首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objectives: In taekwondo competitions, fatigue has a large influence on performance. Recent studies have reported that the excitability in the primary hand motor cortex, investigated with transcranial magnetic stimulation (TMS), is enhanced at the end of a maximal exercise and that this improvement correlates with blood lactate. The aim of the present study was to investigate the relationship between blood lactate and cortical excitability in taekwondo athletes and non-athletes.

Methods: The excitability of the primary motor cortex was measured before and after fatiguing hand-grip exercise by TMS. Capillary blood lactate was measured at rest (pre-test), at the end (0?min), and at 3 and 10?min after the exercise by using a “Lactate Pro” portable lactate analyzer.

Results: Significant differences in cortical excitability between the two groups were found after the exercise (p?p?Conclusion: The present findings showed changes in the excitability in the athletes group and also in the non-athletes group. However, blood lactate seems to have the greater effect in trained subjects compared to untrained subjects. In fact, it appears that, during extremely intensive exercise in taekwondo athletes, lactate may delay the onset of fatigue not only by maintaining the excitability of muscle, but also by increasing the excitability of the primary motor cortex more than in non-athletes.  相似文献   

2.
Gender differences in cortical excitability have been detected by using transcranial magnetic stimulation (TMS). The present study was carried out to compare the effects of high blood lactate levels, induced by performing a maximal exhausting exercise, on the excitability of the primary motor cortex in young male and female athletes. The study was carried out on 21 young males and 20 females from the Middle Distance Track Team of our university. Before the exercise, at the end, as well as 5 and 10 min after the conclusion, venous blood lactate and glucose were measured and excitability of the motor cortex was evaluated by using TMS. We observed a similar enhancement of excitability of primary motor cortex, concomitantly with an increase of blood lactate, in both young male and female athletes. However, the improvement was significantly higher (p < 0.05) in women (37.4% ± 3.97) than in men (42.0% ± 6.43), suggesting a greater sensitiveness of female cerebral cortex to blood lactate.  相似文献   

3.
The aim of this study was to elucidate the mechanism by which the disappearance of blood lactate following severe exercise is enhanced during active recovery in comparison with recovery at rest. Rates of decline of arterialised venous blood lactate concentrations in man after maximal one-leg exercise were compared during four different modes of recovery: passive (PR), exercise of the muscles involved in the initial exercise (SL), exercise of the corresponding muscles in the hitherto-inactive leg (OL), or exercise of one arm (RA). Recovery exercise workloads were each 40% of the onset of blood lactate accumulation (OBLA) for the limb used. In comparison with PR, SL and OL accelerated the fall in blood lactate to similar extents whereas RA was without effect. The first-order rate constant (min-1) for decline of arterialised venous blood lactate concentration after the intense exercise was 0.027 (0.003) in PR, 0.058 (0.025) in SL, 0.034 (0.002) in OL, and in RA was 0.028 (0.002) [mean (SEM), n = 6 subjects]. Preliminary studies had shown that RA in isolation elevated blood lactate whereas SL and OL did not. Thus, with appropriate workloads, exercise of either hitherto active or passive muscles enhanced blood lactate decline during recovery from intense exercise. This suggests that the effect resulted principally from the uptake and utilisation of lactate in the circulation by those exercising muscles rather than from increased transport of lactate to other sites of clearance by sustained high blood flow through the previously active muscles.  相似文献   

4.
In this study, we compared changes in corticomotor excitability under various task conditions engaging the index finger of each hand. Functional demands were varied, from simple execution to demanding sensory exploration. In a first experiment, we contrasted facilitation in the first dorsal interosseus (FDI) by monitoring changes in motor evoked potentials (MEPs) when participants (young adults, n = 18) performed either a simple button pressing (BP) task or a more demanding tactile exploration (TE) task (i.e., discrimination of raised letters). This experiment showed a large effect of task conditions (p < 0.01) on MEP amplitude but no effect of “Hand”, while latency measurements were unchanged. In fact, MEPs were on average 40% larger during TE (2410 ± 1358 µV) than during BP (1670 ± 1477 µV). The two tasks produced, however, different patterns of electromyographic (EMG) activity, which could have accounted for some of the differences observed. A second experimental session involved a subset of participants (10/18) tested in third task condition: finger movement (FM). The latter task consisted of scanning a smooth surface with the tip of the index finger to reproduce the movements seen with the TE task. The addition of this third condition task confirmed that MEP facilitation seen during TE reflected task-specific influences and not differences in background EMG activity. These results, altogether, provide further insights into the effect of task conditions on corticomotor excitability. Our findings, in particular, stress the importance of behavioural context and tactile exploration in leading to selective increase in corticomotor excitability during finger movements.  相似文献   

