首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aims of this study were (1) to examine the geographic distribution of red-listed species of agricultural environments and identify their national threat spots (areas with high diversity of threatened species) in Finland and (2) to determine the main environmental variables related to the richness and occurrence patterns of red-listed species. Atlas data of 21 plant, 17 butterfly and 11 bird species recorded using 10 km grid squares were employed in the study. Generalized additive models (GAMs) were constructed separately for species richness and occurrence of individual species of the three species groups using climate and land cover predictor variables. The predictive accuracy of models, as measured using correlation between the observed and predicted values and AUC statistics, was generally good. Temperature-related variables were the most important determinants of species richness and occurrence of all three taxa. In addition, land cover variables had a strong effect on the distribution of species. Plants and butterflies were positively related to the cover of grasslands and birds to small-scale agricultural mosaic as well as to arable land. Spatial coincidence of threat spots of plants, butterflies and birds was limited, which emphasizes the importance of considering the potentially contrasting environmental requirements of different taxa in conservation planning. Further, it is obvious that the maintenance of various non-crop habitats and heterogeneous agricultural landscapes has an essential role in the preservation of red-listed species of boreal rural environments.  相似文献   

2.
Aim The aims of this work were (1) to study how well land‐cover and climatic data are capable of explaining distribution patterns of ten bird species breeding and/or feeding primarily on marshes and other wetlands and (2) to compare the differences between red‐listed and common marshland species in explanatory variables, and to study the predictability of their distribution patterns. Location Finland, northern Europe. Methods The data of the bird atlas survey carried out in 1986–89 using a 10 × 10 km uniform grid system in Finland were used in the analyses. Land‐cover data based on CORINE (Coordination of Information on the Environment) classification and climatic variables were compiled using the same 10 × 10 km grid. Generalized additive models (GAM) with a stepwise selection procedure were used to select relevant explanatory variables and to examine the complexity of the response shapes of the different species to each variable. The original data set was randomly divided into model training (70%) and model evaluation (30%) sets. The final models of common and red‐listed bird species richness were validated by fitting them to the model evaluation set, and the correlation between observed and predicted species richness was calculated. We assessed the discrimination ability of the binary models (single species) with the area under the curve (AUC) of a receiver operating characteristic (ROC) plot and the Kappa coefficient. Results Cover of marshland, shoreline length and mean temperature in April–June were significantly (P < 0.01) related to the common marshland species richness. Cover and clumping of marshland and mean temperature and precipitation in April–June were selected in the model of red‐listed marshland species richness. The level of discrimination in our single species models varied in ROC from fair to excellent (AUC values 0.70–0.95). Cover of marshland was included in all GAM models built for the target species, but clumping of marshland, shoreline length and cover of mires also appeared as important predictors in single species models. Seven species had statistically significant relationships with climatic variables in the multivariate GAMs. Cover of marshland was highest in squares in which the red‐listed bittern Botaurus stellaris, marsh harrier Circus aeruginosus and great reed warbler Acrocephalus arundinaceus and the water rail Rallus aquaticus were observed. Main conclusions Cover of marshland was the only variable which was included in all the models, reinforcing the close connection between the studied species and marshlands. Broad‐scale clumping of marshlands was important for the red‐listed species, probably due to the much lower population sizes of red‐listed species than those of common species. Land‐cover data produced in CORINE seems to be well suited for modelling the distribution patterns of marshland birds. Although climatic variables also strongly affect the studied marshland birds, habitat availability plays a crucial role in their occurrence. The distribution patterns of marshland birds at the scale of 10 × 10 km reflect the interplay between habitat availability and direct climatic variables.  相似文献   

