首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here the isolation and molecular characterization of the Drosophila homolog of the mitotic checkpoint control protein Bub3. The Drosophila Bub3 protein is associated with the centromere/kinetochore of chromosomes in larval neuroblasts whose spindle assembly checkpoints have been activated by incubation with the microtubule-depolymerizing agent colchicine. Drosophila Bub3 is also found at the kinetochore regions in mitotic larval neuroblasts and in meiotic primary and secondary spermatocytes, with the strong signal seen during prophase and prometaphase becoming increasingly weaker after the chromosomes have aligned at the metaphase plate. We further show that the localization of Bub3 to the kinetochore is disrupted by mutations in the gene encoding the Drosophila homolog of the spindle assembly checkpoint protein Bub1. Combined with recent findings showing that the kinetochore localization of Bub1 conversely depends upon Bub3, these results support the hypothesis that the spindle assembly checkpoint proteins exist as a multiprotein complex recruited as a unit to the kinetochore. In contrast, we demonstrate that the kinetochore constituents Zw10 and Rod are not needed for the binding of Bub3 to the kinetochore. This suggests that the kinetochore is assembled in at least two relatively independent pathways. Received: 6 August 1998 / Accepted: 28 August 1998  相似文献   

2.
The spindle checkpoint inhibits the metaphase to anaphase transition until all the chromosomes are properly attached to the mitotic spindle. We have isolated a Xenopus homologue of the spindle checkpoint component Bub1, and investigated its role in the spindle checkpoint in Xenopus egg extracts. Antibodies raised against Bub1 recognize a 150-kD phosphoprotein at both interphase and mitosis, but the molecular mass is reduced to 140 upon dephosphorylation in vitro. Bub1 is essential for the establishment and maintenance of the checkpoint and is localized to kinetochores, similar to the spindle checkpoint complex Mad1-Mad2. However, Bub1 differs from Mad1-Mad2 in that Bub1 remains on kinetochores that have attached to microtubules; the protein eventually dissociates from the kinetochore during anaphase. Immunodepletion of Bub1 abolishes the spindle checkpoint and the kinetochore binding of the checkpoint proteins Mad1, Mad2, Bub3, and CENP-E. Interestingly, reintroducing either wild-type or kinase-deficient Bub1 protein restores the checkpoint and the kinetochore localization of these proteins. Our studies demonstrate that Bub1 plays a central role in triggering the spindle checkpoint signal from the kinetochore, and that its kinase activity is not necessary for the spindle checkpoint in Xenopus egg extracts.  相似文献   

3.
The spindle checkpoint delays anaphase onset until all chromosomes have attached properly to the mitotic spindle. Checkpoint signal is generated at kinetochores that are not bound with spindle microtubules or not under tension. Unattached kinetochores associate with several checkpoint proteins, including BubR1, Bub1, Bub3, Mad1, Mad2, and CENP-E. I herein show that BubR1 is important for the spindle checkpoint in Xenopus egg extracts. The protein accumulates and becomes hyperphosphorylated at unattached kinetochores. Immunodepletion of BubR1 greatly reduces kinetochore binding of Bub1, Bub3, Mad1, Mad2, and CENP-E. Loss of BubR1 also impairs the interaction between Mad2, Bub3, and Cdc20, an anaphase activator. These defects are rescued by wild-type, kinase-dead, or a truncated BubR1 that lacks its kinase domain, indicating that the kinase activity of BubR1 is not essential for the spindle checkpoint in egg extracts. Furthermore, localization and hyperphosphorylation of BubR1 at kinetochores are dependent on Bub1 and Mad1, but not Mad2. This paper demonstrates that BubR1 plays an important role in kinetochore association of other spindle checkpoint proteins and that Mad1 facilitates BubR1 hyperphosphorylation at kinetochores.  相似文献   

