首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The aphid Uroleucon nigrotuberculatum Olive, which is specialised to the tall goldenrod, Solidago altissima L., in its native range, has become a dominant species on the introduced tall goldenrod in Japan. How this exotic aphid influenced arthropod communities on the introduced tall goldenrod in aphid‐present (spring) and aphid‐absent (autumn) seasons was examined, using an aphid removal experiment. 2. In spring, aphid presence increased ant abundance because aphid honeydew attracted foraging ant workers. A significant negative correlation was found between the numbers of ants and herbivorous insects other than aphids on the aphid‐exposed plants, but no significant correlation was detected on the aphid‐free plants. Thus, the aphid presence was likely to decrease the abundance of co‐occurring herbivorous insects through removal behaviour of the aphid‐tending ants. There were no significant differences in plant traits between the aphid‐exposed and aphid‐free plants. 3. In autumn, the numbers of lateral shoots and leaves, and the leaf nitrogen content were increased in response to the aphid infestation in spring. Because of the improvement of plant traits by aphid feeding, the abundance of leaf chewers increased on aphid‐exposed plants. In contrast, the abundance of sap feeders decreased on the aphid‐exposed plants. In particular, the dominant scale insect among sap feeders, Parasaissetia nigra Nietner, decreased, followed by a decrease in the abundance of ants attending P. nigra. Thus, aphid feeding may have attenuated the negative impacts of the tending ants on leaf chewers. 4. Aphid presence did not change herbivore species richness but changed the relative density of dominant herbivores, resulting in community‐wide effects on co‐occurring herbivores through ant‐mediated indirect effects, and on temporally separated herbivores through plant‐ and ant‐mediated indirect effects. The aphid also altered predator community composition by increasing and decreasing the relative abundance of aphid‐tending ants in the spring and autumn, respectively.  相似文献   

2.
David A. Holway 《Oecologia》1998,116(1-2):252-258
Although the Argentine ant (Linepithema humile) is a widespread invasive species that displaces native ants throughout its introduced range, the effects of these invasions on arthropods other than ants remain poorly known. This study documents the consequences of Argentine ant invasions on ants and other ground-dwelling arthropods in northern California riparian woodlands. Baits and unbaited pitfall traps were used to sample different components of the arthropod communities at five pairs of uninvaded and invaded sites. Sites occupied by Argentine ants supported almost no native epigeic ants except for the winter-active Prenolepis imparis. Sites with Argentine ants averaged four to ten times more ant workers than did sites with native ants, but ant worker biomass did not differ between uninvaded and invaded sites. Argentine ants recruited to baits in invaded areas, on average, in less than half the time of native ants in uninvaded areas. Despite the loss of epigeic native ants, higher Argentine ant worker abundance, and faster recruitment by Argentine ants at invaded sites, pitfall trap samples from uninvaded and invaded areas contained similar abundances and diversities of non-ant arthropods. These findings suggest that Argentine ants and the native ants they displace interact with the ground-dwelling arthropods of these habitats in a similar manner. Received: 24 February 1997 / Accepted: 9 November 1997  相似文献   

3.
1. Although plant invasions often reduce insect abundance and diversity, non‐native plants that support phytophagous insects can subsidise higher trophic levels via elevated herbivore abundance. 2. Here ant–aphid interactions on non‐native fennel on Santa Cruz Island, California are examined. Fennel hosts abundant, honeydew‐producing fennel aphids. The patchiness of fennel and the relative lack of honeydew‐producing insects on other plants at our study sites suggest that assimilation of fennel‐derived honeydew would increase the abundance and decrease the trophic position of the omnivorous, aphid‐tending Argentine ant. 3. To assess the strength of the ant–aphid interaction, a comparison of ant abundance on and adjacent to fennel prior to and 3 weeks after experimental aphid removal was performed. Compared with control plants with aphids, ants declined in abundance on and around fennel plants following aphid removal. At the habitat scale, pitfall traps in fennel‐dominated habitats captured more ants than in fennel‐free scrub habitats. 4. To determine if assimilation of aphid‐produced honeydew reduces the ant's trophic position, variation in δ15N values among ants, plants and other arthropods was analysed. Unexpectedly, δ15N values for ants in fennel‐dominated habitats were higher than those of arthropod predators from the same sites and also higher than those of ants from fennel‐free habitats. 5. Our results illustrate how introduced plants that support phytophagous insects appear to transfer energy to higher trophic levels via elevated herbivore abundance. Although assimilation of fennel‐derived honeydew did not appear to reduce consumer trophic position, spatial variation in alternative food resources might obscure contributions from honeydew.  相似文献   

