首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature effects on predator–prey interactions are fundamental to better understand the effects of global warming. Previous studies never considered local adaptation of both predators and prey at different latitudes, and ignored the novel population combinations of the same predator–prey species system that may arise because of northward dispersal. We set up a common garden warming experiment to study predator–prey interactions between Ischnura elegans damselfly predators and Daphnia magna zooplankton prey from three source latitudes spanning >1500 km. Damselfly foraging rates showed thermal plasticity and strong latitudinal differences consistent with adaptation to local time constraints. Relative survival was higher at 24 °C than at 20 °C in southern Daphnia and higher at 20 °C than at 24 °C, in northern Daphnia indicating local thermal adaptation of the Daphnia prey. Yet, this thermal advantage disappeared when they were confronted with the damselfly predators of the same latitude, reflecting also a signal of local thermal adaptation in the damselfly predators. Our results further suggest the invasion success of northward moving predators as well as prey to be latitude‐specific. We advocate the novel common garden experimental approach using predators and prey obtained from natural temperature gradients spanning the predicted temperature increase in the northern populations as a powerful approach to gain mechanistic insights into how community modules will be affected by global warming. It can be used as a space‐for‐time substitution to inform how predator–prey interaction may gradually evolve to long‐term warming.  相似文献   

2.
Phenotypic differentiation in size and fecundity between native and invasive populations of a species has been suggested as a causal driver of invasion in plants. Local adaptation to novel environmental conditions through a micro‐evolutionary response to natural selection may lead to phenotypic differentiation and fitness advantages in the invaded range. Local adaptation may occur along a stress tolerance trade‐off, favoring individuals that, in benign conditions, shift resource allocation from stress tolerance to increased vigor and fecundity and, therefore, invasiveness. Alternately, the typically disturbed invaded range may select for a plastic, generalist strategy, making phenotypic plasticity the main driver of invasion success. To distinguish between these hypotheses, we performed a field common garden and tested for genetically based phenotypic differentiation, resource allocation shifts in response to water limitation, and local adaptation to the environmental gradient which describes the source locations for native and invasive populations of diffuse knapweed (Centaurea diffusa). Plants were grown in an experimental field in France (naturalized range) under water addition and limitation conditions. After accounting for phenotypic variation arising from environmental differences among collection locations, we found evidence of genetic variation between the invasive and native populations for most morphological and life‐history traits under study. Invasive C. diffusa populations produced larger, later maturing, and therefore potentially fitter individuals than native populations. Evidence for local adaptation along a resource allocation trade‐off for water limitation tolerance is equivocal. However, native populations do show evidence of local adaptation to an environmental gradient, a relationship which is typically not observed in the invaded range. Broader analysis of the climatic niche inhabited by the species in both ranges suggests that the physiological tolerances of C. diffusa may have expanded in the invaded range. This observation could be due to selection for plastic, “general‐purpose” genotypes with broad environmental tolerances.  相似文献   

3.
Adaptive phenotypic plasticity and fixed genotypic differences have long been considered opposing strategies in adaptation. More recently, these mechanisms have been proposed to act complementarily and under certain conditions jointly facilitate evolution, speciation, and even adaptive radiations. Here, we investigate the relative contributions of adaptive phenotypic plasticity vs. local adaptation to fitness, using an emerging model system to study early phases of adaptive divergence, the generalist cichlid fish species Astatotilapia burtoni. We tested direct fitness consequences of morphological divergence between lake and river populations in nature by performing two transplant experiments in Lake Tanganyika. In the first experiment, we used wild‐caught juvenile lake and river individuals, while in the second experiment, we used F1 crosses between lake and river fish bred in a common garden setup. By tracking the survival and growth of translocated individuals in enclosures in the lake over several weeks, we revealed local adaptation evidenced by faster growth of the wild‐caught resident population in the first experiment. On the other hand, we did not find difference in growth between different types of F1 crosses in the second experiment, suggesting a substantial contribution of adaptive phenotypic plasticity to increased immigrant fitness. Our findings highlight the value of formally comparing fitness of wild‐caught and common garden‐reared individuals and emphasize the necessity of considering adaptive phenotypic plasticity in the study of adaptive divergence.  相似文献   

