首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of interferon-alpha in the treatment of chronic myeloid leukemia   总被引:1,自引:0,他引:1  
Biological agents have long been used in the treatment of cancer, and interferon-alpha was the first human cytokine to be widely studied in this setting. Chronic myeloid leukemia (CML) is a hematopoietic stem cell disorder for which interferon-alpha has demonstrated substantial activity. In the 1980s interferon-alpha became first-line therapy for patients with chronic-phase CML, not eligible for allogeneic stem cell transplantation. Following the discovery of the leukemic oncogene BCR/ABL and its causal association with CML, the potent BCR/ABL tyrosine kinase inhibitor imatinib mesylate was developed. Imatinib proved to be superior to interferon-alpha in all outcome measures, making imatinib the new standard of care for patients with CML. There is both clinical and laboratory evidence suggesting imatinib therapy alone is not curative in CML, whereas IFN has induced a low but reproducible curative effect in some patients. This unique activity may be the basis for the reincorporation of IFN into the management of CML. These observations may be best explained by imatinib's negligible activity against the leukemic stem cell (LSC) population. This review discusses the history of interferon-alpha in the treatment of CML, the evolution of molecularly targeted therapies, and some of the lessons we have learned from years of informative research in CML. It also explores the new challenge of managing minimal residual disease in the imatinib era, and addresses the promising role for LSC-directed therapies in the future treatment of CML.  相似文献   

2.
Accumulating evidence support the notion that acute myeloid leukemia(AML) is organized in a hierarchical system, originating from a special proportion of leukemia stem cells(LSC). Similar to their normal counterpart, hematopoietic stem cells(HSC), LSC possess selfrenewal capacity and are responsible for the continued growth and proliferation of the bulk of leukemia cells in the blood and bone marrow. It is believed that LSC are also the root cause for the treatment failure and relapse of AML because LSC are often resistant to chemotherapy. In the past decade, we have made significant advancement in identification and understanding the molecular biology of LSC, but it remains a daunting task to specifically targeting LSC, while sparing normalHSC. In this review, we will first provide a historical overview of the discovery of LSC, followed by a summary of identification and separation of LSC by either cell surface markers or functional assays. Next, the review will focus on the current, various strategies for eradicating LSC. Finally, we will highlight future directions and challenges ahead of our ultimate goal for the cure of AML by targeting LSC.  相似文献   

3.
Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by a chromosome translocation that generates the Bcr-Abl oncogene encoding a constitutive kinase activity. Despite remarkable success in controlling CML at chronic phase by Bcr-Abl tyrosine kinase inhibitors (TKIs), a significant proportion of CML patients treated with TKIs develop drug resistance due to the inability of TKIs to kill leukemia stem cells (LSCs) that are responsible for initiation, drug resistance, and relapse of CML. Therefore, there is an urgent need for more potent and safer therapies against leukemia stem cells for curing CML. A number of LSCassociated targets and corresponding signaling pathways, including CaMKII-γ, a critical molecular switch for co-activating multiple LSC-associated signaling pathways, have been identified over the past decades and various small inhibitors targeting LSC are also under development. Increasing evidence shows that leukemia stem cells are the root of CML and targeting LSC may offer a curable treatment option for CML patients. This review summarizes the molecular biology of LSC and itsassociated targets, and the potential clinical application in chronic myeloid leukemia.  相似文献   

4.

Background

The tyrosine kinase receptor insulin-like growth factor 1 receptor (IGF-IR) contributes to the initiation and progression of many types of malignancies. We previously showed that IGF-2, which binds IGF-IR, is an extrinsic factor that supports the ex vivo expansion of hematopoietic stem cells (HSCs). We also demonstrated that IGF-IR is not required for HSC activity in vivo.

Methods and results

Here we investigated the role of IGF-IR in chronic myeloid leukemia (CML) using the retroviral BCR/ABL transplantation mouse model. Existing antibodies against IGF-IR are not suitable for flow cytometry; therefore, we generated a fusion of the human IgG Fc fragment with mutant IGF-2 that can bind to IGF-IR. We used this fusion protein to evaluate mouse primary hematopoietic populations. Through transplantation assays with IGF-IR+ and IGF-IR cells, we demonstrated that IGF-IR is expressed on all mouse HSCs. The expression of IGF-IR is much higher on CML cells than on acute lymphoblastic leukemia (ALL) cells. The depletion of IGF-IR expression in BCR/ABL+ cells led to the development of ALL (mostly T cell ALL) but not CML. Lack of IGF-IR resulted in decreased self-renewal of the BCR/ABL+ CML cells in the serial replating assay.