4.
The spindle checkpoint prevents anaphase onset until all the chromosomes have successfully attached to the spindle microtubules. The mechanisms by which unattached kinetochores trigger and transmit a primary signal are poorly understood, although it seems to be dependent at least in part, on the kinetochore localization of the different checkpoint components. By using protein immunodepletion and mRNA translation in Xenopus egg extracts, we have studied the hierarchic sequence and the interdependent network that governs protein recruitment at the kinetochore in the spindle checkpoint pathway. Our results show that the first regulatory step of this cascade is defined by Aurora B/INCENP complex. Aurora B/INCENP controls the activation of a second regulatory level by inducing at the kinetochore the localization of Mps1, Bub1, Bub3, and CENP-E. This localization, in turn, promotes the recruitment to the kinetochore of Mad1/Mad2, Cdc20, and the anaphase promoting complex (APC). Unlike Aurora B/INCENP, Mps1, Bub1, and CENP-E, the downstream checkpoint protein Mad1 does not regulate the kinetochore localization of either Cdc20 or APC. Similarly, Cdc20 and APC do not require each other to be localized at these chromosome structures. Thus, at the last step of the spindle checkpoint cascade, Mad1/Mad2, Cdc20, and APC are recruited at the kinetochores independently from each other.  相似文献   

5.
The spindle checkpoint delays anaphase onset until every chromosome kinetochore has been efficiently captured by the mitotic spindle microtubules. In this study, we report that the human pre–messenger RNA processing 4 (PRP4) protein kinase associates with kinetochores during mitosis. PRP4 depletion by RNA interference induces mitotic acceleration. Moreover, we frequently observe lagging chromatids during anaphase leading to aneuploidy. PRP4-depleted cells do not arrest in mitosis after nocodazole treatment, indicating a spindle assembly checkpoint (SAC) failure. Thus, we find that PRP4 is necessary for recruitment or maintenance of the checkpoint proteins MPS1, MAD1, and MAD2 at the kinetochores. Our data clearly identify PRP4 as a previously unrecognized kinetochore component that is necessary to establish a functional SAC.  相似文献   

6.
When Mad met Bub   总被引:1,自引:0,他引:1       下载免费PDF全文
The faithful segregation of chromosomes into daughter cells is essential for cellular and organismal viability. Errors in this process cause aneuploidy, a hallmark of cancer and several congenital diseases. For proper separation, chromosomes attach to microtubules of the mitotic spindle via their kinetochores, large protein structures assembled on centromeric chromatin. Kinetochores are also crucial for a cell cycle feedback mechanism known as the spindle assembly checkpoint (SAC) 1 . The SAC forces cells to remain in mitosis until all chromosomes are properly attached to microtubules. At the beginning of mitosis, the SAC proteins—Mad1, Mad2, Bub1, Bub3, BubR1, Mps1, and Cdc20—are recruited to kinetochores in a hierarchical and interdependent fashion (Fig  1 A). There they monitor, in ways that are not fully clarified, the formation of kinetochore–microtubule attachments 1 . Two studies recently published in EMBO reports by the groups of Silke Hauf 2 and Jakob Nilsson 3 , and a recent study by London and Biggins in Genes & Development 4 , shed new light on the conserved SAC protein Mad1.  相似文献   

7.
During mitosis, the spindle assembly checkpoint (SAC) responds to faulty attachments between kinetochores and the mitotic spindle by imposing a metaphase arrest until the defect is corrected, thereby preventing chromosome missegregation. A genetic screen to isolate SAC mutants in fission yeast yielded point mutations in three fission yeast SAC genes: mad1, bub3, and bub1. The bub1-A78V mutant is of particular interest because it produces a wild-type amount of protein that is mutated in the conserved but uncharacterized Mad3-like region of Bub1p. Characterization of mutant cells demonstrates that the alanine at position 78 in the Mad3-like domain of Bub1p is required for: 1) cell cycle arrest induced by SAC activation; 2) kinetochore accumulation of Bub1p in checkpoint-activated cells; 3) recruitment of Bub3p and Mad3p, but not Mad1p, to kinetochores in checkpoint-activated cells; and 4) nuclear accumulation of Bub1p, Bub3p, and Mad3p, but not Mad1p, in cycling cells. Increased targeting of Bub1p-A78V to the nucleus by an exogenous nuclear localization signal does not significantly increase kinetochore localization or SAC function, but GFP fused to the isolated Bub1p Mad 3-like accumulates in the nucleus. These data indicate that Bub1p-A78V is defective in both nuclear accumulation and kinetochore targeting and that a threshold level of nuclear Bub1p is necessary for the nuclear accumulation of Bub3p and Mad3p.  相似文献   