4.
In this paper we test population differences in early life‐history traits in three grayling Thymallus thymallus populations. The grayling shared ancestors some 80–90 years ago. We performed common‐garden experiments at three temperatures (mimicking population‐specific summer temperatures), and measured survival and growth rates during early development. We found significant additive genetic variance in size (length and yolk‐sac volume) measured at hatching, swim‐up and termination of the experiment, and significantly different reaction norms for growth rate and survival during the period of first feeding. In general, each population did best at the temperature experienced in nature. These differences in early life‐history traits suggest that natural selection has resulted in local adaptation in a time period of 13–18 generations.  相似文献   

5.
In ectotherms, variation in life history traits among populations is common and suggests local adaptation. However, geographic variation itself is not a proof for local adaptation, as genetic drift and gene flow may also shape patterns of quantitative variation. We studied local and regional variation in means and phenotypic plasticity of larval life history traits in the common frog Rana temporaria using six populations from central Sweden, breeding in either open‐canopy or partially closed‐canopy ponds. To separate local adaptation from genetic drift, we compared differentiation in quantitative genetic traits (QST) obtained from a common garden experiment with differentiation in presumably neutral microsatellite markers (FST). We found that R. temporaria populations differ in means and plasticities of life history traits in different temperatures at local, and in FST at regional scale. Comparisons of differentiation in quantitative traits and in molecular markers suggested that natural selection was responsible for the divergence in growth and development rates as well as in temperature‐induced plasticity, indicating local adaptation. However, at low temperature, the role of genetic drift could not be separated from selection. Phenotypes were correlated with forest canopy closure, but not with geographical or genetic distance. These results indicate that local adaptation can evolve in the presence of ongoing gene flow among the populations, and that natural selection is strong in this system.  相似文献   

6.
Resource allocation to growth, reproduction, and body maintenance varies within species along latitudinal gradients. Two hypotheses explaining this variation are local adaptation and counter‐gradient variation. The local adaptation hypothesis proposes that populations are adapted to local environmental conditions and are therefore less adapted to environmental conditions at other locations. The counter‐gradient variation hypothesis proposes that one population out performs others across an environmental gradient because its source location has greater selective pressure than other locations. Our study had two goals. First, we tested the local adaptation and counter‐gradient variation hypotheses by measuring effects of environmental temperature on phenotypic expression of reproductive traits in the burying beetle, Nicrophorus orbicollis Say, from three populations along a latitudinal gradient in a common garden experimental design. Second, we compared patterns of variation to evaluate whether traits covary or whether local adaptation of traits precludes adaptive responses by others. Across a latitudinal range, N. orbicollis exhibits variation in initiating reproduction and brood sizes. Consistent with local adaptation: (a) beetles were less likely to initiate breeding at extreme temperatures, especially when that temperature represents their source range; (b) once beetles initiate reproduction, source populations produce relatively larger broods at temperatures consistent with their local environment. Consistent with counter‐gradient variation, lower latitude populations were more successful at producing offspring at lower temperatures. We found no evidence for adaptive variation in other adult or offspring performance traits. This suite of traits does not appear to coevolve along the latitudinal gradient. Rather, response to selection to breed within a narrow temperature range may preclude selection on other traits. Our study highlights that N. orbicollis uses temperature as an environmental cue to determine whether to initiate reproduction, providing insight into how behavior is modified to avoid costly reproductive attempts. Furthermore, our results suggest a temperature constraint that shapes reproductive behavior.  相似文献   

7.
Experiments using natural populations have provided mixed support for thermal adaptation models, probably because the conditions are often confounded with additional environmental factors like seasonality. The contrasting geothermal environments within Lake Mývatn, northern Iceland, provide a unique opportunity to evaluate thermal adaptation models using closely located natural populations. We conducted laboratory common garden and field reciprocal transplant experiments to investigate how thermal origin influences the life history of Radix balthica snails originating from stable cold (6 °C), stable warm (23 °C) thermal environments or from areas with seasonal temperature variation. Supporting thermal optimality models, warm‐origin snails survived poorly at 6 °C in the common garden experiment and better than cold‐origin and seasonal‐origin snails in the warm habitat in the reciprocal transplant experiment. Contrary to thermal adaptation models, growth rate in both experiments was highest in the warm populations irrespective of temperature, indicating cogradient variation. The optimal temperatures for growth and reproduction were similar irrespective of origin, but cold‐origin snails always had the lowest performance, and seasonal‐origin snails often performed at an intermediate level compared to snails originating in either stable environment. Our results indicate that central life‐history traits can differ in their mode of evolution, with survival following the predictions of thermal optimality models, whereas ecological constraints have shaped the evolution of growth rates in local populations.  相似文献   