4.
J. Zee  D. Holway 《Insectes Sociaux》2006,53(2):161-167
Invasive ants often displace native ants, and published studies that focus on these interactions usually emphasize interspecific competition for food resources as a key mechanism responsible for the demise of native ants. Although less well documented, nest raiding by invasive ants may also contribute to the extirpation of native ants. In coastal southern California, for example, invasive Argentine ants (Linepithema humile) commonly raid colonies of the harvester ant, Pogonomyrmex subnitidus. On a seasonal basis the frequency and intensity of raids vary, but raids occur only when abiotic conditions are suitable for both species. In the short term these organized attacks cause harvester ants to cease foraging and to plug their nest entrances. In unstaged, one-on-one interactions between P. subnitidus and L. humile workers, Argentine ants behaved aggressively in over two thirds of all pair-wise interactions, despite the much larger size of P. subnitidus. The short-term introduction of experimental Argentine ant colonies outside of P. subnitidus nest entrances stimulated behaviors similar to those observed in raids: P. subnitidus decreased its foraging activity and increased the number of nest entrance workers (many of which labored to plug their nest entrances). Raids are not likely to be the result of competition for food. As expected, P. subnitidus foraged primarily on plant material (85% of food items obtained from returning foragers), but also collected some dead insects (7% of food items). In buffet-style choice tests in which we offered Argentine ants food items obtained from P. subnitidus, L. humile only showed interest in dead insects. In other feeding trials L. humile consistently moved harvester ant brood into their nests (where they were presumably consumed) but showed little interest in freshly dead workers. The raiding behavior described here obscures the distinction between interspecific competition and predation, and may well play an important role in the displacement of native ants, especially those that are ecologically dissimilar to L. humile with respect to diet. Received 15 July 2005; revised 19 October 2005; accepted 26 October 2005.  相似文献   

5.
Honeydew collection performed by the invasive ant Lasius neglectus and by the native ant L. grandis was compared. The invasive ant collected 2.09 kg of honeydew per tree while the native ant collected 0.82 kg. The aphid Lachnus roboris was visited by both ant species. In holm oaks colonized by L. neglectus, aphid abundance tended to increase and its honeydew production increased twofold. The percentage of untended aphids was lower in holm trees occupied by L. neglectus. As tending ants also prey on insects, we estimated the percentage of carried insects. The native ant workers carried more insects than the invasive ant. Both ant species preyed mainly on Psocoptera and the rarely tended aphid, Hoplocallis picta. We conclude that the higher honeydew collection achieved by L. neglectus was the consequence of (1) its greater abundance, which enabled this ant to tend more Lachnus roboris and (2) its greater level of attention towards promoting an increase of honeydew production. Handling editor: Heikki Hokkanen  相似文献   

6.
Understanding the interactions among plants, hemipterans, and ants has provided numerous insights into a range of ecological and evolutionary processes. In these systems, however, studies concerning the isolated direct and indirect effects of aphid colonies on host plant and other herbivores remain rare at best. The aphid Uroleucon erigeronensis forms dense colonies on the apical shoots of the host plant Baccharis dracunculilfolia (Asteraceae). The honeydew produced by these aphids attracts several species of ants that might interfere with other herbivores. Four hypotheses were tested in this system: (1) ants tending aphids reduce the abundance of other herbivores; (2) the effects of ants and aphids upon herbivores differ between chewing and fluid-sucking herbivores; (3) aphids alone reduce the abundance of other herbivores; and (4), the aphid presence negatively affects B. dracunculifolia shoot growth. The hypotheses were evaluated with ant and aphid exclusion experiments, on isolated plant shoots, along six consecutive months. We adjusted linear mixed-effects models for longitudinal data (repeated measures), with nested spatial random effect. The results showed that: (1) herbivore abundance was lower on shoots with aphids than on shoots without aphids, and even lower on shoots with aphids and ants; (2) both chewing and fluid-sucking insects responded similarly to the treatment, and (3) aphid presence affected negatively B. dracunculifolia shoot growth. Thus, since aphids alone changed plant growth and the abundance of insect herbivores, we suggest that the ant–aphid association is important to the organization of the system B. dracunculifolia-herbivorous insects.  相似文献   