5.
Abstract

We aimed to investigate whether motor learning induces different excitability changes in the human motor cortex (M1) between two different muscle contraction states (before voluntary contraction [static] or during voluntary contraction [dynamic]). For the same, using motor evoked potentials (MEPs) obtained by transcranial magnetic stimulation (TMS), we compared excitability changes during these two states after pinch-grip motor skill learning. The participants performed a force output tracking task by pinch grip on a computer screen. TMS was applied prior to the pinch grip (static) and after initiation of voluntary contraction (dynamic). MEPs of the following muscles were recorded: first dorsal interosseous (FDI), thenar muscle (Thenar), flexor carpi radialis (FCR), and extensor carpi radialis (ECR) muscles. During both the states, motor skill training led to significant improvement of motor performance. During the static state, MEPs of the FDI muscle were significantly facilitated after motor learning; however, during the dynamic state, MEPs of the FDI, Thenar, and FCR muscles were significantly decreased. Based on the results of this study, we concluded that excitability changes in the human M1 are differentially influenced during different voluntary contraction states (static and dynamic) after motor learning.  相似文献   

6.
Six healthy male subjects exercised after an overnight fast for a fixed 3 min period at a workload equivalent to 100% of their maximal oxygen uptake ( ) on 3 separate occasions. The first test took place after subjects had consumed a mixed diet (43±3% carbohydrate (CHO), 41±5% fat and 16±3% protein) for 3 days, and was followed 2 h later by prolonged cycling to exhaustion at 77±3% to deplete muscle glycogen stores. Following this, subjects consumed a low CHO diet (4±1% CHO, 63±5% fat and 33±6% protein) for the remainder of the day and for the subsequent 2 days; on the morning of the next day a second high intensity test took place. Finally subjects followed a 3 day high CHO diet (73±7% CHO, 17±6% fat and 10±1% protein) before their last test. Acid-base status and selected metabolites were measured on arterialised-venous blood at rest prior to exercise and at intervals for 15 min following exercise. Prior to exercise, plasma pH and blood lactate concentration were higher (p<0.05) after the high CHO diet when compared with the low CHO diet. Pre-exercise plasma bicarbonate, blood PCO2 and blood base excess were all higher after the high (p<0.001,p<0.01,p<0.01 respectively) and normal (p<0.05,p<0.05,p<0.05 respectively) CHO diets when compared with the low CHO diet. During the post-exercise period there were no differences in plasma pH or blood base excess between the three experimental situations; plasma bicarbonate was higher (p<0.05) at 2 min post-exercise after the high CHO diet when compared with the low CHO diet; blood PCO2 was higher throughout the post-exercise period after the high CHO diet when compared with the low CHO diet and at 2 min post-exercise was higher after the normal CHO diet than after the low CHO diet (p<0.5). The post-exercise blood lactate concentration after the high CHO diet was at all times higher than the corresponding values recorded after the normal CHO diet and until 15 min post-exercise was significantly higher than the values recorded after the low CHO diet. The present experiment further substantiates the view that a pattern of dietary and exercise manipulation can significantly influence the acid-base status of the blood and by doing so may influence high intensity exercise performance.  相似文献   

7.
The aim of the present study was to investigate the neurophysiological triggers underlying muscle relaxation from the contracted state, and to examine the mechanisms involved in this process and their subsequent modification by neuromuscular electrical stimulation (NMES). Single-pulse transcranial magnetic stimulation (TMS) was used to produce motor-evoked potentials (MEPs) and short-interval intracortical inhibition (SICI) in 23 healthy participants, wherein motor cortex excitability was examined at the onset of voluntary muscle relaxation following a period of voluntary tonic muscle contraction. In addition, the effects of afferent input on motor cortex excitability, as produced by NMES during muscle contraction, were examined. In particular, two NMES intensities were used for analysis: 1.2 times the sensory threshold and 1.2 times the motor threshold (MT). Participants were directed to execute constant wrist extensions and to release muscle contraction in response to an auditory “GO” signal. MEPs were recorded from the flexor carpi radialis (FCR) and extensor carpi radialis (ECR) muscles, and TMS was applied at three different time intervals (30, 60, and 90?ms) after the “GO” signal. Motor cortex excitability was greater during voluntary ECR and FCR relaxation using high-intensity NMES, and relaxation time was decreased. Each parameter differed significantly between 30 and 60?ms. Moreover, in both muscles, SICI was larger in the presence than in the absence of NMES. Therefore, the present findings suggest that terminating a muscle contraction triggers transient neurophysiological mechanisms that facilitate the NMES-induced modulation of cortical motor excitability in the period prior to muscle relaxation. High-intensity NMES might facilitate motor cortical excitability as a function of increased inhibitory intracortical activity, and therefore serve as a transient trigger for the relaxation of prime mover muscles in a therapeutic context.  相似文献   

