrome was partially purified by anion-exchange chromatography steps. Potentiometric redox titration of the fraction, containing the fully ascorbate-reducible b-type cytochrome after the first anion-exchange chromatography step, revealed the presence of two hemes with redox potentials of 135 mV and 180 mV, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the fractions containing the fully ascorbate-reducible b-type cytochrome after the second anion-exchange chromatography step revealed the presence of a single polypeptide band at about 120 kDa. However, heat treatment (15 min, 90 °C) before electrophoresis was able to split the 120 kDa band into two bands with molecular masses of about 23 and 28 kDa. These values are lower than the apparent molecular mass for the fully ascorbate-reducible b-type cytochrome purified from Phaseolus vulgaris hypocotyls (about 52 kDa) but are in good agreement with those characteristic for the cytochrome b 561 proteins purified from chromaffin granule membranes (about 28 kDa) and the four polypeptides predicted from the Arabidopsis genome (24–31 kDa). Received May 4, 2002; accepted July 26, 2002; published online May 21, 2003 RID="*" ID="*" Correspondence and reprints: Institute of Biophysics, BRC, Hungarian Academy of Sciences, POB 521, 6701 Szeged, Hungary.  相似文献   

11.
This work reports substrate-selective inhibition of a protease with broad substrate specificity based on direct binding of a small-molecule inhibitor to the substrate. The target for these studies was γ-secretase protease, which cleaves dozens of different single-span membrane protein substrates, including both the C99 domain of the human amyloid precursor protein and the Notch receptor. Substrate-specific inhibition of C99 cleavage is desirable to reduce production of the amyloid-β polypeptide without inhibiting Notch cleavage, a major source of toxicity associated with broad specificity γ-secretase inhibitors. In order to identify a C99-selective inhibitors of the human γ-secretase, we conducted an NMR-based screen of FDA-approved drugs against C99 in model membranes. From this screen, we identified the small-molecule verteporfin with these properties. We observed that verteporfin formed a direct 1:1 complex with C99, with a KD of 15–47 μM (depending on the membrane mimetic used), and that it did not bind the transmembrane domain of the Notch-1 receptor. Biochemical assays showed that direct binding of verteporfin to C99 inhibits γ-secretase cleavage of C99 with IC50 values in the range of 15–164 μM, while Notch-1 cleavage was inhibited only at higher concentrations, and likely via a mechanism that does not involve binding to Notch-1. This work documents a robust NMR-based approach to discovery of small-molecule binders to single-span membrane proteins and confirmed that it is possible to inhibit γ-secretase in a substrate-specific manner.  相似文献   

12.
The epidermal growth factor receptors (erbB) constitute an important class of single pass transmembrane receptors involved in the transduction of signals important for cell proliferation and differentiation. Receptor association is a key event in the signal transduction process, but the molecular basis of this interaction is not fully understood. Previous biochemical and genetic studies have suggested that the single transmembrane helices of these receptor proteins might play a role in stabilizing the receptor complexes. To determine if the erbB transmembrane domains could provide a driving force to stabilize the receptor dimers, we carried out a thermodynamic study of these domains expressed as C-terminal fusion proteins with staphylococcal nuclease. Similar fusion constructs have been used successfully to investigate the oligomerization and association thermodynamics of a number of transmembrane sequences, including that of glycophorin A. Using SDS-PAGE analysis and sedimentation equilibrium analytical ultracentrifugation, we do not find strong, specific homo or hetero-interactions between the transmembrane domains of the erbB receptors in micellar solutions. Our results indicate that any preferential interactions between these domains in micellar solutions are extremely modest, of the order of 1 kcal mol(-1) or less. We applied a thermodynamic formalism to assess the effect of weakly interacting TM segments on the behavior of a covalently attached soluble domain. In the case of the ligand-bound EGFR ectodomain, we find that restriction of the ectodomain to the micellar phase by a hydrophobic TM, even in the absence of strong specific interactions, is largely sufficient to account for the previously reported increase in dimerization affinity.  相似文献   