7.
Species abundance is typically determined by the abiotic environment, but the extent to which such effects occur through the mediation of biotic interactions, including mutualisms, is unknown. We explored how light environment (open meadow vs. shaded understory) mediates the abundance and ant tending of the aphid Aphis helianthi feeding on the herb Ligusticum porteri. Yearly surveys consistently found aphids to be more than 17‐fold more abundant on open meadow plants than on shaded understory plants. Manipulations demonstrated that this abundance pattern was not due to the direct effects of light environment on aphid performance, or indirectly through host plant quality or the effects of predators. Instead, open meadows had higher ant abundance and per capita rates of aphid tending and, accordingly, ants increased aphid population growth in meadow but not understory environments. The abiotic environment thus drives the abundance of this herbivore exclusively through the mediation of a protection mutualism.  相似文献   

8.
1. Competition by dominant species is thought to be key to structuring ant communities. However, recent findings suggest that the effect of dominant species on communities is less pronounced than previously assumed. 2. The aim of the present study was to identify the role of dominant ants in the organisation of Mediterranean communities, particularly the role of competition in invaded and uninvaded communities. The effects on ant assemblages of two dominant ants, the invasive Argentine ant and the native ant, Tapinoma nigerrimum Nylander, were assessed. 3. The abundances of both dominant ants were significantly correlated with a decrease in native ant richness at traps. However, only the invasive ant was associated with a reduction in diversity and abundance of other ant species at site scale. In the presence of T. nigerrimum, species co‐occurrence patterns were segregated or random. Community structure in both the dominant‐free and the Argentine ant sites showed random patterns of species co‐occurrence. 4. The present findings indicate that dominant ants regulate small‐scale diversity by competition. However, at the broader scale of the assemblage, T. nigerrimum may only affect species distribution, having no apparent effect on community composition. Moreover, we find no evidence that inter‐specific competition shapes species distribution in coastal Mediterranean communities free of dominant ants. 5. These results show that dominant species may affect ant assemblages but that the nature and the intensity of such effects are species and scale dependent. This confirms the hypothesis that competitive dominance may be only one of a range of factors that structure ant communities.  相似文献   

9.
Sap-feeding homopterans, which reduce the fitness of their host plants, are often tended by ants that feed on their honeydew. The composition of the honeydew varies with both the aphid and the host plant. Extra-floral nectaries (EFNs) are believed to have evolved to attract attending ants, protecting the hosts, but it is unknown if EFNs on different plants have the same impact on the relations between an aphid species feeding on those plants and its tending ant. Experimental research was conducted to examine the attraction of Tapinoma erraticum scout ants to honeydew from the aphid Aphis gossypii feeding on two different plants, Prunus amygdalus and Mentha piperita, negligence of tending the aphids, and survival of the aphids in the presence of artificial EFNs. The scout ants were significantly more attracted to artificial nectar dispensed on P. amygdalus leaves than on M. piperita, or aphids on both plants and water. They neglected aphids in the presence of artificial EFNs on M. piperita but not on P. amygdalus. The aphid population on M. piperita did not statistically change in the presence of artificial EFNs during the 8 days of the third experiment. On P. amygdalus, the aphids succeeded in developing fully to winged form. In conclusion, the responses of the ants tending aphids to the presence of artificial EFNs were influenced by the host plant.  相似文献   