8.
The postexercise urine lactate concentration is a novel valid exercise biomarker, which has exhibited satisfactory reliability in the morning hours under controlled water intake. The aim of the present study was to investigate the diurnal variation of the postexercise urine lactate concentration and its reliability in the afternoon hours. Thirty-two healthy children (11 boys and 21 girls) and 23 adults (13 men and 10 women) participated in the study. All participants performed two identical sessions of eight 25 m bouts of maximal freestyle swimming executed every 2 min with passive recovery in between. These sessions were performed in the morning and afternoon and were separated by 3–4 days. Adults performed an additional afternoon session that was also separated by 3–4 days. All swimmers drank 500 mL of water before and another 500 mL after each test. Capillary blood and urine samples were collected before and after each test for lactate determination. Urine creatinine, urine density and body water content were also measured. The intraclass correlation coefficient was used as a reliability index between the morning and afternoon tests, as well as between the afternoon test and retest. Swimming performance and body water content exhibited excellent reliability in both children and adults. The postexercise blood lactate concentration did not show diurnal variation, showing a good reliability between the morning and afternoon tests, as well as high reliability between the afternoon test and retest. The postexercise urine density and lactate concentration were affected by time of day. However, when lactate was normalized to creatinine, it exhibited excellent reliability in children and good-to-high reliability in adults. The postexercise urine lactate concentration showed high reliability between the afternoon test and retest, independent of creatinine normalization. The postexercise blood and urine lactate concentrations were significantly correlated in all cases, attesting to the validity of urine lactate as an index of anaerobic metabolism. We conclude that urine lactate, after normalization to creatinine, could be used in training practice either in the morning or in the afternoon. Further research is needed to assess the applicability of this novel exercise biomarker.  相似文献   

9.
The effects of magnesium supplementation on blood parameters were studied during a period of 4 wk in adult tae-kwon-do athletes at rest and exhaustion. Thirty healthy subjects of ages ranging in age from 18 to 22 yr were included in the study. The subjects were separated into three groups, as follows: Group 1 consisted of subjects who did not train receiving 10 mg/kg/d magnesium. Group 2 included subjects equally supplemented with magnesium and exercising 90–120 min/d for 5 d/wk. Group 3 were subject to the same exercise regime but did not receive magnesium supplements. The leukocyte count (WBC) was significantly higher in groups 1 and 2 than in the subjects who did not receive any supplements (p < 0.05). There were no significant differences in the WBC of the two groups under magnesium supplementation. The erythrocyte, hemoglobin, and trombocyte levels were significantly increased in all groups (p < 0.05), but the hematocrit levels did not show any differences between the groups although they were increased after supplementation and exercise. These results suggest that magnesium supplementation positively influences the performance of training athletes by increasing erythrocyte and hemoglobin levels.  相似文献   

10.
The feeling of controlling events through one''s actions is fundamental to human experience, but its neural basis remains unclear. This ‘sense of agency’ (SoA) can be measured quantitatively as a temporal linkage between voluntary actions and their external effects. We investigated the brain areas underlying this aspect of action awareness by using theta-burst stimulation to locally and reversibly disrupt human brain function. Disruption of the pre-supplementary motor area (pre-SMA), a key structure for preparation and initiation of a voluntary action, was shown to reduce the temporal linkage between a voluntary key-press action and a subsequent electrocutaneous stimulus. In contrast, disruption of the sensorimotor cortex, which processes signals more directly related to action execution and sensory feedback, had no significant effect. Our results provide the first direct evidence of a pre-SMA contribution to SoA.  相似文献   