3.
Remote sensing (RS) data may play an important role in the development of cost-effective means for modelling, mapping, planning and conserving biodiversity. Specifically, at the landscape scale, spatial models for the occurrences of species of conservation concern may be improved by the inclusion of RS-based predictors, to help managers to better meet different conservation challenges. In this study, we examine whether predicted distributions of 28 red-listed plant species in north-eastern Finland at the resolution of 25 ha are improved when advanced RS-variables are included as unclassified continuous predictor variables, in addition to more commonly used climate and topography variables. Using generalized additive models (GAMs), we studied whether the spatial predictions of the distribution of red-listed plant species in boreal landscapes are improved by incorporating advanced RS (normalized difference vegetation index, normalized difference soil index and Tasseled Cap transformations) information into species-environment models. Models were fitted using three different sets of explanatory variables: (1) climate-topography only; (2) remote sensing only; and (3) combined climate-topography and remote sensing variables, and evaluated by four-fold cross-validation with the area under the curve (AUC) statistics. The inclusion of RS variables improved both the explanatory power (on average 8.1 % improvement) and cross-validation performance (2.5 %) of the models. Hybrid models produced ecologically more reliable distribution maps than models using only climate-topography variables, especially for mire and shore species. In conclusion, Landsat ETM+ data integrated with climate and topographical information has the potential to improve biodiversity and rarity assessments in northern landscapes, especially in predictive studies covering extensive and remote areas.  相似文献   

4.
Are niche‐based species distribution models transferable in space?   总被引:15,自引:2,他引:13  
Aim To assess the geographical transferability of niche‐based species distribution models fitted with two modelling techniques. Location Two distinct geographical study areas in Switzerland and Austria, in the subalpine and alpine belts. Methods Generalized linear and generalized additive models (GLM and GAM) with a binomial probability distribution and a logit link were fitted for 54 plant species, based on topoclimatic predictor variables. These models were then evaluated quantitatively and used for spatially explicit predictions within (internal evaluation and prediction) and between (external evaluation and prediction) the two regions. Comparisons of evaluations and spatial predictions between regions and models were conducted in order to test if species and methods meet the criteria of full transferability. By full transferability, we mean that: (1) the internal evaluation of models fitted in region A and B must be similar; (2) a model fitted in region A must at least retain a comparable external evaluation when projected into region B, and vice‐versa; and (3) internal and external spatial predictions have to match within both regions. Results The measures of model fit are, on average, 24% higher for GAMs than for GLMs in both regions. However, the differences between internal and external evaluations (AUC coefficient) are also higher for GAMs than for GLMs (a difference of 30% for models fitted in Switzerland and 54% for models fitted in Austria). Transferability, as measured with the AUC evaluation, fails for 68% of the species in Switzerland and 55% in Austria for GLMs (respectively for 67% and 53% of the species for GAMs). For both GAMs and GLMs, the agreement between internal and external predictions is rather weak on average (Kulczynski's coefficient in the range 0.3–0.4), but varies widely among individual species. The dominant pattern is an asymmetrical transferability between the two study regions (a mean decrease of 20% for the AUC coefficient when the models are transferred from Switzerland and 13% when they are transferred from Austria). Main conclusions The large inter‐specific variability observed among the 54 study species underlines the need to consider more than a few species to test properly the transferability of species distribution models. The pronounced asymmetry in transferability between the two study regions may be due to peculiarities of these regions, such as differences in the ranges of environmental predictors or the varied impact of land‐use history, or to species‐specific reasons like differential phenotypic plasticity, existence of ecotypes or varied dependence on biotic interactions that are not properly incorporated into niche‐based models. The lower variation between internal and external evaluation of GLMs compared to GAMs further suggests that overfitting may reduce transferability. Overall, a limited geographical transferability calls for caution when projecting niche‐based models for assessing the fate of species in future environments.  相似文献   