8.
We discovered that many proteins located in the kinetochore outer domain, but not the inner core, are depleted from kinetochores and accumulate at spindle poles when ATP production is suppressed in PtK1 cells, and that microtubule depolymerization inhibits this process. These proteins include the microtubule motors CENP-E and cytoplasmic dynein, and proteins involved with the mitotic spindle checkpoint, Mad2, Bub1R, and the 3F3/2 phosphoantigen. Depletion of these components did not disrupt kinetochore outer domain structure or alter metaphase kinetochore microtubule number. Inhibition of dynein/dynactin activity by microinjection in prometaphase with purified p50 "dynamitin" protein or concentrated 70.1 anti-dynein antibody blocked outer domain protein transport to the spindle poles, prevented Mad2 depletion from kinetochores despite normal kinetochore microtubule numbers, reduced metaphase kinetochore tension by 40%, and induced a mitotic block at metaphase. Dynein/dynactin inhibition did not block chromosome congression to the spindle equator in prometaphase, or segregation to the poles in anaphase when the spindle checkpoint was inactivated by microinjection with Mad2 antibodies. Thus, a major function of dynein/dynactin in mitosis is in a kinetochore disassembly pathway that contributes to inactivation of the spindle checkpoint.  相似文献   

9.
Monopolar spindle 1 (Mps1) is essential for the spindle assembly checkpoint (SAC), which prevents anaphase onset in the presence of misaligned chromosomes. Moreover, Mps1 kinase contributes in a SAC-independent manner to the correction of erroneous initial attachments of chromosomes to the spindle. Our characterization of the Drosophila homologue reveals yet another SAC-independent role. As in yeast, modest overexpression of Drosophila Mps1 is sufficient to delay progression through mitosis during metaphase, even though chromosome congression and metaphase alignment do not appear to be affected. This delay in metaphase depends on the SAC component Mad2. Although Mps1 overexpression in mad2 mutants no longer causes a metaphase delay, it perturbs anaphase. Sister kinetochores barely move apart toward spindle poles. However, kinetochore movements can be restored experimentally by separase-independent resolution of sister chromatid cohesion. We propose therefore that Mps1 inhibits sister chromatid separation in a SAC-independent manner. Moreover, we report unexpected results concerning the requirement of Mps1 dimerization and kinase activity for its kinetochore localization in Drosophila. These findings further expand Mps1's significance for faithful mitotic chromosome segregation and emphasize the importance of its careful regulation.  相似文献   

10.
The spindle assembly checkpoint (SAC) prevents anaphase onset in response to chromosome attachment defects, and SAC silencing is essential for anaphase onset. Following anaphase onset, activated Cdc14 phosphatase dephosphorylates the substrates of cyclin-dependent kinase to facilitate anaphase progression and mitotic exit. In budding yeast, Cdc14 dephosphorylates Fin1, a regulatory subunit of protein phosphatase 1 (PP1), to enable kinetochore localization of Fin1-PP1. We previously showed that kinetochore-localized Fin1-PP1 promotes the removal of the SAC protein Bub1 from the kinetochore during anaphase. We report here that Fin1-PP1 also promotes kinetochore removal of Bub3, the Bub1 partner, but has no effect on another SAC protein Mad1. Moreover, the kinetochore localization of Bub1-Bub3 during anaphase requires Aurora B/Ipl1 kinase activity. We further showed that Fin1-PP1 facilitates the dephosphorylation of kinetochore protein Ndc80, a known Ipl1 substrate. This dephosphorylation reduces kinetochore association of Bub1-Bub3 during anaphase. In addition, we found that untimely Ndc80 dephosphorylation causes viability loss in response to tensionless chromosome attachments. These results suggest that timely localization of Fin1-PP1 to the kinetochore controls the functional window of SAC and is therefore critical for faithful chromosome segregation.  相似文献   