11.
For many years, it was believed that ventilation does not limit performance in healthy humans. Recently, however, it has been shown that inspiratory muscles can become fatigued during intense endurance exercise and decrease their exercise performance. Therefore, it is not surprising that respiratory endurance training can prolong intense constant-intensity cycling exercise. To investigate the effects of respiratory endurance training on blood lactate concentration and oxygen consumption (VO2) during exercise and their relationship to performance, 20 healthy, active subjects underwent 30 min of voluntary, isocapnic hyperpnoea 5 days a week, for 4 weeks. Respiratory endurance tests, as well as incremental and constant-intensity exercise tests on a cycle ergometer, were performed before and after the 4-week period. Respiratory endurance increased from 4.6 (SD 2.5) to 29.1 (SD 4.0) min (P < 0.001) and cycling endurance time was prolonged from 20.9 (SD 5.5) to 26.6 (SD 11.8) min (P < 0.01) after respiratory training. The VO2 did not change at any exercise intensity whereas blood lactate concentration was lower at the end of the incremental [10.4 (SD 2.1) vs 8.8 (SD 1.9) mmol x l(-1), P < 0.001] as well as at the end of the endurance exercise [10.4 (SD 3.6) vs 9.6 (SD 2.7) mmol x l(-1), P < 0.01] test after respiratory training. We speculate that the reduction in blood lactate concentration was most likely caused by an improved lactate uptake by the trained respiratory muscles. However, reduced exercise blood lactate concentrations per se are unlikely to explain the improved cycling performance after respiratory endurance training.  相似文献   

12.
Blood lactate production and recovery from anaerobic exercise were investigated in 19 trained (AG) and 6 untrained (CG) prepubescent boys. The exercises comprised 3 maximal test performances; 2 bicycle ergometer tests of different durations (15 s and 60 s), and running on a treadmill for 23.20 +/- 2.61 min to measure maximal oxygen uptake. Blood samples were taken from the fingertip to determine lactate concentrations and from the antecubital vein to determine serum testosterone. Muscle biopsies were obtained from vastus lateralis. Recovery was passive (seated) following the 60 s test but that following the treadmill run was initially active (10 min), and then passive. Peak blood lactate was highest following the 60 s test (AG, 13.1 +/- 2.6 mmol.1-1 and CG, 12.8 +/- 2.3 mmol.1-1). Following the 15 s test and the treadmill run, peak lactate values were 68.7 and 60.6% of the 60 s value respectively. Blood lactate production was greater (p less than 0.001) during the 15 s test (0.470 +/- 0.128 mmol.1-1.s-1) than during the 60 s test (0.184 +/- 0.042 mmol.1-1.s-1). Although blood lactate production was only nonsignificantly greater in AG, the amount of anaerobic work in the short tests was markedly greater (p less than 0.05-0.01) in AG than CG. Muscle fibre area (type II%) and serum testosterone were positively correlated (p less than 0.05) with blood lactate production in both short tests. Blood lactate elimination was greater (p less than 0.001) at the end of the active recovery phase than in the next (passive) phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The purpose of the study was to determine whether the perception of exertion is affected by alcohol during physical performance and whether altered self-rating of exertion is the result of an altered perception per se or of an altered physical capacity to perform work. Ten healthy men participated. Each subject was his own control and received an alcohol dose corresponding to 1 g.kg-1 body mass in 40% solution in the experimental session. The exercise test was performed on a cycle ergometer with an initial intensity of 50 W which was increased stepwise by 50 W at 4-min intervals up to near-maximal. The rating of perceived exertion (RPE) did not differ between alcohol and control sessions. Alcohol induced a significant increase in heart rate during exercise at 50 W (delta x = 8 beats.min-1) and at 100 W (delta x = 10 beats.min-1), while the change at higher intensities was insignificant. The systolic blood pressure and the blood lactate concentration were not significantly changed by alcohol. It is concluded that a moderate dose of alcohol does not alter RPE during physical exercise either per se or secondarily to an altered physical capacity to perform work.  相似文献   

14.
15.

Background

Corticospinal excitability of the primary motor cortex (M1) representing the hand muscle is depressed by bilateral lower limb muscle fatigue. The effects of fatiguing unilateral lower limb contraction on corticospinal excitability and transcallosal inhibition in the M1 hand areas remain unclear. The purpose of this study was to determine the effects of fatiguing unilateral plantar flexions on corticospinal excitability in the M1 hand areas and transcallosal inhibition originated from the M1 hand area contralateral to the fatigued ankle.

Methods

Ten healthy volunteers (26.2 ± 3.8 years) participated in the study. Using transcranial magnetic stimulation, we examined motor evoked potentials (MEPs) and interhemispheric inhibition (IHI) recorded from resting first dorsal interosseous (FDI) muscles before, immediately after, and 10 min after fatiguing unilateral lower limb muscle contraction, which was consisted of 40 unilateral maximal isometric plantar flexions intermittently with a 2-s contraction followed by 1 s of rest.

Results

We demonstrated no significant changes in MEPs in the FDI muscle ipsilateral to the fatigued ankle and decrease in IHI from the M1 hand area contralateral to the fatigued ankle to the ipsilateral M1 hand area after the fatiguing contraction. MEPs in the FDI muscle contralateral to the fatigued ankle were increased after the fatiguing contraction.