10.
1. Ants interact with a diversity of organisms. These interactions, coupled with their abundance, cause ants to have ecologically important effects across multiple trophic levels. 2. Empirical study of ant nutritional ecology has led to the prediction that a macronutrient imbalance will affect ant behaviour and interspecific interactions that underlie these broad‐scale effects. Excess carbohydrate relative to protein is predicted to increase ant aggressiveness, predatory tendency and foraging activity, and to decrease collection of hemipteran honeydew and plant nectar. 3. In field experiments conducted in 2009 and 2010, captive colony fragments of a native ant, Formica podzolica (Hymenoptera: Formicidae), were provided with either simulated prey or carbohydrate solution ad libitum. Foraging behaviours and interactions with flowers, myrmecophilous aphids and aphid natural enemies on wild‐grown plants were documented. 4. Strong effects of macronutrient imbalance on foraging manifested quickly and consistently across colonies; in accordance with predictions, prey‐fed foragers collected both honeydew and floral nectar, whereas carbohydrate‐fed ants ceased collecting these resources. Counter to predictions, carbohydrate‐fed ants dramatically lowered their activity levels and did not prey upon aphids. 5. Ants had no effect on aphid enemies in 2009, when the latter were relatively rare, but decreased their abundance in 2010. Despite this protection, the net effect of ants on aphids was negative (measured only in 2009). Prey‐fed ants demonstrated a strong preference for honeydew over floral nectar, thus demonstrating that a macronutrient imbalance may lead to different interactions with similar resources. 6. This study links ant nutrition and community ecology by demonstrating the rapid, asymmetric and multitrophic consequences of nutritionally mediated behaviour.  相似文献   

11.
Wedged between bottom-up and top-down processes: aphids on tansy   总被引:2,自引:0,他引:2  
Abstract. 1. Many species of aphids exploit a single host‐plant species and have to cope with changing environmental conditions. They often vary greatly in abundance even when feeding on the same host. In a field experiment, the bottom‐up (plant quality/patch type frequency) and top‐down (ant attendance/predation) effects on the abundance of four species of aphids feeding on tansy (Tanacetum vulgare) were tested using a full factorial design. In addition, a model was used to examine these patch characteristics for their relative effects on the population dynamics and abundance of different aphid species. 2. Aphid numbers changed significantly depending on the quality of the host plant and the presence/absence of attending ants. The obligate myrmecophile, Metopeurum fuscoviride, was abundant on high‐quality plants, while on poor quality plants or on plants without attending ants these aphids did not survive until the end of the experiment. The facultative myrmecophiles, Aphis fabae and Brachycaudus cardui, and the unattended aphid species, Macrosiphoniella tanacetaria, all reached similar peak population densities, but M. tanacetaria did best in poor quality patches. 3. Natural enemies reduced aphid numbers, but those species feeding on high‐quality plants survived longer than those on poor‐quality plants, which existed only for a short period of time, especially when associated with ants. Losses due to migration of winged morphs and mortality caused by parasitoids were insignificant. 4. Varying the frequency of different patch types in a model indicates that different degrees of associations with ants are favoured in different environments. If the proportion of high‐quality patches in a habitat is large, obligate myrmecophiles do best. On increasing the number of poor‐quality patches, unattended species become more abundant. 5. The results suggest that, in spite of large species specific differences in growth rates, degree of myrmecophily or life cycle features, the temporal and spatial variability in top‐down and bottom‐up forces differentially affects aphid species and allows the simultaneous exploitation of a shared host‐plant species.  相似文献   

12.
1. The consequences to plants of ant–aphid mutualisms, particularly those involving invasive ants, are poorly studied. Ant–aphid mutualisms may increase or decrease plant fitness depending on the relative cost of herbivory by ant‐tended aphids versus the relative benefit of increased ant suppression of other (non‐aphid) herbivores. 2. We conducted field and greenhouse experiments in which we manipulated the presence and absence of cotton aphids (Aphis gossypii) on cotton plants to test the hypothesis that a mutualism between cotton aphids and an invasive ant, the red imported fire ant (Solenopsis invicta), benefits cotton plants by increasing fire ant suppression of caterpillars. We also manipulated caterpillar abundance to test whether the benefit of the mutualism varied with caterpillar density. 3. We found that more fire ants foraged on plants with cotton aphids than on plants without cotton aphids, which resulted in a significant reduction in caterpillar survival and caterpillar herbivory of leaves, flower buds, and bolls on plants with aphids. Consequently, cotton aphids indirectly increased cotton reproduction: plants with cotton aphids produced 16% more bolls, 25% more seeds, and 10% greater seedcotton mass than plants without aphids. The indirect benefit of cotton aphids, however, varied with caterpillar density: the number of bolls per plant at harvest was 32% greater on plants with aphids than on plants without aphids at high caterpillar density, versus just 3% greater at low caterpillar density. 4. Our results highlight the potential benefit to plants that host ant–hemipteran mutualisms and provide the first experimental evidence that the consequences to plants of an ant–aphid mutualism vary at different densities of non‐aphid herbivores.  相似文献   