5.
Recent studies on the determinants of distribution and abundance of animals at landscape level have emphasized the usefulness of the metapopulation approach, in which patch area and habitat connectivity have often proved to explain satisfactorily existing patch occupancy patterns. A different approach is needed to study the common situation in which suitable habitat is difficult to determine or does not occur in well‐defined habitat patches. We applied a landscape ecological approach to study the determinants of distribution and abundance of the threatened clouded apollo Parnassius mnemosyne butterfly within an area of 6 km2 of agricultural landscape in south‐western Finland. The relative role of 24 environmental variables potentially affecting the distribution and abundance of the butterfly was studied using a spatial grid system with 2408 grid squares of 0.25 ha, of which 349 were occupied by the clouded apollo. Both the probability of butterfly presence and abundance in a 0.25 ha square increased with the presence of the larval host plant Corydalis solida the cover of semi‐natural grassland, the amount of solar radiation and spalial autocorrelation in butterfly occurrence. Additionally, butterfly abundance increased with overall mean patch size and decreased with maximum slope angle and wind speed. Two advantages of the employment of a spatial grid system included the avoidance of a subjective definition of suitable habitat patches and an evaluation of the relative significance of different components of habitat quality at the same time with habitat availability and connectivity. The large variation in habitat quality was influenced by the abundance of the larval host plant and adult nectar sources but also by climatological. topographical and structural factors. The application of a spatial grid system as used here has potential for a wide use in studies on landscape‐level distribution and abundance patterns in species with complex habitat requirements and habitat availability patterns.  相似文献   

6.
Prediction maps produced by species distribution models (SDMs) influence decision‐making in resource management or designation of land in conservation planning. Many studies have compared the prediction accuracy of different SDM modeling methods, but few have quantified the similarity among prediction maps. There has also been little systematic exploration of how the relative importance of different predictor variables varies among model types and affects map similarity. Our objective was to expand the evaluation of SDM performance for 45 plant species in southern California to better understand how map predictions vary among model types, and to explain what factors may affect spatial correspondence, including the selection and relative importance of different environmental variables. Four types of models were tested. Correlation among maps was highest between generalized linear models (GLMs) and generalized additive models (GAMs) and lowest between classification trees and GAMs or GLMs. Correlation between Random Forests (RFs) and GAMs was the same as between RFs and classification trees. Spatial correspondence among maps was influenced the most by model prediction accuracy (AUC) and species prevalence; map correspondence was highest when accuracy was high and prevalence was intermediate (average prevalence for all species was 0.124). Species functional type and the selection of climate variables also influenced map correspondence. For most (but not all) species, climate variables were more important than terrain or soil in predicting their distributions. Environmental variable selection varied according to modeling method, but the largest differences were between RFs and GLMs or GAMs. Although prediction accuracy was equal for GLMs, GAMs, and RFs, the differences in spatial predictions suggest that it may be important to evaluate the results of more than one model to estimate the range of spatial uncertainty before making planning decisions based on map outputs. This may be particularly important if models have low accuracy or if species prevalence is not intermediate.  相似文献   

7.
Aim  We explored the relative contributions of climatic and land-cover factors in explaining the distribution patterns of butterflies in a boreal region.
Location  Finland, northern Europe.
Methods  Data from a national butterfly atlas survey carried out during 1991–2003, with a 10-km grain grid system, were used in these analyses. We used generalized additive models (GAM) and hierarchical partitioning (HP) to explore the main environmental correlates (climate and land-cover) of the realized niches of 98 butterfly species. The accuracy of the distribution models (GAMs) was validated by resubstitution and cross-validation approaches, using the area under the curve (AUC) derived from the receiver operating characteristic (ROC) plots.
Results  Predictive accuracies of the 98 individual environment–butterfly models varied from low to very high (cross-validated AUC values 0.48–0.99), with a mean of 0.79. The results of both the GAM and HP analyses were broadly concordant. Most of the variation in butterfly distributions is associated with growing degree-days, mean temperature of the coldest month and cover of built-up area in all six phylogenetic groups (butterfly families). There were no statistically significant differences in predictive accuracy among the different butterfly families.
Main conclusions  About three-quarters of the distributions of butterfly species in Finland appear to be governed principally by climatic, predominantly temperature-related, factors. This indicates that many butterfly species may respond rapidly to the projected climate change in boreal regions. By determining the ecological niches of multiple species, we can project their range shifts in response to changes in climate and land-cover, and identify species that are particularly sensitive to forecasted global changes.  相似文献   