Conclusion

IGF-IR regulates the cell fate determination of BCR/ABL+ leukemia cells and supports the self-renewal of CML cells.  相似文献   

5.
We previously showed that incubation of chronic myeloid leukemia (CML) cells in very low oxygen selects a cell subset where the oncogenetic BCR/Abl protein is suppressed and which is thereby refractory to tyrosine kinase inhibitors used for CML therapy. In this study, salarin C, an anticancer macrolide extracted from the Fascaplysinopsis sponge, was tested as for its activity on CML cells, especially after their incubation in atmosphere at 0.1% oxygen. Salarin C induced mitotic cycle arrest, apoptosis and DNA damage. Salarin C also concentration-dependently inhibited the maintenance of stem cell potential in cultures in low oxygen of either CML cell lines or primary cells. Surprisingly, the drug also concentration-dependently enforced the maintenance of BCR/Abl signaling in low oxygen, an effect which was paralleled by the rescue of sensitivity of stem cell potential to IM. These results suggest a potential use of salarin C for the suppression of CML cells refractory to tyrosine kinase inhibitors  相似文献   

6.
Studies on chronic myeloid leukemia (CML) have served as a paradigm for cancer research and therapy. These studies involve the identifi cation of the fi rst cancer-associated chromosomal abnormality and the subsequent development of tyrosine kinase inhibitors (TKIs) that inhibit BCR-ABL kinase activity in CML. It becomes clear that leukemia stem cells (LSCs) in CML which are resistant to TKIs, and eradication of LSCs appears to be extremely diffi cult. Therefore, one of the major issues in current CML biology is to understand the biology of LSCs and to investigate why LSCs are insensitive to TKI monotherapy for developing curative therapeutic strategies. Studies from our group and others have revealed that CML LSCs form a hierarchy similar to that seen in normal hematopoiesis, in which a rare stem cell population with limitless selfrenewal potential gives rise to progenies that lack such potential. LSCs also possess biological features that are different from those of normal hematopoietic stem cells (HSCs) and are critical for their malignant characteristics. In this review, we summarize the latest progress in CML field, and attempt to understand the molecular mechanisms of survival regulation of LSCs.  相似文献   

7.
Chronic Myeloid Leukemia (CML) is sustained by a small population of cells with stem cell characteristics known as Leukemic Stem Cells that are positive to BCR-ABL fusion protein, involved with several abnormalities in cell proliferation, expansion, apoptosis and cell cycle regulation. Current treatment options for CML involve the use of Tirosine Kinase Inhibitor (Imatinib, Nilotinib and Dasatinib), that efficiently reduce proliferation proliferative cells but do not kill non proliferating CML primitive cells that remain and contributes to the persistence of the disease.

In order to understand the role of Cyclin Dependent Kinase Inhibitors in CML LSC permanence after TKI treatment, in this study we analyzed cell cycle status, the levels of several CDKIs and the subcellular localization of such molecules in different CML cell lines, as well as primary CD34+CD38?lin? LSC and HSC.

Our results demonstrate that cellular location of p18INK4c and p57Kip2 seems to be implicated in the antiproliferative activity of Imatinib and Dasatinib in CML cells and also suggest that the permanence of quiescent stem cells after TKI treatment could be associated with a decrease in p18INK4c and p57Kip2 nuclear location. The differences in p18INK4cand p57Kip2activities in CML and normal stem cells suggest a different cell cycle regulation and provide a platform that could be considered in the development of new therapeutic options to eliminate LSC.  相似文献   

8.
Tyrosine kinase inhibitors (TKI) have become a first‐line treatment for chronic myeloid leuakemia (CML). TKIs efficiently target bulk CML cells; however, they are unable to eliminate the leukaemic stem cell (LSC) population that causes resistance and relapse in CML patients. In this study, we assessed the effects of parthenolide (PTL) and dimethyl amino parthenolide (DMAPT), two potent inhibitors of LSCs in acute myeloid leukaemia (AML), on CML bulk and CML primitive (CD34+lin?) cells. We found that both agents induced cell death in CML, while having little effect on the equivalent normal hematopoietic cells. PTL and DMAPT caused an increase in reactive oxygen species (ROS) levels and inhibited NF‐κB activation. PTL and DMAPT inhibited cell proliferation and induced cell cycle arrest in G0 and G2 phases. Furthermore, we found cell cycle inhibition to correlate with down‐regulation of cyclin D1 and cyclin A. In summary, our study shows that PTL and DMAPT have a strong inhibitory effect on CML cells. Given that cell cycle arrest was not dependent on ROS induction, we speculate that this effect could be a direct consequence of NF‐κB inhibition and if this mechanism was to be evaded, PTL and DMAPT induced cell death would be potentiated.  相似文献   