13.
The sarco(endo)plasmic reticulum Ca2+‐ATPase (SERCA) couples ATP hydrolysis to transport of Ca2+. This directed energy transfer requires cross‐talk between the two Ca2+ sites and the phosphorylation site over 50 Å distance. We have addressed the mechano‐structural basis for this intramolecular signal by analysing the structure and the functional properties of SERCA mutant E309Q. Glu309 contributes to Ca2+ coordination at site II, and a consensus has been that E309Q only binds Ca2+ at site I. The crystal structure of E309Q in the presence of Ca2+ and an ATP analogue, however, reveals two occupied Ca2+ sites of a non‐catalytic Ca2E1 state. Ca2+ is bound with micromolar affinity by both Ca2+ sites in E309Q, but without cooperativity. The Ca2+‐bound mutant does phosphorylate from ATP, but at a very low maximal rate. Phosphorylation depends on the correct positioning of the A‐domain, requiring a shift of transmembrane segment M1 into an ‘up and kinked position’. This transition is impaired in the E309Q mutant, most likely due to a lack of charge neutralization and altered hydrogen binding capacities at Ca2+ site II.  相似文献   

14.
Folding, assembly and stability of α-helical membrane proteins is still not very well understood. Several of these membrane proteins contain cofactors, which are essential for their function and which can be involved in protein assembly and/or stabilization. The effect of heme binding on the assembly and stability of the transmembrane b-type cytochrome b559 was studied by fluorescence resonance energy transfer. Cytochrome b559 consists of two monomers of a 44 amino acid long polypeptide, which contains one transmembrane domain. The synthesis of two variants of the b559 monomer, each carrying a specific fluorescent dye, allowed monitoring helix-helix interactions in micelles by resonance energy transfer. The measurements demonstrate that the transmembrane peptides dimerize in detergent in the absence and presence of the heme cofactor. Cofactor binding only marginally enhances dimerization and, apparently, the redox state of the heme group has no effect on dimerization.  相似文献   

15.
The absorbance maximum (630 nm) of reduced cytochrome d in Escherichia coli membrane particles was diminished by 160 microM AgNO3 or NaNO3 and accompanied by the formation of a species with an absorption maximum at 640-645 nm. Nitrite, trioxodinitrate and nitric oxide elicited qualitatively similar, but faster, changes in the spectrum of cytochrome d, suggesting that formation of a nitrosyl complex may be involved in all cases. In direct contrast to an earlier report, silver ions (160 microM) were without effect on the alpha-bands of reduced cytochromes d, b or a 1.  相似文献   

16.
Mobility shift assays were used to examine protein binding to the human TK gene CCAAT boxes. Similar protein binding patterns were observed with probes containing either the proximal or distal CCAAT. However, probes containing both CCAAT boxes in which one of the CCAAT boxes was inactivated by mutation did not demonstrate identical binding patterns. One of the complexes formed with the longer probes was only observed when the distal CCAAT was intact. This species was not formed with probes that only contained an intact proximal CCAAT, and its formation could only be competed by oligonucleotides containing the distal CCAAT motif. This observation reveals the existence of a protein that can bind to the distal, but not to the proximal, CCAAT of the human TK promoter. This protein may account for the previous observation that the two CCAAT motifs are not functionally equivalent. The protein that binds to the distal, but not to the proximal, CCAAT (DTK-CBP) was also present in two human cell lines. Significantly more DTK-CBP was present in nuclear extracts of HepG2 and WI38 cells than in TK?ts13 cells. However, this protein was not observed in three different murine cell lines and one primary culture. Its abundance in some human cell lines suggests it might modulate the expression of human TK mRNA in cells that express this protein.  相似文献   