8.
Rapidly rising temperatures are expected to cause latitudinal and elevational range shifts as species track their optimal climate north and upward. However, a lack of adaptation to environmental conditions other than climate – for example photoperiod, biotic interactions, or edaphic conditions – might limit the success of immigrants in a new location despite hospitable climatic conditions. Here, we present one of the first direct experimental tests of the hypothesis that warmer temperatures at northern latitudes will confer a fitness advantage to southern immigrants relative to native populations. As rates of warming in the Arctic are more than double the global average, understanding the impacts of warming in Arctic ecosystems is especially urgent. We established experimentally warmed and nonwarmed common garden plots at Alexandra Fiord, Ellesmere Island in the Canadian High Arctic with seeds of two forb species (Oxyria digyna and Papaver radicatum) originating from three to five populations at different latitudes across the Arctic. We found that plants from the local populations generally had higher survival and obtained a greater maximum size than foreign individuals, regardless of warming treatment. Phenological traits varied with latitude of the source population, such that southern populations demonstrated substantially delayed leaf‐out and senescence relative to northern populations. Our results suggest that environmental conditions other than temperature may influence the ability of foreign populations and species to establish at more northerly latitudes as the climate warms, potentially leading to lags in northward range shifts for some species.  相似文献   

9.
Gene flow is often considered to be one of the main factors that constrains local adaptation in a heterogeneous environment. However, gene flow may also lead to the evolution of phenotypic plasticity. We investigated the effect of gene flow on local adaptation and phenotypic plasticity in development time in island populations of the common frog Rana temporaria which breed in pools that differ in drying regimes. This was done by investigating associations between traits (measured in a common garden experiment) and selective factors (pool drying regimes and gene flow from other populations inhabiting different environments) by regression analyses and by comparing pairwise FST values (obtained from microsatellite analyses) with pairwise QST values. We found that the degree of phenotypic plasticity was positively correlated with gene flow from other populations inhabiting different environments (among‐island environmental heterogeneity), as well as with local environmental heterogeneity within each population. Furthermore, local adaptation, manifested in the correlation between development time and the degree of pool drying on the islands, appears to have been caused by divergent selection pressures. The local adaptation in development time and phenotypic plasticity is quite remarkable, because the populations are young (less than 300 generations) and substantial gene flow is present among islands.  相似文献   

10.
How populations of long‐living species respond to climate change depends on phenotypic plasticity and local adaptation processes. Marginal populations are expected to have lags in adaptation (i.e. differences between the climatic optimum that maximizes population fitness and the local climate) because they receive pre‐adapted alleles from core populations preventing them from reaching a local optimum in their climatically marginal habitat. Yet, whether adaptation lags in marginal populations are a common feature across phylogenetically and ecologically different species and how lags can change with climate change remain unexplored. To test for range‐wide patterns of phenotypic variation and adaptation lags of populations to climate, we (a) built model ensembles of tree height accounting for the climate of population origin and the climate of the site for 706 populations monitored in 97 common garden experiments covering the range of six European forest tree species; (b) estimated populations' adaptation lags as the differences between the climatic optimum that maximizes tree height and the climate of the origin of each population; (c) identified adaptation lag patterns for populations coming from the warm/dry and cold/wet margins and from the distribution core of each species range. We found that (a) phenotypic variation is driven by either temperature or precipitation; (b) adaptation lags are consistently higher in climatic margin populations (cold/warm, dry/wet) than in core populations; (c) predictions for future warmer climates suggest adaptation lags would decrease in cold margin populations, slightly increasing tree height, while adaptation lags would increase in core and warm margin populations, sharply decreasing tree height. Our results suggest that warm margin populations are the most vulnerable to climate change, but understanding how these populations can cope with future climates depend on whether other fitness‐related traits could show similar adaptation lag patterns.  相似文献   