9.
Loss of p53 function is a common feature of human cancers and it is required for differentiated tumor cell maintenance; however, it is not known whether sustained inactivation of the p53 pathway is needed for cancer stem cell persistence. Chronic myeloid leukemia (CML) is caused by a chromosome translocation that generates the BCRABL oncogene encoding a constitutively active protein tyrosine kinase. The disease originates in a hematopoietic stem cell and is maintained by leukemic stem cells (LSCs). Treatment with specific tyrosine kinase inhibitors does not eliminate LSCs because they do not depend on the oncogene for survival. We have combined a switchable p53 knock-in mouse model, p53KI/KI, with the well-characterized Sca1-BCRABLp210 CML transgenic model, to show that transient restoration of p53 slows disease progression and significantly extends the survival of leukemic animals, being the mechanism responsible for this effect, apoptotic death of primitive leukemia cells. In agreement with these in vivo findings, in vitro assays show that restoring p53 reduces hematopoietic colony formation by cells of leukemic animals. These results suggest that reestablishing p53 function may be a therapeutic strategy for the eradication of leukemic stem cells and to prevent disease progression.  相似文献   

10.
The stunning possibility of “reprogramming” differentiated somatic cells to express a pluripotent stem cell phenotype (iPS, induced pluripotent stem cell) and the “ground state” character of pluripotency reveal fundamental features of cell fate regulation that lie beyond existing paradigms. The rarity of reprogramming events appears to contradict the robustness with which the unfathomably complex phenotype of stem cells can reliably be generated. This apparent paradox, however, is naturally explained by the rugged “epigenetic landscape” with valleys representing “preprogrammed” attractor states that emerge from the dynamical constraints of the gene regulatory network. This article provides a pedagogical primer to the fundamental principles of gene regulatory networks as integrated dynamic systems and reviews recent insights in gene expression noise and fate determination, thereby offering a formal framework that may help us to understand why cell fate reprogramming events are inherently rare and yet so robust.  相似文献   

11.
牛畅  叶棋浓 《生物技术通讯》2010,21(5):731-735,739
肿瘤干细胞既包含干细胞的特性也包含肿瘤细胞的特性。乳腺癌起源于乳腺癌干细胞的说法能够合理地解释乳腺癌的不均一性及其治疗后的复发,这些变异的干细胞可能作为肿瘤预防策略的靶标。而且,由于乳腺癌干细胞能够抵抗辐射治疗和化学治疗,所以要想更好地治疗乳腺癌就需要寻找针对这些干细胞的靶标。我们综述了乳腺癌干细胞的发现、富集和分离、相关的信号途径,以及在乳腺癌治疗中的应用。  相似文献   

12.
Chronic Myeloid Leukemia (CML) is a hematopoietic stem cell disease, associated with a t(9, 22) chromosomal translocation leading to formation of the BCR/ABL chimeric protein, which has an intrinsic tyrosine kinase activity. Recently, the BCR/ABL tyrosine kinase inhibitor imatinib mesylate (imatinib) has been successfully used clinically, although, disease relapse can still occur. The precise detail of the mechanism by which CML cells respond to imatinib is still unclear. We therefore systematically examined the effects of imatinib on the primitive CML cell proteome, having first established that the drug inhibits proliferation and induces increased apoptosis and differentiation. To define imatinib-induced effects on the CML proteome, we employed isobaric tag peptide labeling (iTRAQ) coupled to two-dimensional liquid chromatography/tandem mass spectrometry. Given the limited clinical material available, the isobaric tag approach identified a large population of proteins and provided relative quantification on four samples at once. Novel consequences of the action of imatinib were identified using this mass spectrometric approach. DEAD-box protein 3, heat shock protein 105 kDa, and peroxiredoxin-3 were identified as potential protein markers for response to imatinib. Electronic Supplementary Material The online version of this article (doi: ) contains supplementary material, which is available to authorized users. Stephen D. Griffiths and John Burthem contributed equally to this publication. This work is supported by The Leukaemia Research Fund (UK).  相似文献   

