首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CHARGE syndrome is an autosomal dominant congenital disorder known to be caused by the haploinsufficiency of the CHD7 gene. Heterozygous mutations in the CHD7 gene have been identified in approximately 60–70% of patients clinically diagnosed with CHARGE syndrome. Although there have been many reports on the mutational spectrum of the CHD7 gene in patients with CHARGE syndrome worldwide, little is known about this syndrome in the Korean population. In this study, three Korean patients with CHARGE syndrome including one patient with Patau syndrome were evaluated for genetic analysis of the CHD7 gene using direct sequencing of all 38 exons and the flanking intronic regions. One nonsense and two novel missense mutations were identified in the CHD7 gene. Clinical symptoms caused by the missense mutations were much milder compared to the nonsense mutation, confirming the previously determined genotype–phenotype correlation in CHARGE syndrome. Our study demonstrates the importance of mutational screening of CHD7 in patients who have been diagnosed with other syndromes but display clinical features of CHARGE syndrome.  相似文献   

2.
3.
CHARGE syndrome is a heterogeneous disorder characterized by a spectrum of defects affecting multiple tissues and behavioral difficulties such as autism, attention-deficit/hyperactivity disorder, obsessive–compulsive disorder, anxiety, and sensory deficits. Most CHARGE cases arise from de novo, loss-of-function mutations in chromodomain-helicase-DNA-binding-protein-7 (CHD7). CHD7 is required for processes such as neuronal differentiation and neural crest cell migration, but how CHD7 affects neural circuit function to regulate behavior is unclear. To investigate the pathophysiology of behavioral symptoms in CHARGE, we established a mutant chd7 zebrafish line that recapitulates multiple CHARGE phenotypes including ear, cardiac, and craniofacial defects. Using a panel of behavioral assays, we found that chd7 mutants have specific auditory and visual behavior deficits that are independent of defects in sensory structures. Mauthner cell-dependent short-latency acoustic startle responses are normal in chd7 mutants, while Mauthner-independent long-latency responses are reduced. Responses to sudden decreases in light are also reduced in mutants, while responses to sudden increases in light are normal, suggesting that the retinal OFF pathway may be affected. Furthermore, by analyzing multiple chd7 alleles we observed that the penetrance of morphological and behavioral phenotypes is influenced by genetic background but that it also depends on the mutation location, with a chromodomain mutation causing the highest penetrance. This pattern is consistent with analysis of a CHARGE patient dataset in which symptom penetrance was highest in subjects with mutations in the CHD7 chromodomains. These results provide new insight into the heterogeneity of CHARGE and will inform future work to define CHD7-dependent neurobehavioral mechanisms.  相似文献   

4.
Heterozygous loss of function mutations in CHD7 (chromodomain helicase DNA-binding protein 7) lead to CHARGE syndrome, a complex developmental disorder affecting craniofacial structures, cranial nerves and several organ systems. Recently, it was demonstrated that CHD7 is essential for the formation of multipotent migratory neural crest cells, which migrate from the neural tube to many regions of the embryo, where they differentiate into various tissues including craniofacial and heart structures. So far, only few CHD7 target genes involved in neural crest cell development have been identified and the role of CHD7 in neural crest cell guidance and the regulation of mesenchymal-epithelial transition are unknown. Therefore, we undertook a genome-wide microarray expression analysis on wild-type and CHD7 deficient (Chd7 Whi/+ and Chd7 Whi/Whi ) mouse embryos at day 9.5, a time point of neural crest cell migration. We identified 98 differentially expressed genes between wild-type and Chd7 Whi/Whi embryos. Interestingly, many misregulated genes are involved in neural crest cell and axon guidance such as semaphorins and ephrin receptors. By performing knockdown experiments for Chd7 in Xenopus laevis embryos, we found abnormalities in the expression pattern of Sema3a, a protein involved in the pathogenesis of Kallmann syndrome, in vivo. In addition, we detected non-synonymous SEMA3A variations in 3 out of 45 CHD7-negative CHARGE patients. In summary, we discovered for the first time that Chd7 regulates genes involved in neural crest cell guidance, demonstrating a new aspect in the pathogenesis of CHARGE syndrome. Furthermore, we showed for Sema3a a conserved regulatory mechanism across different species, highlighting its significance during development. Although we postulated that the non-synonymous SEMA3A variants which we found in CHD7-negative CHARGE patients alone are not sufficient to produce the phenotype, we suggest an important modifier role for SEMA3A in the pathogenesis of this multiple malformation syndrome.  相似文献   