11.
The spindle checkpoint ensures accurate chromosome segregation by sending a signal from an unattached kinetochore to inhibit anaphase onset. Numerous studies have described the role of Bub3 in checkpoint activation, but less is known about its functions apart from the spindle checkpoint. In this paper, we demonstrate that Bub3 has an unexpected role promoting metaphase progression in budding yeast. Loss of Bub3 resulted in a metaphase delay that was not a consequence of aneuploidy or the activation of a checkpoint. Instead, bub3Δ cells had impaired binding of the anaphase-promoting complex/cyclosome (APC/C) with its activator Cdc20, and the delay could be rescued by Cdc20 overexpression. Kinetochore localization of Bub3 was required for normal mitotic progression, and Bub3 and Cdc20 colocalized at the kinetochore. Although Bub1 binds Bub3 at the kinetochore, bub1Δ cells did not have compromised APC/C and Cdc20 binding. The results demonstrate that Bub3 has a previously unknown function at the kinetochore in activating APC/C-Cdc20 for normal mitotic progression.  相似文献   

12.
The establishment of proper kinetochore-microtubule attachments facilitates faithful chromosome segregation. Incorrect attachments activate the spindle assembly checkpoint (SAC), which blocks anaphase onset via recruitment of a cohort of SAC components (Mph1/MPS1, Mad1, Mad2, Mad3/BubR1, Bub1 and Bub3) to kinetochores. KNL1, a component of the outer kinetochore KMN network (KNL1/Mis12 complex/Ndc80 complex), acts as a platform for Bub1 and Bub3 localization upon its phosphorylation by Mph1/MPS1. The Ndc80 protein, a major microtubule-binding site, is critical for MPS1 localization to the kinetochores in mammalian cells. Here we characterized the newly isolated mutant ndc80-AK01 in fission yeast, which contains a single point mutation within the hairpin region. This hairpin connects the preceding calponin-homology domain with the coiled-coil region. ndc80-AK01 was hypersensitive to microtubule depolymerizing reagents with no apparent growth defects without drugs. Subsequent analyses indicated that ndc80-AK01 is defective in SAC signaling, as mutant cells proceeded into lethal cell division in the absence of microtubules. Under mitotic arrest conditions, all SAC components (Ark1/Aurora B, Mph1, Bub1, Bub3, Mad3, Mad2 and Mad1) did not localize to the kinetochore. Further genetic analyses indicated that the Ndc80 hairpin region might act as a platform for the kinetochore recruitment of Mph1, which is one of the most upstream SAC components in the hierarchy. Intriguingly, artificial tethering of Mph1 to the kinetochore fully restored checkpoint signaling in ndc80-AK01 cells, further substantiating the notion that Ndc80 is a kinetochore platform for Mph1. The hairpin region of Ndc80, therefore, plays a critical role in kinetochore recruitment of Mph1.  相似文献   

13.
The spindle assembly checkpoint is an important surveillance mechanism that ensures high fidelity mitotic chromosome segregation. This is accomplished by monitoring whether sister chromatids lack tension or attachment to spindle microtubules. It is mediated by checkpoint complexes or individual proteins that inhibit the ubiquitin ligase activity of the anaphase-promoting complex/ cyclosome (APC/C) via targeting of the Cdc20 regulatory subunit. The Bub1 kinase is a key spindle checkpoint regulatory protein. Bub1 also plays more pleiotropic roles. Thus, Bub1 is required for assembly of a functional inner centromere, sister chromatid cohesion via targeting of the Shugoshin protein, and metaphase congression. Evidence based on Bub1 mutations in colorectal cancers suggests it might be a driving force in tumorigenesis via generation of chromosomal instability (CIN) and aneuploidy. Recently we reported a surveillance mechanism linking loss of Bub1 to activation of the p53 pathway, specifically premature cell senescence in normal human fibroblasts. Interestingly, SV40 large T antigen (LT) targets Bub1 and this is correlated with oncogenic transformation and compromise of the spindle checkpoint. Future studies on Bub1 combining genetic approaches with analysis of LT perturbations are likely to yield further insight.  相似文献   

14.
The spindle assembly checkpoint (SAC) is the major surveillance system that ensures that sister chromatids do not separate until all chromosomes are correctly bioriented during mitosis. Components of the checkpoint include Mad1, Mad2, Mad3 (BubR1), Bub3, and the kinases Bub1, Mph1 (Mps1), and Aurora B. Checkpoint proteins are recruited to kinetochores when individual kinetochores are not bound to spindle microtubules or not under tension. Kinetochore association of Mad2 causes it to undergo a conformational change, which promotes its association to Mad3 and Cdc20 to form the mitotic checkpoint complex (MCC). The MCC inhibits the anaphase-promoting complex/cyclosome (APC/C) until the checkpoint is satisfied. SAC silencing derepresses Cdc20-APC/C activity. This triggers the polyubiquitination of securin and cyclin, which promotes the dissolution of sister chromatid cohesion and mitotic progression. We, and others, recently showed that association of PP1 to the Spc7/Spc105/KNL1 family of kinetochore proteins is necessary to stabilize microtubule-kinetochore attachments and silence the SAC. We now report that phosphorylation of the conserved MELT motifs in Spc7 by Mph1 (Mps1) recruits Bub1 and Bub3 to the kinetochore and that this is required to maintain the SAC signal.  相似文献   

