首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen  Weijian  Cai  Xuetong  Ji  Luyang  Li  Xiao  Wang  Xuewei  Zhang  Xiaoran  Gao  Yajing  Feng  Fude 《Photosynthesis research》2019,142(2):169-180
Photosynthesis Research - Inspired by the bioinorganic structure of natural [FeFe]-hydrogenase ([FeFe]-H2ase) that possesses iron sulfur clusters to catalyze proton reduction to hydrogen (H2), we...  相似文献   

2.
[FeFe]-hydrogenases have been claimed as the most promising catalysts of hydrogen bioproduction and several efforts have been accomplished to express and purify them. However, previous attemps to obtain a functional recombinant [FeFe]-hydrogenase in heterologous systems such as Escherichia coli failed due to the lack of the specific maturation proteins driving the assembly of its complex active site. The unique exception is that of [FeFe]-hydrogenase from Clostridium pasteurianum that has been expressed in active form in the cyanobacterium Synechococcus PCC 7942, which holds a bidirectional [NiFe]-hydrogenase with a well characterized maturation system, suggesting that the latter is flexible enough to drive the synthesis of a [FeFe]-enzyme. However, the capability of cyanobacteria to correctly fold a [FeFe]-hydrogenase in the absence of its auxiliary maturation proteins is a debated question. In this work, we expressed the [FeFe]-hydrogenase from Chlamydomonas reinhardtii as an active enzyme in the cyanobacterium Synechocystis sp. PCC 6803. Our results, using a different experimental system, confirm that cyanobacteria are able to express a functional [FeFe]-hydrogenase even in the absence of additional chaperones.  相似文献   

3.
A gene-shuffling technique was identified, optimized and used to generate diverse libraries of recombinant [FeFe]-hydrogenases. Six native [FeFe]-hydrogenase genes from species of Clostridia were first cloned and separately expressed in Escherichia coli concomitantly with the assembly proteins required for [FeFe]-hydrogenase maturation. All enzymes, with the exception of C. thermocellum HydA, exhibited significant activity when expressed. Single-stranded DNA fragments from genes encoding the two most active [FeFe]-hydrogenases were used to optimize a gene-shuffling protocol and generate recombinant enzyme libraries. Random sampling demonstrates that several shuffled products are active. This represents the first successful application of gene-shuffling using hydrogenases. Moreover, we demonstrate that a single set of [FeFe]-hydrogenase maturation proteins is sufficient for the heterologous assembly of the bioinorganic active site of several native and shuffled [FeFe]-hydrogenases.  相似文献   

4.
《BBA》2020,1861(1):148087
Electron bifurcating, [FeFe]-hydrogenases are recently described members of the hydrogenase family and catalyze a combination of exergonic and endergonic electron exchanges between three carriers (2 ferredoxinred + NAD(P)H + 3 H+ = 2 ferredoxinox + NAD(P)+ + 2 H2). A thermodynamic analysis of the bifurcating, [FeFe]-hydrogenase reaction, using electron path-independent variables, quantified potential biological roles of the reaction without requiring enzyme details. The bifurcating [FeFe]-hydrogenase reaction, like all bifurcating reactions, can be written as a sum of two non-bifurcating reactions. Therefore, the thermodynamic properties of the bifurcating reaction can never exceed the properties of the individual, non-bifurcating, reactions. The bifurcating [FeFe]-hydrogenase reaction has three competitive properties: 1) enabling NAD(P)H-driven proton reduction at pH2 higher than the concurrent operation of the two, non-bifurcating reactions, 2) oxidation of NAD(P)H and ferredoxin simultaneously in a 1:1 ratio, both are produced during typical glucose fermentations, and 3) enhanced energy conservation (~10 kJ mol−1 H2) relative to concurrent operation of the two, non-bifurcating reactions. Our analysis demonstrated ferredoxin E°′ largely determines the sensitivity of the bifurcating reaction to pH2, modulation of the reduced/oxidized electron carrier ratios contributed less to equilibria shifts. Hydrogenase thermodynamics data were integrated with typical and non-typical glycolysis pathways to evaluate achieving the ‘Thauer limit’ (4 H2 per glucose) as a function of temperature and pH2. For instance, the bifurcating [FeFe]-hydrogenase reaction permits the Thauer limit at 60 °C if pH 2 ≤ ~10 mbar. The results also predict Archaea, expressing a non-typical glycolysis pathway, would not benefit from a bifurcating [FeFe]-hydrogenase reaction; interestingly, no Archaea have been observed experimentally with a [FeFe]-hydrogenase enzyme.  相似文献   