8.
The role of land cover in bioclimatic models depends on spatial resolution   总被引:2,自引:0,他引:2  
Aim We explored the importance of climate and land cover in bird species distribution models on multiple spatial scales. In particular, we tested whether the integration of land cover data improves the performance of pure bioclimatic models. Location Finland, northern Europe. Methods The data of the bird atlas survey carried out in 1986–89 using a 10 × 10 km uniform grid system in Finland were employed in the analyses. Land cover and climatic variables were compiled using the same grid system. The dependent and explanatory variables were resampled to 20‐km, 40‐km and 80‐km resolutions. Generalized additive models (GAM) were constructed for each of the 88 land bird species studied in order to estimate the probability of occurrence as a function of (1) climate and (2) climate and land cover variables. Model accuracy was measured by a cross‐validation approach using the area under the curve (AUC) of a receiver operating characteristic (ROC) plot. Results In general, the accuracies of the 88 bird–climate models were good at all studied resolutions. However, the inclusion of land cover increased the performance of 79 and 78 of the 88 bioclimatic models at 10‐km and 20‐km resolutions, respectively. There was no significant improvement at the 40‐km resolution. In contrast to the finer resolutions, the inclusion of land cover variables decreased the modelling accuracy at 80km resolution. Main conclusions Our results suggest that the determinants of bird species distributions are hierarchically structured: climatic variables are large‐scale determinants, followed by land cover at finer resolutions. The majority of the land bird species in Finland are rather clearly correlated with climate, and bioclimate envelope models can provide useful tools for identifying the relationships between these species and the environment at resolutions ranging from 10 km to 80 km. However, the notable contribution of land cover to the accuracy of bioclimatic models at 10–20‐km resolutions indicates that the integration of climate and land cover information can improve our understanding and model predictions of biogeographical patterns under global change.  相似文献   

9.
Aim Aquatic–terrestrial ecotones are vulnerable to climate change, and degradation of the emergent aquatic macrophyte zone would have severe ecological consequences for freshwater, wetland and terrestrial ecosystems. Our aim was to uncover future changes in boreal emergent aquatic macrophyte zones by modelling the occurrence and percentage cover of emergent aquatic vegetation under different climate scenarios in Finland by the 2050s. Location Finland, northern Europe. Methods Data derived from different GIS sources were used to estimate future emergent aquatic macrophyte distributions in all catchments in Finland (848 in total). We used generalized additive models (GAM) with a full stepwise selection algorithm and Akaike information criterion to explore the main environmental determinates (climate and geomorphology) of emergent aquatic macrophyte distributions, which were derived from the national subclass of CORINE land‐cover classification. The accuracy of the distribution models (GAMs) was cross‐validated, using percentage of explained deviance and the area under the curve derived from the receiver‐operating characteristic plots. Results Our results indicated that emergent aquatic macrophytes will expand their distributions northwards from the current catchments and percentage cover will increase in all of the catchments in all climate scenarios. Growing degree‐days was the primary determinant affecting distributions of emergent aquatic macrophytes. Inclusion of geomorphological variables clearly improved model performance in both model exercises compared with pure climate variables. Main conclusions Emergent aquatic macrophyte distributions will expand due to climate change. Many emergent aquatic plant species have already expanded their distributions during the past decades, and this process will continue in the years 2051–80. Emergent aquatic macrophytes pose an increasing overgrowth risk for sensitive macrophyte species in boreal freshwater ecosystems, which should be acknowledged in management and conservation actions. We conclude that predictions based on GIS data can provide useful ‘first‐filter’ estimates of changes in aquatic–terrestrial ecotones.  相似文献   