5.
CHARGE syndrome is a rare human disorder caused by mutations in the gene encoding chromodomain helicase DNA binding protein 7 (CHD7). Characteristics of CHARGE are varied and include developmental ear and hearing anomalies. Here we report a novel mouse model of CHD7 dysfunction, termed Looper. The Looper strain harbours a nonsense mutation (c.5690C>A, p.S1897X) within the Chd7 gene. Looper mice exhibit many of the clinical features of the human syndrome, consistent with previously reported CHARGE models, including growth retardation, facial asymmetry, vestibular defects, eye anomalies, hyperactivity, ossicle malformation, hearing loss and vestibular dysfunction. Looper mice display an otosclerosis-like fusion of the stapes footplate to the cochlear oval window and blepharoconjunctivitis but not coloboma. Looper mice are hyperactive and have vestibular dysfunction but do not display motor impairment.  相似文献   

6.
Song MH  Cho HJ  Lee HK  Kwon TJ  Lee WS  Oh S  Bok J  Choi JY  Kim UK 《PloS one》2011,6(9):e24511

Background

Otologic manifestations are one of the most consistent findings of CHARGE syndrome found in more than 90%. Since genetic analysis of the CHD7 gene has rarely been performed in previous reports dealing with ear abnormalities, the genotypic spectrum of CHD7 mutations was analyzed in deaf patients with CHARGE syndrome, and the clinical considerations concerning auditory rehabilitation were investigated.

Methods

Nine Korean patients with CHARGE syndrome showing profound hearing loss and semicircular canal aplasia were included. All 38 exons of CHD7 were analyzed by direct sequencing. For splice site variations, in silico and exon-trapping analyses were performed to verify the pathogenicity of nucleotide variations. Clinical features and the outcome of auditory rehabilitation were also analyzed.

Results

Eight of 9 patients revealed alterations of the CHD7 gene including 3 frameshift, 2 nonsense, 2 splice site, and 1 missense mutations. Five of 9 patients were clinically diagnosed as atypical CHARGE syndrome but demonstrated various mutations of the CHD7 gene. One familial case showed intra-familial variability. Radiologic findings suggesting cochleovestibular nerve deficiency were identified in most of the patients. Of the 8 patients who underwent cochlear implantation, 5 patients demonstrated favorable outcome. Larger diameter of the cochleovestibular nerve on imaging and absence of severe mental retardation were factors related to better outcome after cochlear implantation rather than the type of CHD7 mutations. Auditory brainstem implantation was performed in two patients who did not benefit from cochlear implantation.

Conclusions

Genetic analysis of the CHD7 gene should be performed in cases with semicircular canal aplasia even when other typical features of CHARGE syndrome are absent. For auditory rehabilitation in CHARGE syndrome, cochlear implantation should be strongly recommended in selected cases with favorable prognostic factors. Auditory brainstem implantation may be a viable option in patients with CHARGE syndrome who have failed to benefit from cochlear implantation.  相似文献   

7.
8.
CHARGE syndrome is a well-established multiple-malformation syndrome with distinctive consensus diagnostic criteria. Characteristic associated anomalies include ocular coloboma, choanal atresia, cranial nerve defects, distinctive external and inner ear abnormalities, hearing loss, cardiovascular malformations, urogenital anomalies, and growth retardation. Recently, mutations of the chromodomain helicase DNA-binding protein gene CHD7 were reported to be a major cause of CHARGE syndrome. We sequenced the CHD7 gene in 110 individuals who had received the clinical diagnosis of CHARGE syndrome, and we detected mutations in 64 (58%). Mutations were distributed throughout the coding exons and conserved splice sites of CHD7. Of the 64 mutations, 47 (73%) predicted premature truncation of the protein. These included nonsense and frameshift mutations, which most likely lead to haploinsufficiency. Phenotypically, the mutation-positive group was more likely to exhibit cardiovascular malformations (54 of 59 in the mutation-positive group vs. 30 of 42 in the mutation-negative group; P=.014), coloboma of the eye (55 of 62 in the mutation-positive group vs. 30 of 43 in the mutation-negative group; P=.022), and facial asymmetry, often caused by seventh cranial nerve abnormalities (36 of 56 in the mutation-positive group vs. 13 of 39 in the mutation-negative group; P=.004). Mouse embryo whole-mount and section in situ hybridization showed the expression of Chd7 in the outflow tract of the heart, optic vesicle, facio-acoustic preganglion complex, brain, olfactory pit, and mandibular component of the first branchial arch. Microarray gene-expression analysis showed a signature pattern of gene-expression differences that distinguished the individuals with CHARGE syndrome with CHD7 mutation from the controls. We conclude that cardiovascular malformations, coloboma, and facial asymmetry are common findings in CHARGE syndrome caused by CHD7 mutation.  相似文献   

