共查询到20条相似文献,搜索用时 0 毫秒
1.
If Mammals are the primary hosts of Siphonaptera, 6% of them have changed their trophic appetency for Birds. What are the reasons, what are the adaptations to be adopted by Fleas, what are the families or species groups of fleas concerned, and at last what are the host-families? As to this last question, it is clear that deviation was ecological but not phyletical. 相似文献
2.
Boris R. Krasnov David Mouillot Georgy I. Shenbrot Irina S. Khokhlova Robert Poulin 《Ecography》2004,27(6):787-797
The evolution of host specificity remains a central issue in the study of host‐parasite relationships. Here we tackle three basic questions about host specificity using data on host use by fleas (Siphonaptera) from 21 geographical regions. First, are the host species exploited by a flea species no more than a random draw from the locally available host species, or do they form a taxonomically distinct subset? Using randomization tests, we showed that in the majority of cases, the taxonomic distinctness (measured as the average taxonomic distances among host species) of the hosts exploited by a flea is no different from that of random subsets of hosts taken from the regional pool. In the several cases where a difference was found, the taxonomic distinctness of the hosts used by a flea was almost always lower than that of the random subsets, suggesting that the parasites use hosts within a narrower taxonomic spectrum than what is available to them. Second, given the variation in host specificity among populations of the same flea species, is host specificity truly a species character? We found that host specificity measures are repeatable among different populations of the same flea species: host specificity varies significantly more among flea species than within flea species. This was true for both measures of host specificity used in the analyses: the number of host species exploited, and the index measuring the average taxonomic distinctness of the host species and its variance. Third, what causes geographical variation in host specificity among populations of the same flea species? In the vast majority of flea species, neither of our two measures of host specificity correlated with either the regional number of potential host species or their taxonomic distinctness, or the distance between the sampled region and the center of the flea's geographical range. However, in most flea species host specificity correlated with measures of the deviation in climatic conditions (precipitation and temperature) between the sampled region and the average conditions computed across the flea's entire range. Overall, these results suggest that host specificity in fleas is to a large extent phylogenetically constrained, while still strongly influenced by local environmental conditions. 相似文献
3.
Intracellular endosymbionts, Wolbachia spp., have been reported in many different orders of insects and in nematodes but not previously in fleas. This is the first conclusive report of Wolbachia spp. within members of the Siphonaptera. Using nested polymerase chain reaction (PCR) targeting of the 16S ribosomal RNA gene, we screened for Wolbachia spp. in fleas collected from 3 counties in Georgia and 1 in New York. The prevalence of Wolbachia spp. detected varied among the 6 different species screened: 21% in the cat flea Ctenocephalides felis (n = 604), 7% in the dog flea C. canis (n = 28), 25% in Polygenus gwyni (n = 8), 80% in Orchopeas howardi (n = 15), 94% in Pulex simulans (n = 255), and 24% in the sticktight flea Echidnophaga gallinacea (n = 101). Wolbachia spp. infection in fleas was confirmed by sequencing positive PCR products, comparing sequenced 16S ribosomal DNA (rDNA) with Wolbachia spp. sequences in GenBank using BLAST search, and subjecting sequence data to phylogenetic analysis. For further confirmation, 16S rDNA-positive samples were reamplified using the wsp gene. 相似文献
4.
Results of analysis of the Caucasian fauna of fleas and their association with mammal and avian hosts are reported. The Caucasian fauna of potential flea hosts comprises about 130 species of mammals and about 470 species of birds. Most of the flea species in the Caucasian fauna (88 out of 155) parasitize rodents, 51 species of which are permanent hosts of different flea species; 13 flea species occur on 11 species of insectivores; 13 flea species, on 13 species of chiropterans; 14 flea species, on 20 species of carnivores. Only 2 flea species parasitize artiodactyles. 54 species of birds are permanent hosts of 23 species of fleas from 4 genera in the Caucasus. Ten types of ranges of flea species are distinguished; host associations of the Caucasian flea species from these groups are discussed. The greatest numbers of hosts from the families Cricetidae, Muridae, and Sciuridae are associated with fleas with Euro-Asian (extra-Siberian), European, Turanian, and Iranian ranges. Soricidae are known as hosts of flea species with European and Euro-Turanian ranges. Four major groups of flea taxa are represented in the Caucasian fauna. The distribution of the first group is determined by the influence of the palaeofauna of the ancient European continent in the early Cenozoic; that of the second group, by the influence of the fauna of the ancient Asian continent during the Paleogene and part of the Neogene; the third, by the influence of the fauna of southern Europe starting with the Miocene. The fourth group comprises the species which immigrated from northern Europe and Asia in the Late Neogene (2–3 mln years ago). 相似文献
5.