10.
Aim To investigate the spatial and temporal dynamics of the vulnerable and highly mobile superb parrot (Polytelis swainsonii) across its range in south‐eastern mainland Australia. Location South‐eastern Australia (27°–37° S latitude and 141°–151° E longitude). Methods We used generalized additive models (GAMs) to model time‐specific bird atlas occurrence data against time‐specific plant productivity data, plus a range of environmental predictor variables. We then examined the effects of environmental variables on the temporal and spatial patterns of predicted abundance and distribution of the superb parrot using a correlative mapping approach. Results Key findings from GAM analysis were: (1) there was a strong positive relationship between abundance and plant productivity in all regions, but (2) the response of abundance to other predictor variables often differed between regions. Correlative mapping predictions of the abundance and distribution of the superb parrot also indicated that: (1) predicted abundance varied through time and space, (2) predicted abundance sometimes decreased in all regions, but at other times some regions had high abundance when others had low, and (3) changes in plant productivity (and therefore climate) were associated with this variation. Main conclusion The superb parrot favours productive landscapes that are also favoured for agriculture. Movements appear to be associated with seasonal and year to year climate variability. Thus, variation in the recorded abundance of the superb parrot may mask population trends, suggesting that existing population estimates are unreliable. Also, high abundances in some areas, and at some times, may reflect deteriorating habitat conditions elsewhere rather than species recovery. Temporal variability in the distribution of the superb parrot makes it difficult to identify specific drought refugia. Consequently, through time, as key habitat continues to deteriorate, the species will become increasingly vulnerable and threatened. Whole‐landscape habitat conservation and restoration strategies are therefore needed to sustain superb parrot populations in the long‐term.  相似文献   

11.
Aim To evaluate the relative importance of water–energy, land‐cover, environmental heterogeneity and spatial variables on the regional distribution of Red‐Listed and common vascular plant species richness. Location Trento Province (c. 6200 km2) on the southern border of the European Alps (Italy), subdivided regularly into 228 3′ × 5′ quadrants. Methods Data from a floristic inventory were separated into two subsets, representing Red‐Listed and common (i.e. all except Red‐Listed) plant species richness. Both subsets were separately related to water–energy, land‐cover and environmental heterogeneity variables. We simultaneously applied ordinary least squares regression with variation partitioning and hierarchical partitioning, attempting to identify the most important factors controlling species richness. We combined the analysis of environmental variables with a trend surface analysis and a spatial autocorrelation analysis. Results At the regional scale, plant species richness of both Red‐Listed and common species was primarily related to energy availability and land cover, whereas environmental heterogeneity had a lesser effect. The greatest number of species of both subsets was found in quadrants with the largest energy availability and the greatest degree of urbanization. These findings suggest that the elevation range within our study region imposes an energy‐driven control on the distribution of species richness, which resembles that of the broader latitude gradient. Overall, the two species subsets had similar trends concerning the relative importance of water–energy, land cover and environmental heterogeneity, showing a few differences regarding the selection of some predictors of secondary importance. The incorporation of spatial variables did not improve the explanatory power of the environmental models and the high original spatial autocorrelation in the response variables was reduced drastically by including the selected environmental variables. Main conclusions Water–energy and land cover showed significant pure effects in explaining plant species richness, indicating that climate and land cover should both be included as explanatory variables in modelling species richness in human‐affected landscapes. However, the high degree of shared variation between the two groups made the relative effects difficult to separate. The relatively low range of variation in the environmental heterogeneity variables within our sampling domain might have caused the low importance of this complex factor.  相似文献   

12.
Aim We investigated whether accounting for land cover could improve bioclimatic models for eight species of anurans and three species of turtles at a regional scale. We then tested whether accounting for spatial autocorrelation could significantly improve bioclimatic models after statistically controlling for the effects of land cover. Location Nova Scotia, eastern Canada. Methods Species distribution data were taken from a recent (1999–2003) herpetofaunal atlas. Generalized linear models were used to relate the presence or absence of each species to climate and land‐cover variables at a 10‐km resolution. We then accounted for spatial autocorrelation using an autocovariate or third‐order trend surface of the geographical coordinates of each grid square. Finally, variance partitioning was used to explore the independent and joint contributions of climate, land cover and spatial autocorrelation. Results The inclusion of land cover significantly increased the explanatory power of bioclimatic models for 10 of the 11 species. Furthermore, including land cover significantly increased predictive performance for eight of the 11 species. Accounting for spatial autocorrelation improved model fit for rare species but generally did not improve prediction success. Variance partitioning demonstrated that this lack of improvement was a result of the high correlation between climate and trend‐surface variables. Main conclusions The results of this study suggest that accounting for the effects of land cover can significantly improve the explanatory and predictive power of bioclimatic models for anurans and turtles at a regional scale. We argue that the integration of climate and land‐cover data is likely to produce more accurate spatial predictions of contemporary herpetofaunal diversity. However, the use of land‐cover simulations in climate‐induced range‐shift projections introduces additional uncertainty into the predictions of bioclimatic models. Further research is therefore needed to determine whether accounting for the effects of land cover in range‐shift projections is merited.  相似文献   