5.
Shima S  Ataka K 《FEBS letters》2011,(2):353-356
[Fe]-Hydrogenase catalyzes the reversible activation of H2. CO and CN inhibit this enzyme with low affinity (Ki ≅ 0.1 mM) by binding to the iron site of the bound iron-guanyrylpyridinol cofactor. We report here that isocyanides, which are formally isoelectronic with CO and CN, strongly inhibit [Fe]-hydrogenase (Ki as low as 1 nM). The [NiFe]- and [FeFe]-hydrogenases tested were not inhibited by isocyanides. UV–Vis and infrared spectra revealed that the isocyanides bind to the iron center of [Fe]-hydrogenase. The inhibition kinetics are in agreement with the proposed catalytic mechanism, including the open/closed conformational change of the enzyme.  相似文献   

6.
H2 generated from renewable resources holds promise as an environmentally innocuous fuel that releases only energy and water when consumed. In biotechnology, photoautotrophic oxygenic diazotrophs could produce H2 from water and sunlight using the cells'' endogenous nitrogenases. However, nitrogenases have low turnover numbers and require large amounts of ATP. [FeFe]-hydrogenases found in other organisms can have 1,000-fold higher turnover numbers and no specific requirement for ATP but are very O2 sensitive. Certain filamentous cyanobacteria protect nitrogenase from O2 by sequestering the enzyme within internally micro-oxic, differentiated cells called heterocysts. We heterologously expressed the [FeFe]-hydrogenase operon from Shewanella oneidensis MR-1 in Anabaena sp. strain PCC 7120 using the heterocyst-specific promoter PhetN. Active [FeFe]-hydrogenase was detected in and could be purified from aerobically grown Anabaena sp. strain PCC 7120, but only when the organism was grown under nitrate-depleted conditions that elicited heterocyst formation. These results suggest that the heterocysts protected the [FeFe]-hydrogenase against inactivation by O2.  相似文献   

7.
[FeFe] hydrogenases are key enzymes for bio(photo)production of molecular hydrogen, and several efforts are underway to understand how their complex active site is assembled. This site contains a [4Fe–4S]-2Fe cluster and three conserved maturation proteins are required for its biosynthesis. Among them, HydF has a double task of scaffold, in which the dinuclear iron precursor is chemically modified by the two other maturases, and carrier to transfer this unit to a hydrogenase containing a preformed [4Fe–4S]-cluster. This dual role is associated with the capability of HydF to bind and dissociate an iron–sulfur center, due to the presence of the conserved FeS-cluster binding sequence CxHx46–53HCxxC. The recently solved three-dimensional structure of HydF from Thermotoga neapolitana described the domain containing the three cysteines which are supposed to bind the FeS cluster, and identified the position of two conserved histidines which could provide the fourth iron ligand. The functional role of two of these cysteines in the activation of [FeFe]-hydrogenases has been confirmed by site-specific mutagenesis. On the other hand, the contribution of the three cysteines to the FeS cluster coordination sphere is still to be demonstrated. Furthermore, the potential role of the two histidines in [FeFe]-hydrogenase maturation has never been addressed, and their involvement as fourth ligand for the cluster coordination is controversial. In this work we combined site-specific mutagenesis with EPR (electron paramagnetic resonance) and HYSCORE (hyperfine sublevel correlation spectroscopy) to assign a role to these conserved residues, in both cluster coordination and hydrogenase maturation/activation, in HydF proteins from different microorganisms.  相似文献   

8.
根据活性中心金属原子的不同,氢酶主要分为镍铁、铁铁、铁氢酶三大类。铁氢酶是发现较晚、存在物种单一且结构较为特殊的一类氢酶。目前,铁氢酶仅发现于氢营养型产甲烷古菌中。该酶直接催化氢气异裂,还原产甲烷代谢途径中一碳载体四氢蝶呤的次甲基转化为亚甲基。与其他两类氢酶相比,铁氢酶不含传递电子的铁硫簇和双金属活性中心,在结构组成上有较大的差异。此外,铁氢酶活性中心的吡啶环被高度取代,活性中心铁原子直接与酰基碳成键,这些奇特的活性分子结构预示着氢酶全新的催化机制,以及古菌细胞在合成特殊结构大分子方面的特殊功能。本文总结了从1990年发现这类新型氢酶以来的相关研究,分别从氢酶的生理功能、结构特征、催化机制、成熟过程及应用研究等方面阐述铁氢酶的研究进展。  相似文献   