9.
CHARGE syndrome is caused by mutations in the CHD7 gene. Several organ systems including the retina, cranial nerves, inner ear and heart are affected in CHARGE syndrome. However, the mechanistic link between mutations in CHD7 and many of the organ systems dysfunction remains elusive. Here, we show that Chd7 is required for the organization of the neural retina in zebrafish. We observe an abnormal expression or a complete absence of molecular markers for the retinal ganglion cells and photoreceptors, indicating that Chd7 regulates the differentiation of retinal cells and plays an essential role in retinal cell development. In addition, zebrafish with reduced Chd7 display an abnormal organization and clustering of cranial motor neurons. We also note a pronounced reduction in the facial branchiomotor neurons and the vagal motor neurons display aberrant positioning. Further, these fish exhibit a severe loss of the facial nerves. Knock-down of Chd7 results in a curvature of the long body axis and these fish develop irregular shaped vertebrae and have a reduction in bone mineralization. Chd7 knockdown also results in a loss of proper segment polarity illustrated by flawed efnb2a and ttna expression, which is associated with later vascular segmentation defects. These critical roles for Chd7 in retinal and vertebral development were previously unrecognized and our results provide new insights into the role of Chd7 during development and in CHARGE syndrome pathogenesis.  相似文献   

10.
In biology, we continue to appreciate the fact that the DNA sequence alone falls short when attempting to explain the intricate inheritance patterns for complex traits. This is particularly true for human disorders that appear to have simple genetic causes. The study of epigenetics, and the increased access to the epigenetic profiles of different tissues has begun to shed light on the genetic complexity of many basic biological processes, both physiological and pathological. Epigenetics refers to heritable changes in gene expression that are not due to alterations in the DNA sequence. Various mechanisms of epigenetic regulation exist, including DNA methylation and histone modification. The identification, and increased understanding of key players and mechanisms of epigenetic regulation have begun to provide significant insight into the underlying origins of various human genetic disorders. One such disorder is CHARGE syndrome (OMIM #214800), which is a leading cause of deaf-blindness worldwide. A majority of CHARGE syndrome cases are caused by haploinsufficiency for the CHD7 gene, which encodes an ATP-dependent chromatin remodeling protein involved in the epigenetic regulation of gene expression. The CHD7 protein has been highly conserved throughout evolution, and research into the function of CHD7 homologs in multiple model systems has increased our understanding of this family of proteins, and epigenetic mechanisms in general. Here we provide a review of CHARGE syndrome, and discuss the epigenetic functions of CHD7 in humans and CHD7 homologs in model organisms.  相似文献   

11.
The heterogeneity that occurs in the tumor spectrum and latency in Li-Fraumeni syndrome (LFS) patients with inherited mutations in p53 suggest risk modifiers at loci other than the major gene. We developed a mouse model to investigate these risk modifiers. Inbred CE/J mice, which succumb to multiple types of tumors similar to those found in LFS, were crossed with the p53-null 129/Sv (129-Trp53tm1Tyj) mouse. In this cross, we uncovered evidence for a genetic modifier of p53, mop1, based on an unexpected mix of genotypes in the F2 progeny from Mendelian expectations. A model in which a recessive CE/J allele in combination with p53 heterozygosity or homozygosity results in lethality most closely fits the data. Using simple-sequence length polymorphism analysis of the entire genome, we identified a putative chromosomal region for this modifier of p53 on mouse chromosome 11 centromeric to p53.  相似文献   

12.
CHARGE syndrome is an autosomal dominant inherited disorder characterized by a specific and recognizable pattern of anomalies. De novo mutations or deletions of the gene encoding chromodomain helicase DNA binding protein 7 (CHD7) are the major cause of CHARGE syndrome. In this report, we describe a patient with a typical phenotype characterized by psychomotor retardation, hypertrichosis, facial asymmetry, synophria, failure to thrive, developmental delay and gastro-esophageal reflux, carrying a de novo 6.04 Mb interstitial deletion in 8q12.1q12.3 detected by single nucleotide polymorphism (SNP) array analysis. Despite the deletion includes CHD7 and although the patient shares some of the clinical features of the CHARGE syndrome, she does not fulfill the clinical criteria for this syndrome. To the best of our knowledge, this is the second case with an entire deletion of the CHD7 gene not leading to CHARGE syndrome and, for this reason, useful to expand and further delineate the clinical features associated with the 8q12.1q12.3 deletion. Furthermore, the literature review revealed that the phenotype secondary to duplications of the same region partially overlaps with the phenotype reported in this study. Selected genes that are present in the hemizygous state and which might be important for the phenotype of this patient, are discussed in context of the clinical features.  相似文献   