13.
Questions: To what extent do plant species traits, including life history, life form, and disturbance response characteristics, affect the degree to which species distributions are determined by physical environmental factors? Is the strength of the relationship between species distribution and environment stronger in some disturbance‐response types than in others? Location: California southwest ecoregion, USA. Methods: We developed species distribution models (SDMs) for 45 plant species using three primary modeling methods (GLMs, GAMs, and Random Forests). Using AUC as a performance measure of prediction accuracy, and measure of the strength of species–environment correlations, we used regression analyses to compare the effects of fire disturbance response type, longevity, dispersal mechanism, range size, cover, species prevalence, and model type. Results: Fire disturbance response type explained more variation in model performance than any other variable, but other species and range characteristics were also significant. Differences in prediction accuracy reflected variation in species life history, disturbance response, and rarity. AUC was significantly higher for longer‐lived species, found at intermediate levels of abundance, and smaller range sizes. Models performed better for shrubs than sub‐shrubs and perennial herbs. The disturbance response type with the highest SDM accuracy was obligate‐seeding shrubs with ballistic dispersal that regenerate via fire‐cued germination from a dormant seed bank. Conclusions: The effect of species characteristics on predictability of species distributions overrides any differences in modeling technique. Prediction accuracy may be related to how a suite of species characteristics co‐varies along environmental gradients. Including disturbance response was important because SDMs predict the realized niche. Classification of plant species into disturbance response types may provide a strong framework for evaluating performance of SDMs.  相似文献   

14.
Aim To examine the influence of environmental variables on species richness patterns of amphibians, reptiles, mammals and birds and to assess the general usefulness of regional atlases of fauna. Location Navarra (10,421 km2) is located in the north of the Iberian Peninsula, in a territory shared by Mediterranean and Eurosiberian biogeographic regions. Important ecological patterns, climate, topography and land‐cover vary significantly from north to south. Methods Maps of vertebrate distribution and climatological and environmental data bases were used in a geographic information systems framework. Generalized additive models and partial regression analysis were used as statistical tools to differentiate (A) the purely spatial fraction, (B) the spatially structured environmental fraction and (C) the purely environmental fraction. In this way, we can evaluate the explanatory capacity of each variable, avoiding false correlations and assessing true causality. Final models were obtained through a stepwise procedure. Results Energy‐related features of climate, aridity and land‐cover variables show significant correlation with the species richness of reptiles, mammals and birds. Mammals and birds exhibit a spatial pattern correlated with variables such as aridity index and vegetation land‐cover. However, the high values of the spatially structured environmental fraction B and the low values of the purely environmental fraction A suggest that these predictor variables have a limited causal relationship with species richness for these vertebrate groups. An increment in land‐cover diversity is correlated with an increment of specific richness in reptiles, mammals and birds. No variables were found to be statistically correlated with amphibian species richness. Main conclusions Although aridity and land‐cover are the best predictor variables, their causal relationship with species richness must be considered with caution. Historical factors exhibiting a similar spatial pattern may be considered equally important in explaining the patterns of species richness. Also, land‐cover diversity appears as an important factor for maintaining biological diversity. Partial regression analysis has proved a useful technique in dealing with spatial autocorrelation. These results highlight the usefulness of coarsely sampled data and cartography at regional scales to predict and explain species richness patterns for mammals and birds. The accuracy of models appears to be related to the range perception of each group and the scale of the information.  相似文献   