9.
The biosynthesis of the [NiFe]- and [FeFe]-hydrogenase enzymes requires the activities of multiple proteins that assemble the intricate metallocenters on the enzyme precursor proteins in an energy-dependent process. These accessory proteins include enzymes that synthesize the non-protein iron ligands as well as metallochaperones for the delivery of nickel to the [NiFe]-hydrogenase. Over the past few years many of these proteins have been examined in vitro. The biochemical properties, in the context of the earlier genetic studies, provide a basis for assigning function to the individual accessory proteins and mapping out the sequential steps of the metallocenter assembly pathways. This framework will serve as a foundation for detailed mechanistic analysis of these complex biomolecular factories.  相似文献   

10.
Formation of the catalytic six-iron complex (H-cluster) of [FeFe]-hydrogenase (HydA) requires its interaction with a specific maturation protein, HydF. Comparison by X-ray absorption spectroscopy at the Fe K-edge of HydF from Clostridium acetobutylicum and HydA1 from Chlamydomonas reinhardtii revealed that the overall structure of the iron site in both proteins is highly similar, comprising a [4Fe4S] cluster (Fe–Fe distances of ∼2.7 Å) and a di-iron unit (Fe–Fe distance of ∼2.5 Å). Thus, a precursor of the whole H-cluster is assembled on HydF. Formation of the core structures of both the 4Fe and 2Fe units may require only the housekeeping [FeS] cluster assembly machinery of the cell. Presumably, only the 2Fe cluster is transferred from HydF to HydA1, thereby forming the active site.  相似文献   

11.
In vivo hydrogen production in Clostridium acetobutylicum involves electron transfer between ferredoxin and [FeFe]-hydrogenase. Five C. acetobutylicum open reading frames were annotated as coding for putative ferredoxins. We focused our biophysical and biochemical investigations on CAC0303 and CAC3527, which possess the sequence signature and length of classical 2[4Fe4S] clostridial ferredoxins but differ significantly in theoretical pI. After cloning, heterologous expression in E. coli followed by in vitro Fe-S incorporation and purification, CAC0303 was shown to have a regular electron paramagnetic resonance (EPR) signal for a classical 2[4Fe4S] clostridial ferredoxin, while CAC3527 displayed an unusual EPR signal and a quite low reduction potential. Both ferredoxins were reduced in vitro by C. acetobutylicum [FeFe]-hydrogenase, but the CAC3527 reduction rate was 10-fold lower than that of CAC0303. These results are consistent with the efficiency of intermolecular electron transfer being dictated by the redox thermodynamics, the contribution of the ferredoxin global charge being only minor. The physiological function of CAC3527 is discussed.  相似文献   

12.
Density-functional calculations have been used to examine the electronic structure and bonding in the recently reported complex [(PMe(3))(CO)(2)Fe(mu-pdt)(mu-CO)Fe(CO)(IMes)](+) (1(+), IMes=1,3-bis(2,4,6-trimethylphenyl)-imidazol-2-ylidene). This mixed valent Fe(II)Fe(I) complex features a rotated geometry that places a carbonyl ligand in a semi-bridging position, which makes it an accurate model of the S =(1/2) resting state of the [FeFe]-hydrogenase active site. Calculations indicate that the unpaired electron in this complex lies almost entirely on the rotated iron center, implying that this iron remains in the Fe(I) oxidation state, while the unrotated iron has been oxidized to Fe(II). The frontier molecular orbitals in 1(+) are compared with those in the neutral Fe(I)Fe(I) precursor (PMe(3))(CO)(2)Fe(mu-pdt)(mu-CO)Fe(CO)(IMes) at both its optimized geometry (1) and constrained to a rotated geometry (1(rot)). These theoretical results are used to address the role of the bridging CO ligand in 1(+) and to predict reactivity patterns; they are related back to the intricate biological mechanism of [FeFe]-hydrogenase.  相似文献   

13.
Naegleria gruberi is a free-living amoeba, closely related to the human pathogen Naegleria fowleri, the causative agent of the deadly human disease primary amoebic meningoencephalitis. Herein, we investigated the effect of iron limitation on different aspects of N. gruberi metabolism. Iron metabolism is among the most conserved pathways found in all eukaryotes. It includes the delivery, storage and utilisation of iron in many cell processes. Nevertheless, most of the iron metabolism pathways of N. gruberi are still not characterised, even though iron balance within the cell is crucial. We found a single homolog of ferritin in the N. gruberi genome and showed its localisation in the mitochondrion. Using comparative mass spectrometry, we identified 229 upregulated and 184 down-regulated proteins under iron-limited conditions. The most down-regulated protein under iron-limited conditions was hemerythrin, and a similar effect on the expression of hemerythrin was found in N. fowleri. Among the other down-regulated proteins were [FeFe]-hydrogenase and its maturase HydG and several heme-containing proteins. The activities of [FeFe]-hydrogenase, as well as alcohol dehydrogenase, were also decreased by iron deficiency. Our results indicate that N. gruberi is able to rearrange its metabolism according to iron availability, prioritising mitochondrial pathways. We hypothesise that the mitochondrion is the center for iron homeostasis in N. gruberi, with mitochondrially localised ferritin as a potential key component of this process.  相似文献   