13.
C. M. Bristow 《Oecologia》1991,87(4):514-521
Summary Oleander aphids, (Aphis nerii), which are sporadically tended by ants, were used as a moded system to examine whether host plant factors associated with feeding site influenced the formation of ant-aphid associations. Seasonal patterns of host plant utilization and association with attendant ants were examined through bi-weekly censuses of the aphid population feeding on thirty ornamental oleander plands (Nerium oleander) in northern California in 1985 and 1986. Colonies occurred on both developing and senescing plant terminals, including leaf tips, floral structures, and pods. Aphids preferentially colonized leaf terminals early in the season, but showed no preference for feeding site during later periods. Argentine ants (Iridomyrmex humilis) occasionally tended aphid colonies. Colonies on floral tips were three to four times more likely to attract ants than colonies on leaf tips, even though the latter frequently contained more aphids. Ants showed a positive recruitment response to colonies on floral tips, with a significant correlation between colony size and number of ants. There was no recruitment response to colonies on leaf tips. These patterns were reproducible over two years despite large fluctuations in both aphid population density and ant activity. In a laboratory bioassay of aphid palatability, the generalist predator,Hippodamia convergens, took significantly more aphids reared on floral tips compared to those reared on leaf tips. The patterns reported here support the hypothesis that tritrophic factors may be important in modifying higher level arthropod mutualisms.  相似文献   

14.
Kailen A. Mooney  Kunal Mandal 《Oikos》2010,119(5):874-882
Protection mutualisms often involve multiple species of protector that vary in quality as mutualists. Because protectors may compete for access to mutualists, concordance between competitive ability and degree of benefit will determine the overall strength of multi‐species mutualisms. We compared the abilities of two similarly sized congener ants as competitors for, and mutualists of pine‐feeding aphids, and how insectivorous birds affected each ant–aphid mutualism. Formica planipilis and F. podzolica were indistinguishable in forager abundance, but the former was 13‐fold more abundant at competition baits and provided 11‐fold more benefits to aphids. These results highlight how, in a single environment, a great ecological distance can exist between two congener ants of similar size. Insectivorous birds disrupted the two mutualisms to a similar extent, reducing aphid and ant abundance by 91% and 39% respectively. Nevertheless, birds had an important influence on the relative benefits of the two ants to aphids: where F. planipilis consistently benefited aphids, F. podzolica only did so in the absence of birds. Consequently, the presence of insectivorous birds and ant species identity jointly determined whether ant–aphid mutualisms occurred in pine canopies and the strength of such interactions. Our study highlights the inter‐relatedness of competition, predation and mutualism, and how competition can serve to strengthen mutualism by filtering inferior mutualists.  相似文献   