13.
The role of stem cell transplantation in the treatment of leukemia and myelodysplasia (MDS) in children has changed over the past decade. In pediatric acute lymphoblastic leukemia (ALL), the overall cure-rate is high with conventional chemotherapy. However, selected patients with a high-risk of relapse are often treated with allogeneic hematopoietic stem cell transplantation (allo-HSCT) in first remission (CR1). Patients with a bone-marrow relapse who attain a second remission frequently receive HSCT. High minimal residual disease (MRD) levels directly prior to HSCT determines the relapse risk. Therefore, MRD positive patients are eligible for more experimental approaches such as intensified or experimental chemotherapy pre-HSCT, as well as immune modulation post-HSCT. In pediatric acute myeloid leukemia (AML) the role of allo-HSCT in CR1 is declining, due to better outcome with modern multi-agent chemotherapy. In relapsed AML patients, allo-HSCT still seems indispensable. Targeted therapy may change the role of HSCT, in particular in chronic myeloid leukemia, where the role of allografting is changing in the imatinib era. In MDS, patients are usually transplanted immediately without prior cytoreduction. New developments in HSCT, such as the role of alternative conditioning regimens, and innovative stem cell sources such as peripheral blood and cord blood, will also be addressed.  相似文献   

14.
15.
Under the cancer stem cell (CSC) hypothesis, sustained metastatic growth requires the dissemination of a CSC from the primary tumour followed by its re-establishment in a secondary site. The epithelial-mesenchymal transition (EMT), a differentiation process crucial to normal development, has been implicated in conferring metastatic ability on carcinomas. Balancing these two concepts has led researchers to investigate a possible link between EMT and the CSC phenotype—indeed, recent evidence indicates that, following induction of EMT in human breast cancer and related cell lines, stem cell activity increased, as judged by the presence of cells displaying the CD44high/CD24low phenotype and an increase in the ability of cells to form mammospheres. We mathematically investigate the nature of this increase in stem cell activity. A stochastic model is used when small number of cells are under consideration, namely in simulating the mammosphere assay, while a related continuous model is used to probe the dynamics of larger cell populations. Two scenarios of EMT-mediated CSC enrichment are considered. In the first, differentiated cells re-acquire a CSC phenotype—this model implicates fully mature cells as key subjects of de-differentiation and entails a delay period of several days before de-differentiation occurs. In the second, pre-existing CSCs experience accelerated division and increased proportion of self-renewing divisions; a lack of perfect CSC biomarkers and cell sorting techniques requires that this model be considered, further emphasizing the need for better characterization of the mammary (cancer) stem cell hierarchy. Additionally, we suggest the utility of comparing mammosphere data to computational mammosphere simulations in elucidating the growth characteristics of mammary (cancer) stem cells.  相似文献   

16.
The cancer stem cells (CSC) hypothesis represents a pathological extrapolation of the physiological concept of embryonic and somatic stem cells. In its initial definition, it encompassed the hypothesis of a qualitatively distinct population of immortal cancer cells originating from somatic stem cells, which generate in xenotransplants by a deterministic irreversible process, the hierarchy of more differentiated finite lifespan derived cells, which constitute, themselves, the bulk of the cancer. These CSC would express specific biomarkers and gene expressions related to chemo- and radioresistance, stemness, epithelial–mesenchymal transition, etc.

No convincing congruence of several of these properties in one cell population has been demonstrated. The concept has greatly evolved with time and with different authors (“the plasticity of cancer stem cells”), leading to a minimal definition of cells generating a hierarchy of derived cells. In this article these concepts are analyzed. It is proposed that stemness is a property, more or less reversible, a hallmark of some cells at some time in a cancer cell population, as immortality, dormancy, chemo- or radioresistance, epithelial–mesenchymal transition etc. These phenotypic properties represent the result of independent, linked, or more or less congruent, genetic, epigenetic, or signaling programs.  相似文献   

17.
The latest studies of the interactions between oncogenes and its target cell have shown that certain oncogenes may act as passengers to reprogram tissue-specific stem/progenitor cell into a malignant cancer stem cell state. In this study, we show that the genetic background influences this tumoral stem cell reprogramming capacity of the oncogenes using as a model the Sca1-BCRABLp210 mice, where the type of tumor they develop, chronic myeloid leukemia (CML), is a function of tumoral stem cell reprogramming. Sca1-BCRABLp210 mice containing FVB genetic components were significantly more resistant to CML. However, pure Sca1-BCRABLp210 FVB mice developed thymomas that were not seen in the Sca1-BCRABLp210 mice into the B6 background. Collectively, our results demonstrate for the first time that tumoral stem cell reprogramming fate is subject to polymorphic genetic control.  相似文献   