14.
15.
JBIC Journal of Biological Inorganic Chemistry - [FeFe]-hydrogenase catalyzes the reversible reduction of protons to H2 at a complex metallocofactor site, the H-cluster. Biosynthesis of this...  相似文献   

16.
Recent advances in our understanding of the mechanisms for the biosynthesis of the complex iron-sulfur (Fe-S) containing prosthetic groups associated with [FeFe]-hydrogenases and nitrogenases have revealed interesting parallels. The biosynthesis of the H-cluster ([FeFe]-hydrogenase) and the FeMo-co (nitrogenase) occurs through a coordinated process that involves the modification of Fe-S cluster precursors synthesized by the general host cell machinery (Isc/Suf). Key modifications to the Fe-S precursors are introduced by the activity of radical S-adenosylmethionine (SAM) enzymes on unique scaffold proteins. The transfer of the modified clusters to a cofactor-less structural apo-protein completes maturation. Together these features provide the basis for establishing unifying paradigms for complex Fe-S cluster biosynthesis for these enzymes.  相似文献   

17.
The working temperature of a photobioreactor under sunlight can be elevated above the optimal growth temperature of a microorganism. To improve the biohydrogen productivity of photosynthetic bacteria at higher temperatures, a [FeFe]-hydrogenase gene from the thermophile Clostridium thermocellum was expressed in the mesophile Rhodopseudomonas palustris CGA009 (strain CGA-CThydA) using a log-phase expression promoter P( pckA ) to drive the expression of heterogeneous hydrogenase gene. In contrast, a mesophilic Clostridium acetobutylicum [FeFe]-hydrogenase gene was also constructed and expressed in R. palustris (strain CGA-CAhydA). Both transgenic strains were tested for cell growth, in vivo hydrogen production rate, and in vitro hydrogenase activity at elevated temperatures. Although both CGA-CThydA and CGA-CAhydA strains demonstrated enhanced growth over the vector control at temperatures above 38?°C, CGA-CThydA produced more hydrogen than the other strains. The in vitro hydrogenase activity assay, measured at 40?°C, confirmed that the activity of the CGA-CThydA hydrogenase was higher than the CGA-CAhydA hydrogenase. These results showed that the expression of a thermophilic [FeFe]-hydrogenase in R. palustris increased the growth rate and biohydrogen production at elevated temperatures. This transgenic strategy can be applied to a broad range of purple photosynthetic bacteria used to produce biohydrogen under sunlight.  相似文献   

18.

Background  

Hydrogenases catalyze reversible reaction between hydrogen (H2) and proton. Inactivation of hydrogenase by exposure to oxygen is a critical limitation in biohydrogen production since strict anaerobic conditions are required. While [FeFe]-hydrogenases are irreversibly inactivated by oxygen, it was known that [NiFe]-hydrogenases are generally more tolerant to oxygen. The physiological function of [NiFe]-hydrogenase 1 is still ambiguous. We herein investigated the H2 production potential of [NiFe]-hydrogenase 1 of Escherichia coli in vivo and in vitro. The hya A and hya B genes corresponding to the small and large subunits of [NiFe]-hydrogenase 1 core enzyme, respectively, were expressed in BL21, an E. coli strain without H2 producing ability.  相似文献   

19.
In Clostridium acetobutylicum, [FeFe]-hydrogenase is involved in hydrogen production in vivo by transferring electrons from physiological electron donors, ferredoxin and flavodoxin, to protons. In this report, by modifications of the purification procedure, the specific activity of the enzyme has been improved and its complete catalytic profile in hydrogen evolution, hydrogen uptake, proton/deuterium exchange and para-H2/ortho-H2 conversion has been determined. The major ferredoxin expressed in the solvent-producing C. acetobutylicum cells was purified and identified as encoded by ORF CAC0303. Clostridium acetobutylicum recombinant holoflavodoxin CAC0587 was also purified. The kinetic parameters of C. acetobutylicum [FeFe]-hydrogenase for both physiological partners, ferredoxin CAC0303 and flavodoxin CAC0587, are reported for hydrogen uptake and hydrogen evolution activities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号