15.
1. Predator–prey interactions have traditionally focused on the consumptive effects that predators have on prey. However, predators can also reduce the abundance of prey through behaviourally‐mediated non‐consumptive effects. For example, pea aphids (Acyrthosiphon pisum Harris) drop from their host plants in response to the risk of attack, reducing population sizes as a consequence of lost feeding opportunities. 2. The objective of the present study was to determine whether the non‐consumptive effects of predators could extend to non‐prey herbivore populations as a result of non‐lethal incidental interactions between herbivores and foraging natural enemies. 3. Polyculture habitats consisting of green peach aphids (Myzus persicae Sulzer) feeding on collards and pea aphids feeding on fava beans were established in greenhouse cages. Aphidius colemani Viereck, a generalist parasitoid that attacks green peach aphids but not pea aphids, was released into half of the cages and the abundance of the non‐host pea aphid was assessed. 4. Parasitoids reduced the population growth of the non‐host pea aphid by increasing the frequency of defensive drops; but this effect was dependent on the presence of green peach aphids. 5. Parasitoids probably elicited the pea aphid dropping behaviour through physical contact with pea aphids while foraging for green peach aphids. It is unlikely that pea aphids were responding to volatile alarm chemicals emitted by green peach aphids in the presence of the parasitoid. 6. In conclusion, the escape response of the pea aphid provided the opportunity for a parasitoid to have non‐target effects on an herbivore with which it did not engage in a trophic interaction. The implication is that natural enemies with narrow diet breadths have the potential to influence the abundance of a broad range of prey and non‐prey species via non‐consumptive effects.  相似文献   

16.
Abstract.  1. Although interactions between ants and honeydew-producing insects have received considerable study, relatively little is known about how these interactions alter the behaviour of ants in ways that affect other arthropods. In this study, field and greenhouse experiments were performed that examined how the presence of aphids ( Aphis fabae solanella ) on Solanum nigrum influenced the foraging behaviour of Argentine ants ( Linepithema humile ) and, in turn, modified the extent to which ants deter larval lacewings ( Chrysoperla rufilabris ), which are known aphid predators.
2. A field experiment demonstrated that the level of foliar foraging by ants increased linearly with aphid abundance, whereas no relationship existed between the level of ground foraging by ants and aphid abundance.
3. In the greenhouse, as in the field, foliar foraging by ants greatly increased when aphids were present. Higher levels of foliar foraging led to a twofold increase in the likelihood that ants contacted aphid predators. As a result of these increased encounters with ants, lacewing larvae were twice as likely to be removed from plants with aphids compared with plants without aphids. Once contact was made, however, the behaviour of ants towards lacewing larvae appeared similar between the two experimental groups.
4. Argentine ants drive away or prey upon a diversity of arthropod predators and parasitoids, but they also exhibit aggression towards certain herbivores. Future work should attempt to quantify how the ecological effects that result from interactions between honeydew-producing insects and invasive ants, such as L. humile , differ from those that result from interactions between honeydew-producing insects and native ants.  相似文献   

17.
The means by which plant genotypes influence species interactions and arthropod community structure remain poorly understood. One potential, but largely unstudied mechanism is that occurring through plant genetic variation in induced responses to herbivory. Here we test whether induced responses to leaf damage and genotypic variation for induction in Asclepias syriaca influence interactions among Formica podzolica ants, the ant‐tended aphid Aphis asclepiadis, and the untended aphid Myzocallis asclepiadis. In so doing, we assess genetic variation in plant‐mediated interactions among different herbivore guilds. We conducted a three‐way factorial field experiment manipulating plant genotype, leaf damage by specialist monarch caterpillars Danaus plexippus, and ant presence, and documented effects on aphid and ant abundances. Leaf damage increased Aphis abundance in both the presence and absence of ants and Myzocallis abundance under ant exclusion. In the presence of ants, leaf damage decreased Myzocallis abundance, likely due to effects on ant–Myzocallis interactions; ants showed a positive association with Myzocallis, leaf damage increased the strength of this association (425% more ants per aphid), and this in turn fed back to suppress Myzocallis abundance. Yet, these aggregate effects of leaf damage on Myzocallis and ants were underlain by substantial variation among milkweed geno types, with leaf damage inducing lower aphid and ant abundances on some genotypes, but higher abundances on others. As a consequence, a substantial fraction of the variation in leaf damage effects on ants (R2 =0.42) was explained by milkweed genetic variation in the strength and sign of leaf damage effects on Myzocallis. Although plant genetic variation influenced Aphis abundance, this did not translate into genetic variation in ant abundance, and leaf damage did not influence Aphis–ant interactions. Overall, we show that variation in induced responses to herbivory is a relevant condition by which plant genotype influences interactions in plant‐centered arthropod communities and provide novel results of effects on the third trophic level.  相似文献   