15.
Question: How do environmental variables in a hyper‐arid fog desert influence the distribution patterns of terricolous lichens on both macro‐ and micro‐scales? Location: Namib Desert, Namibia. Methods: Sites with varying lichen species cover were sampled for environmental variables on a macro‐scale (elevation, slope degree, aspect, proximity to river channels, and fog deposition) and on a micro‐scale (soil structure and chemistry). Macro‐scale and micro‐scale variables were analysed separately for associations with lichen species cover using constrained ordination (DCCA) and unconstrained ordination (DCA). Explanatory variables that dominated the first two axes of the constrained ordinations were tested against a lichen cover gradient. Results: Elevation and proximity to river channels were the most significant drivers of lichen species cover in the macro‐scale DCCA, but results of the DCA suggest that a considerable percentage of variation in lichen species cover is unexplained by these variables. On a micro‐scale, sediment particle size explained a majority of lichen community variations, followed by soil pH. When both macro and micro‐scale variables were tested along a lichen cover gradient, soil pH was the only variable to show a significant relationship to lichen cover. Conclusion: The findings suggest that landscape variables contribute to variations in lichen species cover, but that stronger links occur between lichen growth and small‐scale variations in soil characteristics, supporting the need for multi‐scale approaches in the management of threatened biological soil crust communities and related ecosystem functions.  相似文献   

16.
Statistical predictions of the impact of climate change on biodiversity assume that the environmental and spatial characteristics of contemporary species’ distributions reflect the conditions needed for their continued and prolonged existence. Here we explore this assumption by testing whether a species’ threatened status is associated with the amount of variation in its distribution range attributable to environmental and spatial patterns. Using a variation partitioning approach, we decomposed variation in the distribution ranges of 4423 vertebrate species in sub-Saharan Africa into components attributable exclusively to environmental variables (E|S), exclusively to spatial variables (S|E) or to the collinearity between environmental and spatial variables (E∩S). We found that species’ threatened status was unrelated to E|S, S|E or E∩S variation components, but that unexplained variation was higher for species threatened with extinction. This suggests that spatio-environmental patterns in species’ ranges likely underestimate the overall extinction threat caused by climate change. We also found clear geographic patterns in the strength of E|S, S|E or E∩S that differed amongst biogeographical regions, but no component was over- or underrepresented in the present-day protected area network. While there may be benefits to tailoring protected area expansion to differences between biogeographical regions, this should aim to incorporate species-specific information wherever possible.  相似文献   

17.
Binary presence–absence matrices (rows = species, columns = sites) are often used to quantify patterns of species co‐occurrence, and to infer possible biotic interactions from these patterns. Previous classifications of co‐occurrence patterns as nested, segregated, or modular have led to contradictory results and conclusions. These analyses usually do not incorporate the functional traits of the species or the environmental characteristics of the sites, even though the outcomes of species interactions often depend on trait expression and site quality. Here we address this shortcoming by developing a method that incorporates realized functional and environmental niches, and relates them to species co‐occurrence patterns. These niches are defined from n‐dimensional ellipsoids, and calculated from the n eigenvectors and eigenvalues of the variance–covariance matrix of measured environmental or trait variables. Average niche overlap among species and the spatial distribution of niches define a triangle plot with vertices of species segregation (low niche overlap), nestedness (high niche overlap), and modular co‐occurrence (clusters of overlapping niches). Applying this framework to temperate understorey plant communities in southwest Poland, we found a consistent modular structure of species occurrences, a pattern not detected by conventional presence–absence analysis. These results suggest that, in our case study, habitat filtering is the most important process structuring understorey plant communities. Furthermore, they demonstrate how incorporating trait and environmental data into co‐occurrence analysis improves pattern detection and provides a stronger theoretical framework for understanding community structure.  相似文献   