Collections of fleas from terrestrial Sciuridae from New Mexico and Montana yielded 2 species of acarid mites: Acarus monopsyllus from Ceratophyllus ciliatus and Paraceroglyphus cynomydis n. sp. from 4 species of Oropsylla. The genera Acarus, Paraceroglyphus, and Trichopsyllopus form a clade distinct from other genera of flea-associated mites, with Paraceroglyphus the sister group of the other 2 genera. Paraceroglyphus cynomydis is the sister group of a clade comprising P. xenopsylla and possibly P. californicus, with P. meles as the nearest outgroup. 相似文献
6.
S. G. Medvedev 《Entomological Review》2017,97(8):1023-1030
The paper deals with peculiarities of flea structure determined by their parasitism on mammals and birds. On the basis of the data on diversity of morphological characters, the leading role of structures of the frontal and nototrochanteral complexes in the adaptive evolution of Siphonaptera is substantiated. Peculiarities of the pulicoid, ischnopsylloid, palaeopsylloid, and generalized morphological types are analyzed together with examples of narrow morphological specializations. Distribution of fleas of these morphological types over five groups of hosts differing in the degree of mobility and association with nests and burrows is also analyzed. 相似文献
7.
8.
Vashchenok VS 《Parazitologiia》2000,34(4):280-287
In experiments, the mean life duration of fleas Leptopsylla segnis on white mice (abundance of fleas within natural limits, up to 10 fleas per mouse) was 22.7 days in females and 18.8 day in males. Maximum life duration was 51 and 37 days respectively. In cases, when the initial numbers of fleas were 20 and 28-34 fleas, the duration of life was decreased. The maximum limit decreased greater than the mean duration of life. A survival dynamics of fleas depended upon the flea number. It was found out, that in cases of high abundance of fleas in the beginning of experiments, the mortality rate of males was lower than in females. During the stay on a host the fleas lost gradually an ability to endure a starvation. Possible mechanisms of the regulation of flea abundance are discussed. 相似文献
9.
S A Filimonova 《Parazitologiia》1989,23(6):480-488
Changes in the ultrastructure of cells of the intestinal epithelium during the digestion of one blood portion were traced in the fleas L. segnis. It is shown that alongside with the cavity digestion take place elements of intracellular digestion. Hypothetic scheme of the digestive cell functioning is given. 相似文献
10.
Medvedev SG 《Parazitologiia》2001,35(4):291-306
The structure of pseudosetae, spinelets, and spines of combs (ctenidia) was studied by means of light and SE microscopy in 80% of genera and subgenera of the World fauna. It is found out that peculiarities of ctenidiae in the prothorax and in tergites of the abdomen are characteristics of families and infraorders of fleas. Some characters of ctenidiae found in certain flea genera are reductions and apparently caused by habitation in some extremal conditions. An absence of ctenidiae in the unfraorder Pulicomorpha is compensated by more developed posterior margin of prothorax and general abbreviation of all thoracal segments. Reasons of ctenidiae absence, which is observed in certain genera of the infraorders Ceratophyllomorpha, Pygiopsyllomorpha and Hystricopsillomorpha associated with the same hosts, is not clear. It is confirmed, that distance between ctenidiae in different flea species associated with the same species host species, however it is recovered, that this distance correlates with the diameter of most thin hair of host. In some flea species the distance between ctenidia spices in females is larger, than in males. It is found, that sexual dimorphism by this character may not be expressed in certain species of closely related species group of fleas. It is suggested that ctenidiae were present even in the common ancestor of fleas. The hypothesis on origin of spines and pseudosetae from setae of the posterior walls of toracal and abdominal segments in the common ancestor of fleas is proposed. 相似文献
11.