15.
The spindle assembly checkpoint (SAC) averts aneuploidy by coordinating proper bipolar chromosomal attachment with anaphase-promoting complex/cyclosome (APC/C)-mediated securin and cyclin B1 destruction required for anaphase onset. The generation of a Mad2-based signal at kinetochores is central to current models of SAC-based APC/C inhibition. During mitosis, kinetochores of polar-displaced chromosomes, which are at greatest risk of mis-segregating, recruit the highest levels of Mad2, thereby ensuring that SAC activation is proportionate to aneuploidy risk. Paradoxically, although an SAC operates in mammalian oocytes, meiosis I (MI) is notoriously error prone and polar-displaced chromosomes do not prevent anaphase onset. Here we find that Mad2 is not preferentially recruited to the kinetochores of polar chromosomes of wild-type mouse oocytes, in which polar chromosomes are rare, or of oocytes depleted of the kinesin-7 motor CENP-E, in which polar chromosomes are more abundant. Furthermore, in CENP-E-depleted oocytes, although polar chromosomal displacement intensified during MI and the capacity to form stable end-on attachments was severely compromised, all kinetochores nevertheless became devoid of Mad2. Thus, it is possible that the ability of the SAC to robustly discriminate chromosomal position might be compromised by the propensity of oocyte kinetochores to become saturated with unproductive attachments, thereby predisposing to aneuploidy. Our data also reveal novel functions for CENP-E in oocytes: first, CENP-E stabilises BubR1, thereby impacting MI progression; and second, CENP-E mediates bi-orientation by promoting kinetochore reorientation and preventing chromosomal drift towards the poles.  相似文献   

16.
Zhu M  Wang F  Yan F  Yao PY  Du J  Gao X  Wang X  Wu Q  Ward T  Li J  Kioko S  Hu R  Xie W  Ding X  Yao X 《The Journal of biological chemistry》2008,283(27):18916-18925
Chromosome segregation in mitosis is orchestrated by dynamic interaction between spindle microtubules and the kinetochore. Septin (SEPT) belongs to a conserved family of polymerizing GTPases localized to the metaphase spindle during mitosis. Previous study showed that SEPT2 depletion results in chromosome mis-segregation correlated with a loss of centromere-associated protein E (CENP-E) from the kinetochores of congressing chromosomes (1). However, it has remained elusive as to whether CENP-E physically interacts with SEPT and how this interaction orchestrates chromosome segregation in mitosis. Here we show that SEPT7 is required for a stable kinetochore localization of CENP-E in HeLa and MDCK cells. SEPT7 stabilizes the kinetochore association of CENP-E by directly interacting with its C-terminal domain. The region of SEPT7 binding to CENP-E was mapped to its C-terminal domain by glutathione S-transferase pull-down and yeast two-hybrid assays. Immunofluorescence study shows that SEPT7 filaments distribute along the mitotic spindle and terminate at the kinetochore marked by CENP-E. Remarkably, suppression of synthesis of SEPT7 by small interfering RNA abrogated the localization of CENP-E to the kinetochore and caused aberrant chromosome segregation. These mitotic defects and kinetochore localization of CENP-E can be successfully rescued by introducing exogenous GFP-SEPT7 into the SEPT7-depleted cells. These SEPT7-suppressed cells display reduced tension at kinetochores of bi-orientated chromosomes and activated mitotic spindle checkpoint marked by Mad2 and BubR1 labelings on these misaligned chromosomes. These findings reveal a key role for the SEPT7-CENP-E interaction in the distribution of CENP-E to the kinetochore and achieving chromosome alignment. We propose that SEPT7 forms a link between kinetochore distribution of CENP-E and the mitotic spindle checkpoint.  相似文献   