11.
Bischoff A  Trémulot S 《Oecologia》2011,165(4):971-981
Local adaptation and population differentiation of plants are well documented, but studies on interactions with natural enemies are rare. In particular, evidence for plant adaptation to the local biotic environment, such as herbivores remains poor. We used the black mustard Brassica nigra, an annual species of river valley and coastal habitats to (1) analyse population differentiation in plant traits and herbivory in a common garden experiment, (2) examine home versus away differences in a reciprocal transplant experiment and (3) test whether plants are adapted to local herbivores or vice versa under standard greenhouse conditions. In the common garden experiment, we found significant differentiation in plant traits, leaf damage and herbivore number among seven populations of B. nigra from France and Germany (distance 15–1,000 km). Differences were particularly strong among coastal and river valley populations and did not necessarily increase with geographical distance. A herbivore removal treatment did not change population differentiation when compared with the control allowing natural colonisation. The reciprocal transplant experiment at a scale of 15–30 km did not reveal local plant adaptation, whilst one dominant herbivore species (Meligethes aeneus) occurred in significantly higher numbers on local plants. A greenhouse experiment combining three aphid (Brevicoryne brassicae) and plant populations of the same provenance indicated herbivore adaptation to their local plants rather than plant adaptation, but overall contrasts between local and non-local combinations were not significant. The results suggest that herbivores may counteract local plant adaptation to other environmental factors. Our study has important implications for plant translocations in ecological restoration projects.  相似文献   

12.
Life history traits in many ectotherms show complex patterns of variation among conspecific populations sampled along wide latitudinal or climatic gradients. However, few studies have assessed whether these patterns can be explained better by thermal reaction norms of multiple life history traits, covering major aspects of the life cycle. In this study, we compared five populations of a Holarctic, numerically dominant soil microarthropod species, Folsomia quadrioculata, sampled from a wide latitudinal gradient (56–81°N), for growth, development, fecundity, and survival across four temperatures (10, 15, 20, and 25°C) in common garden experiments. We evaluated the extent to which macroclimate could explain differences in thermal adaptation and life history strategies among populations. The common garden experiments revealed large genotypic differences among populations in all the traits, which were little explained by latitude and macroclimate. In addition, the life history strategies (traits combined) hardly revealed any systematic difference related to latitude and macroclimate. The overall performance of the northernmost population from the most stochastic microclimate and the southernmost population, which remains active throughout the year, was least sensitive to the temperature treatments. In contrast, performance of the population from the most predictable microclimate peaked within a narrow temperature range (around 15°C). Our findings revealed limited support for macroclimate‐based predictions, and indicated that local soil habitat conditions related to predictability and seasonality might have considerable influence on the evolution of life history strategies of F. quadrioculata. This study highlights the need to combine knowledge on microhabitat characteristics, and demography, with findings from common garden experiments, for identifying the key drivers of life history evolution across large spatial scales, and wide climate gradients. We believe that similar approaches may substantially improve the understanding of adaptation in many terrestrial ectotherms with low dispersal ability.  相似文献   

13.
Rapid evolutionary adjustments to novel environments may contribute to the successful spread of invasive species, and can lead to niche shifts making range dynamics unpredictable. These effects might be intensified by artificial selection in the course of breeding efforts, since many successful plant invaders were deliberately introduced and cultivated as ornamentals. We hypothesized that the invasion success of Buddleja davidii, the ornamental butterfly bush, is facilitated by local adaptation to minimum temperatures and thus, exhibits unpredictable range dynamics. To assess the potential effects of adaptive evolution and artificial selection on the spread of B. davidii, we combined a common garden experiment investigating local adaptation to frost, with ecological niche modelling of the species’ native and invasive ranges. We expected that populations naturalized in sub‐continental climate are less susceptible to frost than populations from oceanic climate, and that the invasive range does not match predictions based on climatic data from the native range. Indeed, we revealed significant variation among invasive B. davidii populations in frost resistance. However, frost hardiness was not related to geographic location or climatic variables of the populations’ home site, suggesting that invasive B. davidii populations are not locally adapted to minimum temperatures. This is in line with results of our ecological niche model that did not detect a niche shift between the species’ native range in China, and its invasive range in Europe and North America. Furthermore, our niche model showed that the potential invasive range of B. davidii is still not completely occupied. Together with the frost resistance data obtained in our experiment, the results indicate that climatic conditions are currently not limiting the further spread of the species in Europe and North America.  相似文献   