R E Lewis 《The Journal of parasitology》1966,52(6):1167-1171
12.
K P Kadatskaia 《Parazitologiia》1983,17(5):370-374
The factors favouring the cessation of reproduction in X. conformis are laid in the preimaginal state. The drop in temperature during the formation of imago at the pupal stage is a signal for the cessation of reproduction. Imagos hatched at a temperature lower than that of developmental conditions of preimaginal stages do not start reproduction and enter facultative imaginal diapause state. With further decrease in temperature the state of fleas intensifies. With the rise of temperature fleas come out of diapause. In autumn coming out of diapause begins at a temperature higher than 20 degrees, on the 8th--9th day. The lower air temperature the more rapid is coming out of diapause, at a rise of temperature of 3 to 5 degrees. 相似文献
13.
Krasnov BR Poulin R Shenbrot GI Mouillot D Khokhlova IS 《The American naturalist》2004,164(4):506-516
Animal species with larger local populations tend to be widespread across many localities, whereas species with smaller local populations occur in fewer localities. This pattern is well documented for free-living species and can be explained by the resource breadth hypothesis: the attributes that enable a species to exploit a diversity of resources allow it to attain a broad distribution and high local density. In contrast, for parasitic organisms, the trade-off hypothesis predicts that parasites exploiting many host species will achieve lower mean abundance on those hosts than more host-specific parasites because of the costs of adaptations against multiple defense systems. We test these alternative hypotheses with data on host specificity and abundance of fleas parasitic on small mammals from 20 different regions. Our analyses controlled for phylogenetic influences, differences in host body surface area, and sampling effort. In most regions, we found significant positive relationships between flea abundance and either the number of host species they exploited or the average taxonomic distance among those host species. This was true whether we used mean flea abundance or the maximum abundance they achieved on their optimal host. Although fleas tended to exploit more host species in regions with either larger number of available hosts or more taxonomically diverse host faunas, differences in host faunas between regions had no clear effect on the abundance-host specificity relationship. Overall, the results support the resource breadth hypothesis: fleas exploiting many host species or taxonomically unrelated hosts achieve higher abundance than specialist fleas. We conclude that generalist parasites achieve higher abundance because of a combination of resource availability and stability. 相似文献
14.
S. G. Medvedev 《Entomological Review》2014,94(3):345-358
The Palaearctic flea fauna includes 921 species and 479 subspecies from 96 genera of 10 families. Of them, 858 species (94%) from 43 genera are endemic to the Palaearctic; they comprise 40% of the Palaearctic Hystrichopsyllidae, 24% of Ceratophyllidae, and 20% of Leptopsyllidae. Ranges of 581 species (63% of the Palaearctic fauna) are situated within one province or subregion of the Palaearctic. Species with ranges including a part of Asia (592) comprise 87% of the total fauna; 72% of the species (517) are endemic to the Palaearctic. The largest centers of taxonomic diversity of Palaearctic fleas are situated in the East Asian, Central Asian, and Turano-Iranian Subregions: 320 species of fleas (214 of them endemic) from 59 genera (8 endemic) are known from the East Asian Subregion; 270 species (over 120 endemic) from 54 genera (5 endemic) are distributed in the Central Asian Subregion. The Turano-Iranian fauna comprises 213 species (103 endemic) from 47 genera (3 endemic); about 160 species occur in the Turanian Subprovince closest to the Russian borders, one-third of them (52 species, or 33%) are endemic; 69 species more are endemic to the entire Asian part of the Palaearctic. Extra-Asian and extra-Siberian ranges are known in 190 flea species. In the western Palaearctic, 76 species are endemic to the European Province, and 57 species, to the Mediterranean Province; 36 species have Euro-Mediterranean distribution. The fauna of the Saharo-Arabian Subregion comprises 30 species (12 endemic), 6 species have ranges of the Mediterranean-Saharo-Arabian type. Scenarios of the origin of the Siphonaptera at the Triassic-Jurassic boundary are hypothesized. Formation of the Palaearctic flea fauna was mostly supported by the Asian-Indo-Malayan and East Asian-Western American palaeofaunal centers of taxonomic diversity. The long history of faunal exchange between the east Palaearctic and the west Nearctic is manifested by the distribution of the parasites of rodents and insectivores, fleas of the genera Stenoponia, Rhadinopsylla, Nearctopsylla, and Catallagia, belonging to several subfamilies of the Hystrichopsyllidae, as well as members of a number of other flea families. A great number of endemic species in the genera Palaeopsylla and Ctenophthalmus (Hystrichopsyllidae), both in the European and Asian parts of the Palaearctic, can be explained by the junction of the European and Asian continental platforms in the late Cretaceous and their subsequent isolation during the Paleocene. A considerable contribution to the flea fauna in the Russian territory was made by the East Asian-Nearctic center of taxonomic diversity, with a smaller role of the European palaeofauna. Immigration of species of the family Pulicidae from the Afrotropical Region is restricted to the southern territories of Russia. 相似文献
15.