17.
The eukaryotic spindle assembly checkpoint (SAC) delays anaphase in the presence of chromosome attachment errors. Bub3 has been reported to be required for SAC activity in all eukaryotes examined so far. We find that Bub3, unlike its binding partner Bub1, is not essential for the SAC in fission yeast. As Bub3 is needed for the efficient kinetochore localization of Bub1, and of Mad1, Mad2 and Mad3, this implies that most SAC proteins do not need to be enriched at the kinetochores for the SAC to function. We find that Bub3 is also dispensable for shugoshin localization to the centromeres, which is the second known function of Bub1. Instead, Bub3, together with Bub1, has a specific function in promoting the conversion from chromosome mono‐orientation to bi‐orientation.  相似文献   

18.
The Spindle Assembly Checkpoint ensures the fidelity of chromosome segregation at each cell division cycle. Previous reports have indicated that in higher eukaryotes checkpoint proteins, such as BubR1, are also implicated in chromosome congression, more specifically that BubR1 regulates chromosome-spindle attachments. Also, several studies have shown that BubR1 interacts with the microtubule motor protein CENP-E. Whether this association contributes to the regulation of chromosome-spindle attachments is not yet known. Accordingly, we performed a detailed analysis of microtubule-kinetochore interactions after depletion of BubR1 and the Drosophila CENP-E homologue, CENP-meta by RNAi. We find that depletion of BubR1 affects mitosis very differently from depletion of CENP-meta. While BubR1-depleted cells exit mitosis prematurely due to loss of SAC activity, CENP-meta-depleted cells accumulate in prometaphase and do not exit mitosis after spindle damage. Also, in contrast to cells depleted for CENP-meta, cells depleted for BubR1 very rarely reach full metaphase alignment even if arrested in mitosis with the proteasome inhibitor MG132. More importantly, we show for the first time that BubR1-depleted cells contain a high frequency of either monoriented or fully unattached chromosomes while most CENP-meta dsRNAi-treated cells have chromosomes attached to spindle microtubules. Moreover, simultaneous depletion of both proteins reveals that absence of CENP-meta is able to partially rescue the unattached chromosome phenotype observed after BubR1 depletion. These results strongly suggest that while BubR1 is required to promote stable microtubule kinetochore attachment, CENP-E appears to be required to destabilize kinetochore attachment. Overall our results suggest that activation of the mechanism that corrects inappropriate kinetochore attachment requires the antagonistic effects of BubR1 and CENP-E.  相似文献   

19.
A predominant mechanism of spindle assembly checkpoint (SAC) silencing is dynein-mediated transport of certain kinetochore proteins along microtubules. There are still conflicting data as to which SAC proteins are dynein cargoes. Using two ATP reduction assays, we found that the core SAC proteins Mad1, Mad2, Bub1, BubR1, and Bub3 redistributed from attached kinetochores to spindle poles, in a dynein-dependent manner. This redistribution still occurred in metaphase-arrested cells, at a time when the SAC should be satisfied and silenced. Unexpectedly, we found that a pool of Hec1 and Mis12 also relocalizes to spindle poles, suggesting KMN components as additional dynein cargoes. The potential significance of these results for SAC silencing is discussed.  相似文献   

20.
The centromere/kinetochore complex plays an essential role in cell and organismal viability by ensuring chromosome movements during mitosis and meiosis. The kinetochore also mediates the spindle attachment checkpoint (SAC), which delays anaphase initiation until all chromosomes have achieved bipolar attachment of kinetochores to the mitotic spindle. CENP-A proteins are centromere-specific chromatin components that provide both a structural and a functional foundation for kinetochore formation. Here we show that cells in Drosophila embryos homozygous for null mutations in CENP-A (CID) display an early mitotic delay. This mitotic delay is not suppressed by inactivation of the DNA damage checkpoint and is unlikely to be the result of DNA damage. Surprisingly, mutation of the SAC component BUBR1 partially suppresses this mitotic delay. Furthermore, cid mutants retain an intact SAC response to spindle disruption despite the inability of many kinetochore proteins, including SAC components, to target to kinetochores. We propose that SAC components are able to monitor spindle assembly and inhibit cell cycle progression in the absence of sustained kinetochore localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号