17.
In contrast to water-soluble proteins, membrane proteins reside in a heterogeneous environment, and their surfaces must interact with both polar and apolar membrane regions. As a consequence, the composition of membrane proteins' residues varies substantially between the membrane core and the interfacial regions. The amino acid compositions of helical membrane proteins are also known to be different on the cytoplasmic and extracellular sides of the membrane. Here we report that in the 16 transmembrane beta-barrel structures, the amino acid compositions of lipid-facing residues are different near the N and C termini of the individual strands. Polar amino acids are more prevalent near the C termini than near the N termini, and hydrophobic amino acids show the opposite trend. We suggest that this difference arises because it is easier for polar atoms to escape from the apolar regions of the bilayer at the C terminus of a beta-strand. This new characteristic of beta-barrel membrane proteins enhances our understanding of how a sequence encodes a membrane protein structure and should prove useful in identifying and predicting the structures of trans-membrane beta-barrels.  相似文献   

18.
Folding and assembly studies with alpha-helical membrane proteins are often hampered by the absence of high-level expression systems as well as by missing suitable in vitro refolding procedures. Experimental constraints and requirements for heterologous expression and in vitro assembly of cytochrome b6 have been examined and conditions for in vitro reconstitutions of the protein have been optimized. Cytochrome b6 can serve as an excellent model system for in vitro studies on the dynamic interplay of an apo-protein and heme cofactors during assembly of a transmembrane b-type cytochrome. In vitro assembled cytochrome b6 binds two hemes with different midpoint potentials and both ferri as well as ferro heme bind to the apo-cytochrome. However, the ferro cytochrome appears to be less stable than the ferri form.  相似文献   

19.
Heme, a near ubiquitous cofactor, is synthesized by most organisms. The essential step of insertion of iron into the porphyrin macrocycle is mediated by the enzyme ferrochelatase. Several ferrochelatases have been characterized, and it has been experimentally shown that a fraction of them contain [2Fe-2S] clusters. It has been suggested that all metazoan ferrochelatases have such clusters, but among bacteria, these clusters have been most commonly identified in Actinobacteria and a few other bacteria. Despite this, the function of the [2Fe-2S] cluster remains undefined. With the large number of sequenced genomes currently available, we comprehensively assessed the distribution of putative [2Fe-2S] clusters throughout the ferrochelatase protein family. We discovered that while rare within the bacterial ferrochelatase family, this cluster is prevalent in a subset of phyla. Of note is that genomic data show that the cluster is not common in Actinobacteria, as is currently thought based on the small number of actinobacterial ferrochelatases experimentally examined. With available physiological data for each genome included, we identified a correlation between the presence of the microbial cluster and aerobic metabolism. Additionally, our analysis suggests that Firmicute ferrochelatases are the most ancient and evolutionarily preceded the Alphaproteobacterial precursor to eukaryotic mitochondria. These findings shed light on distribution and evolution of the [2Fe-2S] cluster in ferrochelatases and will aid in determining the function of the cluster in heme synthesis.  相似文献   

20.
To quantify the relationship between sequence and transmembrane dimer stability, a systematic mutagenesis and thermodynamic study of the protein-protein interaction residues in the glycophorin A transmembrane helix-helix dimer was carried out. The results demonstrate that the glycophorin A transmembrane sequence dimerizes when its GxxxG motif is abolished by mutation to large aliphatic residues, suggesting that the sequence encodes an intrinsic propensity to self-associate independent of a GxxxG motif. In the presence of an intact GxxxG motif, the glycophorin A dimer stability can be modulated over a span of -0.5 kcal mol(-1) to +3.2 kcal mol(-1) by mutating the surrounding sequence context. Thus, these flanking residues play an active role in determining the transmembrane dimer stability. To assess the structural consequences of the thermodynamic effects of mutations, molecular models of mutant transmembrane domains were constructed, and a structure-based parameterization of the free energy change due to mutation was carried out. The changes in association free energy for glycophorin A mutants can be explained primarily by changes in packing interactions at the protein-protein interface. The energy cost of removing favorable van der Waals interactions was found to be 0.039 kcal mol(-1) per A2 of favorable occluded surface area. The value corresponds well with estimates for mutations in bacteriorhodopsin as well as for those mutations in the interiors of soluble proteins that create packing defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号