14.
Adaptation to contrasting environments across a heterogeneous landscape favors the formation of ecotypes by promoting ecological divergence. Patterns of fitness variation in the field can show whether natural selection drives local adaptation and ecotype formation. However, to demonstrate a link between ecological divergence and speciation, local adaptation must have consequences for reproductive isolation. Using contrasting ecotypes of an Australian wildflower, Senecio lautus in common garden experiments, hybridization experiments, and reciprocal transplants, we assessed how the environment shapes patterns of adaptation and the consequences of adaptive divergence for reproductive isolation. Local adaptation was strong between ecotypes, but weaker between populations of the same ecotype. F1 hybrids exhibited heterosis, but crosses involving one native parent performed better than those with two foreign parents. In a common garden experiment, F2 hybrids exhibited reduced fitness compared to parentals and F1 hybrids, suggesting that few genetic incompatibilities have accumulated between populations adapted to contrasting environments. Our results show how ecological differences across the landscape have created complex patterns of local adaptation and reproductive isolation, suggesting that divergent natural selection has played a fundamental role in the early stages of species diversification.  相似文献   

15.
1. Plants from different populations often display a variation in herbivore resistance. However, it is rarely understood what plant traits mediate such differences. 2. It was tested how leaf phenology affects herbivore populations in a 15‐year‐old common garden of valley oaks (Quercus lobata Née) with different populations and maternal parents from throughout the Q. lobata range. 3. The abundance of leaf miners (Stigmella sp. Shrank) and leaf phenology of oaks in the common garden was measured. 4. Leaf miner abundance varied among provenance locations (population), but not among maternal parents within populations. Leaf phenology varied by provenance location and maternal parent, and trees that leafed out earlier accrued higher leaf‐miner abundance. Path analysis indicated that leaf phenology was the likely driver of provenance and parental differences in resistance to leaf miners. 5. Understanding population differences is particularly important when considering transport of genotypes for ornamental or restoration purposes. The present study suggests that similarity in leaf phenology may be one factor that could be used to find genotypes with a similar herbivore resistance to local genotypes.  相似文献   

16.
Alpine plants often occupy diverse habitats within a similar elevation range, but most research on local adaptation in these plants has focused on elevation gradients. In testing for habitat‐related local adaptation, local effects on seed quality and initial plant growth should be considered in designs that encompass multiple populations and habitats. We tested for local adaptation across alpine habitats in a morphologically variable daisy species, Brachyscome decipiens, in the Bogong High Plains in Victoria, Australia. We collected seed from different habitats, controlled for maternal effects through initial seed size estimates, and characterized seedling survival and growth in a field transplant experiment. We found little evidence for local adaptation for survival or plant size, based on three adaptation measures: Home versus Away, Local versus Foreign, and Sympatric versus Allopatric (SA). The SA measure controlled for planting site and population (site‐of‐origin) effects. There were significant differences due to site‐of‐origin and planting site effects. An important confounding factor was the size of plants directly after transplantation of seedlings, which had a large impact on subsequent seedling survival and growth. Initial differences in plant width and height influenced subsequent survival across the growing season but in opposing directions: wide plants had higher survival, but tall plants had lower survival. In an additional controlled garden experiment at Cranbourne Royal Botanic Gardens, site‐of‐origin effects detected in the field experiments disappeared under more benign homogeneous conditions. Although B. decipiens from different source areas varied significantly when grown across a range of alpine habitats, these differences did not translate into a local or habitat‐related fitness advantage. This lack of local advantage may signal weak past selection, and/or weak adaptive transgeneration (plasticity) effects.  相似文献   