13.
14.
The role of two amino acid residues linked to the two catalytic histidines His54 and His220 in kinetics and physicochemical properties of the Streptomyces sp. SK glucose isomerase (SKGI) was investigated by site-directed mutagenesis and molecular modeling. Two single mutations, F53L and G219D, and a double mutation F53L/G219D was introduced into the xylA SKGI gene. The F53L mutation increases the thermostability and the catalytic efficiency and also slightly shifts the optimum pH from 6.5 to 7, but displays a profile being similar to that of the wild-type enzyme concerning the effect of various metal ions. The G219D mutant is resistant to calcium inhibition retaining about 80% of its residual activity in 10 mM Ca2+ instead of 10% for the wild-type. This variant is activated by Mn2+ ions, but not Co2+, as seen for the wild-type enzyme. It does not require the latter for its thermostability, but has its half-life time displaced from 50 to 20 min at 85°C. The double mutation F53L/G219D restores the thermostability as seen for the wild-type enzyme while maintaining the resistance to the calcium inhibition. Molecular modeling suggests that the increase in thermostability is due to new hydrophobic interactions stabilizing α2 helix and that the resistance to calcium inhibition is a result of narrowing the binding site of catalytic ion.  相似文献   

15.
In cancer, gene silencing via hypermethylation is as common as genetic mutations in p53. Understanding the relationship between mutant p53 and hypermethylation of other tumor suppressor genes is essential when elucidate mechanisms of tumor development. In this study, two isogenic human B lymphoblast cell lines with different p53 status include TK6 containing wild-type p53 and WTK1 with mutant p53 were used and contrasted. Lower levels of p16ink4A protein were detected in WTK1 cells than in TK6 cells, which were accompanied by increased DNA (cytosine-5)-methyltransferase 1 (DNMT1) gene expression as well as hypermethylation of the p16 ink4A promoter. siRNA experiments to transiently knock down wild-type p53 in TK6 cells resulted in increase of DNMT1 expression as well as decrease of p16ink4A protein. Conversely, siRNA knockdown of mutant p53 in WTK1 cells did not alter either DNMT1 or p16ink4A protein levels. Furthermore, loss of suppression function of mutant p53 to DNMT1 in WTK1 was caused by the attenuation of its binding ability to the DNMT1 promoter. In summary, we provide evidences to elucidate the relationship between mutant p53 and DNMT1. Our results indicate that mutant p53 loses its ability to suppress DNMT1 expression, and thus enhances methylation levels of the p16 ink4A promoter and subsequently down-regulates p16ink4A protein. Z. Guo and M.-H. Tsai contributed equally to this work.  相似文献   

16.
17.
18.
Chromodomain-Helicase DNA binding protein 7 (CHD7) is an ATP dependent chromatin remodeler involved in maintaining open chromatin structure. Mutations of CHD7 gene causes multiple developmental disorders, notably CHARGE syndrome. However, there is not much known about the molecular mechanism by which CHD7 remodels nucleosomes. Here, we performed biochemical and biophysical analysis on CHD7 chromatin remodeler and uncover that N-terminal to the Chromodomain (N-CRD) interacts with nucleosome and contains a high conserved arginine stretch, which is reminiscent of arginine anchor. Importantly, this region is required for efficient ATPase stimulation and nucleosome remodeling activity of CHD7. Furthermore, smFRET analysis shows the mutations in the N-CRD causes the defects in remodeling activity. Collectively, our results uncover the functional importance of a previously unidentified N-terminal region in CHD7 and implicate that the multiple domains in chromatin remodelers are involved in regulating their activities.  相似文献   

19.
20.
The mechanisms leading to brain tumor formation are poorly understood. Using Ptch1+/? mice as a medulloblastoma model, sequential mutations were found to shape tumor evolution. Initially, medulloblastoma preneoplastic lesions display loss of heterozygosity of the Ptch1 wild-type allele, an event associated with cell senescence in preneoplasia. Subsequently, p53 mutations lead to senescence evasion and progression from preneoplasia to medulloblastoma. These findings are consistent with a model where high levels of Hedgehog signaling caused by the loss of the tumor suppressor Ptch1 lead to oncogene-induced senescence and drive p53 mutations. Thus, cell senescence is an important characteristic of a subset of SHH medulloblastoma and might explain the acquisition of somatic TP53 mutations in human medulloblastoma. This mode of medulloblastoma formation contrasts with the one characterizing Li-Fraumeni patients with medulloblastoma, where TP53 germ-line mutations cause chromothriptic genomic instability and lead to mutations in Hedgehog signaling genes, which drive medulloblastoma growth. Here we discuss in detail these 2 alternative mechanisms leading to medulloblastoma tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号