18.
Aim To identify the most important environmental drivers of benthic macroinvertebrate assemblages in boreal springs at different spatial scales, and to assess how well benthic assemblages correspond to terrestrially derived ecoregions. Location Finland. Methods Benthic invertebrates were sampled from 153 springs across four boreal ecoregions of Finland, and these data were used to analyse patterns in assemblage variation in relation to environmental factors. Species data were classified using hierarchical divisive clustering (twinspan ) and ordinated using non‐metric multidimensional scaling. The prediction success of the species and environmental data into a priori (ecoregions) and a posteriori (twinspan ) groups was compared using discriminant function analysis. Indicator species analysis was used to identify indicator taxa for both a priori and a posteriori assemblage types. Results The main patterns in assemblage clusters were related to large‐scale geographical variation in temperature. A secondary gradient in species data reflected variation in local habitat structure, particularly abundance of minerogenic spring brooks. Water chemistry variables were only weakly related to assemblage variation. Several indicator species representing southern faunistic elements in boreal springs were identified. Discriminant function analysis showed poorer success in classifying sites into ecoregions based on environmental than on species data. Similarly, when classifying springs into the twinspan groups, classification based on species data vastly outperformed that based on environmental data. Main conclusions A latitudinal zonation pattern of spring assemblages driven by regional thermal conditions is documented, closely paralleling corresponding latitudinal patterns in both terrestrial and freshwater assemblages in Fennoscandia. The importance of local‐scale environmental variables increased with decreasing spatial extent. Ecoregions provide an initial stratification scheme for the bioassessment of benthic macroinvertebrates of North European springs. Our results imply that climate warming, landscape disturbance and degradation of spring habitat pose serious threats to spring biodiversity in northern Europe, especially to its already threatened southern faunistic elements.  相似文献   

19.
Questions: What is the observed relationship between plant species diversity and spatial environmental heterogeneity? Does the relationship scale predictably with sample plot size? What are the relative contributions to diversity patterns of variables linked to productivity or available energy compared to those corresponding to spatial heterogeneity? Methods: Observational and experimental studies that quantified relationships between plant species richness and within‐sample spatial environmental heterogeneity were reviewed. Effect size in experimental studies was quantified as the standardized mean difference between control (homogeneous) and heterogeneous treatments. For observational studies, effect sizes in individual studies were examined graphically across a gradient of plot size (focal scale). Relative contributions of variables representing spatial heterogeneity were compared to those representing available energy using a response ratio. Results: Forty‐one observational and 11 experimental studies quantified plant species diversity and spatial environmental heterogeneity. Observational studies reported positive species diversity‐spatial heterogeneity correlations at all points across a plot size gradient from ~1.0 × 10?1 to ~1.0 × 1011 m2, although many studies reported spatial heterogeneity variables with no significant relationships to species diversity. The cross‐study effect size in experimental studies was not significantly different from zero. Available energy variables explained consistently more of the variance in species richness than spatial heterogeneity variables, especially at the smallest and largest plot sizes. Main conclusions: Species diversity was not related to spatial heterogeneity in a way predictable by plot size. Positive heterogeneity‐diversity relationships were common, confirming the importance of niche differentiation in species diversity patterns, but future studies examining a range of spatial scales in the same system are required to determine the role of dispersal and available energy in these patterns.  相似文献   

20.
Aim To analyse the effects of nine species trait variables on the accuracy of bioclimatic envelope models built for 98 butterfly species. Location Finland, northern Europe. Methods Data from a national butterfly atlas monitoring scheme (NAFI) collected from 1991–2003 with a resolution of 10 × 10 km were used in the analyses. Generalized additive models (GAMs) were constructed for 98 butterfly species to predict their occurrence as a function of climatic variables. Modelling accuracy was measured as the cross‐validation area under the curve (AUC) of the receiver–operating characteristic plot. Observed variation in modelling accuracy was related to species traits using multiple GAMs. The effects of phylogenetic relatedness among butterflies were accounted for by using generalized estimation equations. Results The values of the cross‐validation AUC for the 98 species varied between 0.56 and 1.00 with a mean of 0.79. Five species trait variables were included in the GAM that explained 71.4% of the observed variation in modelling accuracy. Four variables remained significant after accounting for phylogenetic relatedness. Species with high mobility and a long flight period were modelled less accurately than species with low mobility and a short flight period. Large species (>50 mm in wing span) were modelled more accurately than small ones. Species inhabiting mires had especially poor models, whereas the models for species inhabiting rocky outcrops, field verges and open fells were more accurate compared with other habitats. Main conclusions These results draw attention to the importance of species traits variables for species–climate impact models. Most importantly, species traits may have a strong impact on the performance of bioclimatic envelope models, and certain trait groups can be inherently difficult to model reliably. These uncertainties should be taken into account by downweighting or excluding species with such traits in studies applying bioclimatic modelling and making assessments of the impacts of climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号