During a recent epidemiological study of Lushoto plague focus, some uncommon specimens of fleas or even totally new species were collected. In this paper, we describe one of those, Ctenophthalmus (Ethioctenophthalmus) teucqae n. sp. Microscopic observation of comparison specimens deposited at National History Museum (London) allows us to create a sub-species, C. (E.) teucqae shumeensis n. ssp. 相似文献
16.
Morphological, palaeontological and molecular aspects of ichneumonoid phylogeny (Hymenoptera, Insecta) 总被引:2,自引:1,他引:2
Donald L. J. Quicke Hasan H. Basibuyuk Alexandr P. Rasnitsyn 《Zoologica scripta》1999,28(1-2):175-202
Ichneumonoid phylogeny is revised on the basis of morphological, palaeontological and molecular evidence. The only previous formal cladistic study of the phylogeny of the families of the superfamily Ichneumonoidea made many assumptions about what families lower taxa belonged to and was based on a very limited set of characters, nearly all of which were uninformative at family level. We have subdivided both Ichneumonidae and Braconidae into major groups, investigated several new character systems, reinterpreted some characters, scored several character states for extinct taxa by examining impression fossils using environment chamber scanning electron microscopy, and included data for a significant new subfamily of Braconidae from Cretaceous amber of New Jersey. Sixteen different variants of the data set were each subjected to parsimony analysis without weighting and with successive approximations weighting employing both maximum and minimum values of both the retention and rescaled consistency indices. Each analysis resulted in one of seven different strict consensus trees. Consensus trees based on subsets of these trees, selected on the basis of the optimal character compatibility index (OCCI), resulted in an eighth distinct tree. All trees had the Braconidae monophyletic with the Trachypetinae as the basal clade, and also had a clade comprising various arrangements of Apozyginae, the Rhyssalinae group, Aphidiinae and 'other cyclostomes', but relationships among the remaining braconid groups varied between trees. Only one of the consensus trees had the Ichneumonidae (including Tanychorella ) monophyletic. The Eoichneumonidae + Tanychora are the sister group the Braconidae in two of the consensus trees. Paxylommatinae were basal in the clade comprising the Eoichneumonidae + Tanychora and the Braconidae. The preferred tree, based on the highest OCCI was used for interpreting character state transitions. 相似文献
17.
18.
19.
20.
C Thomas 《Cytobios》1991,67(268):29-43
Five populations of Xenopsylla cheopis exhibit a chromosome complement of 2n = 17, X1X2Y (male), and 2n = 18, X1X1X2X2 (female). A detailed analysis of populations of X. astia from Bombay and Trivandrum led to the identification of two distinct cytotypes which hybridisation studies indicated were sibling species. These are referred to as X. astia with a diploid chromosome number of 2n = 18, X1X2X3Y (male), and 2n = 20, X1X1X2X2X3X3 (female) and X. prasadii with 2n = 10, X1X2Y1Y2 (male), and 2n = 10 X1X1X2X2 (female). It is proposed that X. prasadii is derived from X. astia through translocation/fusion events since the average total chromosome lengths are remarkably similar in all three species. 相似文献