18.
NK cells from the blood of chronic myelogenous leukemia (CML) patients are progressively decreased in number as the disease progresses from chronic phase to blast crisis. We hypothesize that BCR/ABL may be directly responsible by interfering with NK cell differentiation. CD34(+)HLA-DR(+) cells from CML patients were studied for their capacity to differentiate into NK cells. The NK cell cloning frequency was significantly decreased from CML CD34(+)HLA-DR(+) cells compared with cells from normal donors, yet CD34(+)HLA-DR(+) cells gave rise to BCR/ABL(+) NK cells in some patients. This finding prompted us to further investigate circulating NK cells from the blood of CML patients. CD56(+)CD3(-) NK cells were sorted from CML patients and examined by fluorescence in situ hybridization (FISH). In contrast to chronic phase CML, significant numbers of NK cells from advanced phase CML patients were BCR/ABL(+), whereas T cells were always BCR/ABL(-) regardless of the disease stage. To test the effects of BCR/ABL as the sole genetic abnormality, BCR/ABL was transduced into umbilical cord blood CD34(+) cells, and NK development was studied. p210-enhanced green fluorescence protein-transduced cells gave rise to significantly decreased numbers of NK cells compared with enhanced green fluorescence protein transduction alone. In addition, the extrinsic addition of BCR/ABL-transduced autologous CD34(+) cells suppressed the NK cell differentiation of normal umbilical cord blood CD34(+)CD38(-) cells. This study provides the first evidence that BCR/ABL is responsible for the altered differentiation of NK cells and that the NK cell lineage can be involved with the malignant clone in advanced stage CML.  相似文献   

19.
Influence of BCR/ABL fusion proteins on the course of Ph leukemias   总被引:1,自引:0,他引:1  
The hallmark of chronic myeloid leukemia (CML) and a subset of acute lymphoblastic leukemia (ALL) is the presence of the Philadelphia chromosome as a result of the t(9;22) translocation. This gene rearrangement results in the production of a novel oncoprotein, BCR/ABL, a constitutively active tyrosine kinase. There is compelling evidence that the malignant transformation by BCR/ABL is critically dependent on its Abl tyrosine kinase activity. Also the bcr part of the hybrid gene takes part in realization of the malignant phenotype. We supposed that additional mutations accumulate in this region of the BCR/ABL oncogene during the development of the malignant blast crisis in CML patients. In ALL patients having p210 fusion protein the mutations were supposed to be preexisting. Sequencing of PCR product of the BCR/ABL gene (Dbl, PH region) showed that along with single-nucleotide substitutions other mutations, mostly deletions, had occurred. In an ALL patient a deletion of the 5th exon was detected. The size of the deletions varied from 36 to 220 amino acids. For one case of blast crisis of CML changes in the character of actin organization were observed. Taking into account the functional role of these domains in the cell an etiological role of such mutations on the disease phenotype and leukemia progression is plausible.  相似文献   

20.
Acute myeloid leukemia(AML) is an aggressive malignant disease defined by abnormal expansion of myeloid blasts. Despite recent advances in understanding AML pathogenesis and identifying their molecular subtypes based on somatic mutations, AML is still characterized by poor outcomes, with a 5-year survival rate of only 30%-40%, the majority of the patients dying due to AML relapse. Leukemia stem cells(LSC) are considered to be at the root of chemotherapeutic resistance and AML relapse. Although numerous studies have tried to better characterize LSCs in terms of surface and molecular markers, a specific marker of LSC has not been found, and still the most universally accepted phenotypic signature remains the surface antigens CD34+CD38- that is shared with normal hematopoietic stem cells. Animal models provides the means to investigate the factors responsible for leukemic transformation, the intrinsic differences between secondary post-myeloproliferative neoplasm AML and de novo AML, especially the signaling pathways involved in inflammation and hematopoiesis. However, AML proved to be one of the hematological malignancies that is difficult to engraft even in the most immunodeficient mice strains, and numerous ongoing attempts are focused to develop "humanized mice" that can support the engraftment of LSC. This present review is aiming to in-troduce the field of AML pathogenesis and the concept of LSC, to present the current knowledge on leukemic blasts surface markers and recent attempts to develop best AML animal models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号