17.
Mark C. Urban 《Oikos》2010,119(4):646-658
Spatial heterogeneity in the selection imposed by different predator species could promote the adaptive diversification of local prey populations. However, high gene flow might swamp local adaptations at limited spatial scales or generalized phenotypic plasticity might evolve in place of local diversification. Spotted salamander larvae Ambystoma maculatum face strongly varying risks from gape‐limited marbled salamander larvae Ambystoma opacum and gape‐unconstrained diving beetle larvae Dytiscus spp. across natural landscapes. To evaluate if A. maculatum adapts to these predation risk across micro‐geographic scales, I measured selection gradients in response to the two focal predators and then assayed the defensive morphologies of ten populations in a common garden experiment. I found that A. opacum induced selection on A. maculatum for larger tailfins and bodies whereas beetles induced selection for larger tail muscles and smaller bodies. In accordance with the local adaptation hypothesis, A. maculatum populations inhabiting ponds with high beetle densities grew larger tail muscles relative to other populations when raised in a common environment. However, populations exposed to strong A. opacum selection did not evolve larger tailfins as predicted. High gene flow or morphological plasticity could explain the absence of this morphological response to A. opacum. Overall, results suggest that populations can sometimes evolve adaptive traits in response to locally variable selection regimes even across the very limited distances that separate populations in this study. If prey populations often differ in their defenses against local predators, then this variation could affect the outcome of species interactions in local communities.  相似文献   

18.
How the balance between selection, migration, and drift influences the evolution of local adaptation has been under intense theoretical scrutiny. Yet, empirical studies that relate estimates of local adaptation to quantification of gene flow and effective population sizes have been rare. Here, we conducted a reciprocal transplant trial, a common garden trial, and a whole‐genome‐based demography analysis to examine these effects among Arabidopsis lyrata populations from two altitudinal gradients in Norway. Demography simulations indicated that populations within the two gradients are connected by gene flow (0.1 < 4Nem < 11) and have small effective population sizes (Ne < 6000), suggesting that both migration and drift can counteract local selection. However, the three‐year field experiments showed evidence of local adaptation at the level of hierarchical multiyear fitness, attesting to the strength of differential selection. In the lowland habitat, local superiority was associated with greater fecundity, while viability accounted for fitness differences in the alpine habitat. We also demonstrate that flowering time differentiation has contributed to adaptive divergence between these locally adapted populations. Our results show that despite the estimated potential of gene flow and drift to hinder differentiation, selection among these A. lyrata populations has resulted in local adaptation.  相似文献   

19.
Thermal adaptation is typically detected by examining the tolerance of a few populations to extreme temperatures within a single life stage. However, the extent to which adaptation occurs among many different populations might depend on the tolerance of multiple life stages and the average temperature range that the population experiences. Here, we examined local adaptation to native temperature conditions in eleven populations of the well‐known cosmopolitan fruit fly, Drosophila melanogaster. These populations were sampled from across the global range of D. melanogaster. We measured traits related to fitness during each life stage to determine whether certain stages are more sensitive to changes in temperature than others. D. melanogaster appeared to show local adaptation to native temperatures during the egg, larval and adult life stages, but not the pupal stage. This suggests that across the entire distribution of D. melanogaster, certain life stages might be locally adapted to native temperatures, whereas other stages might use phenotypic plasticity or tolerance to a wide range of temperatures experienced in the native environment of this species.  相似文献   

20.
Species are expected to alter their ranges as climates change. Climate‐induced range expansions of predators could threaten evolutionarily naïve prey populations, leading to high mortality at the invasion front. If prey can apply existing defenses against local predators to novel predation threats induced by climate change, mortality threats will be less than expected. Here, we examine if spotted salamander larvae Ambystoma maculatum from populations that coexist with native red‐spotted newts Notophthalmus viridescens survive better when exposed to a novel predator, the marbled salamander Ambystoma opacum. We show that regional mean winter temperatures warmed 2.0°C over 116 yr in the region, and that A. opacum survival increases in ponds with higher winter temperatures. Hence as winters continue to warm, this apex predator will likely colonize ponds north of their current range limit. Next, we performed common garden experiments to determine if local adaptations to native N. viridescens and exposure to A. opacum or N. viridescens kairomones (predator chemical cues) altered A. maculatum survival in predation trials. We did not find evidence for local adaptation to N. viridescens. However, A. maculatum from high‐N. viridescens ponds that were reared with A. opacum kairomones suffered significantly higher mortality from the native predator N. viridescens. This outcome suggests an unanticipated interaction between local adaptation and plastic responses to novel kairomones from a potentially range‐expanding predator. Current projections of biodiversity losses from climate change generally ignore the potential for eco‐evolutionary interactions between native and range‐expanding species and thus could be inaccurate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号