18.
Interaction between a predator and a parasitoid attacking ant-attended aphids was examined in a system on photinia plants, consisting of the aphid Aphis spiraecola, the two ants Lasius japonicus and Pristomyrmex pungens, the predatory ladybird beetle Scymnus posticalis, and the parasitoid wasp Lysiphlebus japonicus. The ladybird larvae are densely covered with waxy secretion and are never attacked by attending ants. The parasitoid females are often attacked by ants, but successfully oviposit by avoiding ants. The two ants differ in aggressiveness towards aphid enemies. Impacts of the predator larvae and attending ant species on the number of parasitoid adults emerging from mummies per aphid colony were assessed by manipulating the presence of the predator in introduced aphid colonies attended by either ant. The experiment showed a significant negative impact of the predator on emerging parasitoid numbers. This is due to consumption of healthy aphids by the predator and its predation on parasitized aphids containing the parasitoid larvae (intraguild predation). Additionally, attending ant species significantly affected emerging parasitoid numbers, with more parasitoids in P. pungens-attended colonies. This results from the lower extent of interference with parasitoid oviposition by the less aggressive P. pungens. Furthermore, the predator reduced emerging parasitoid numbers more when P. pungens attended aphids. This may be ascribed to larger numbers of the predator and the resulting higher levels of predation on unparasitized and parasitized aphids in P. pungens-attended colonies. In conclusion, a negative effect of the predator on the parasitoid occurs in ant-attended aphid colonies, and the intensity of the interaction is affected by ant species.  相似文献   

19.
Mutualisms contribute in fundamental ways to the origin, maintenance and organization of biological diversity. Introduced species commonly participate in mutualisms, but how this phenomenon affects patterns of interactions among native mutualists remains incompletely understood. Here we examine how networks of interactions among aphid‐tending ants, ant‐tended aphids, and aphid‐attacking parasitoid wasps differ between 12 spatially paired riparian study sites with and without the introduced Argentine ant Linepithema humile in southern California. To resolve challenges in species identification, we used DNA barcoding to identify aphids and screen for parasitoid wasps (developing inside their aphid hosts) from 170 aphid aggregations sampled on arroyo willow Salix lasiolepis. Compared to uninvaded sites, invaded sites supported significantly fewer species of aphid‐tending ants and ant‐tended aphids. At invaded sites, for example, we found only two species of ant‐tended aphids, which were exclusively tended by L. humile, whereas at uninvaded sites we found 20 unique ant–aphid interactions involving eight species of ant‐tended aphids and nine species of aphid‐tending ants. Ant–aphid linkage density was thus significantly lower at invaded sites compared to uninvaded sites. We detected aphid parasitoids in 14% (28/198) of all aphid aggregations. Although the level of parasitism did not differ between invaded and uninvaded sites, more species of wasps were detected within uninvaded sites compared to invaded sites. These results provide a striking example of how the assimilation of introduced species into multi‐species mutualisms can reduce interaction diversity with potential consequences for species persistence.  相似文献   

20.
There are few longtime studies on the effects on aphids of being tended by ants. The aim of this study is to investigate how the presence of ants influences settling decisions by colonizing aphids and the post‐settlement growth and survival of aphid colonies. We conducted a field experiment using the facultative myrmecophile Aphis fabae and the ant Lasius niger. The experiment relied on natural aphid colonization of potted plants of scentless mayweed Tripleurospermum perforatum placed outdoors. Ants occurred naturally at the field site and had access to half of the pots and were prevented from accessing the remainder. The presence of winged, dispersing aphids, the growth and survival of establishing aphid colonies, and the presence of parasitoids were measured in relation to presence or absence of ants, over a period of five weeks. The presence of ants did not significantly influence the pattern of initial host plant colonization or the initial colony growth, but ant‐tended aphids were subject to higher parasitism by hymenopteran parasitoids. The net result over the experimental period was that the presence of ants decreased aphid colony productivity, measured as the number of winged summer migrants produced from the colonized host plants. This implies that aphids do not always benefit from the presence of ants, but under some conditions rather pay a cost in the form of reduced dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号