Conclusions

These results suggest that fatiguing unilateral lower limb muscle contraction differently influences corticospinal excitability of the contralateral M1 hand area and IHI from the contralateral M1 hand area to the ipsilateral M1 hand area. Although fatiguing unilateral lower limb muscle contraction increases corticospinal excitability of the ipsilateral M1 hand area, the increased corticospinal excitability is not associated with the decreased IHI.  相似文献   

16.
低氧预处理小鼠脑及血液中糖原与乳酸含量的变化   总被引:4,自引:1,他引:4  
Cui XY  Li L  An YY  Lu GW 《生理学报》2001,53(4):325-328
采用昆明小鼠为实验对象,将实验动物随机分为H4组(重复低氧4次,低氧预适应组)、H1组(只低氧1次,低氧对照组)和H0组(正常对照组,即不低氧组),分别测定全脑及不同脑区(端脑、间脑、中脑、脑桥、小脑和延髓)糖原、乳酸的含量,同时测定血液中乳酸的含量。结果:H4组全脑糖原含量显著高于H1及H0组,其中H4组端脑、间脑和脑桥内糖原含量显著高于H1组及H0组相应的脑区,H1组全脑糖原含量显著低于H0组,其中H4组端脑、间脑和脑桥内糖原含量显著高于H1组及H0组相应的脑区,H1组全脑糖原含量显著低于H0组,但各个脑区糖原含量的差别无显著意义。H4、H1组全脑乳酸含量无显著差异,但均显著高于H0组,而H4组血液中乳酸的含量则显著低于H1组及H0组。结果提示,在低氧预适应过程中,脑糖原增加与脑乳酸降低同时发生,脑有氧代谢参与低氧预适应或低氧耐受的形成。  相似文献   

17.
18.
Aim of study: To examine the resting motor threshold of the tongue in healthy adults and stroke survivors.

Methods: Thirty-five healthy adults were classified into three groups: Group 1 (19–38?years; n?=?11), Group 2 (50–64?years; n?=?12) and Group 3 (66–78?years; n?=?12). Six chronic stroke survivors (mean age =59?years, SD?=?9.1?years) were recruited (Group 4). The resting motor thresholds (RMTs) of the tongue were measured and compared (i) among the four groups and (ii) between stroke survivors and age-matched healthy adults.

Results: Group 3 showed significantly higher RMTs than Group 1 (p?=?.001) and 2 (p =?0.007). Group 4 showed significantly higher RMTs than Group 1 (p =?.003) and 2 (p?=?.001). The RMTs of Group 3 and 4 were not significantly different (p =?.385). The RMT was positively correlated with age (r?=?0.534; p =?.001). Group 4 showed significantly higher RMTs than the age-matched controls (U?= 2.5, p?=?.009, r?=?0.77).

Conclusions: The resting motor threshold of the tongue is significantly increased in adults aged above 65 and in stroke survivors when compared with healthy adults. The findings suggested that the cortical excitability of the tongue deteriorates in the elderly and the stroke population.  相似文献   

19.
Previous studies have reported respiratory, cardiac and muscle changes at rest in triathletes 24 h after completion of the event. To examine the effects of these changes on metabolic and cardioventilatory variables during exercise, eight male triathletes of mean age 21.1 (SD 2.5) years (range 17-26 years) performed an incremental cycle exercise test (IET) before (pre) and the day after (post) an official classic triathlon (1.5-km swimming, 40-km cycling and 10-km running). The IET was performed using an electromagnetic cycle ergometer. Ventilatory data were collected every minute using a breath-by-breath automated system and included minute ventilation (V(E)), oxygen uptake (VO2), carbon dioxide production (VCO2), respiratory exchange ratio, ventilatory equivalent for oxygen (V(E)/VO2) and for carbon dioxide (V(E)/VCO2), breathing frequency and tidal volume. Heart rate (HR) was monitored using an electrocardiogram. The oxygen pulse was calculated as VO2/HR. Arterialized blood was collected every 2 min throughout IET and the recovery period, and lactate concentration was measured using an enzymatic method. Maximal oxygen uptake (VO2max) was determined using conventional criteria. Ventilatory threshold (VT) was determined using the V-slope method formulated earlier. Cardioventilatory variables were studied during the test, at the point when the subject felt exhausted and during recovery. Results indicated no significant differences (P > 0.05) in VO2max [62.6 (SD 5.9) vs 64.6 (SD 4.8) ml x kg(-1) x min(-1)], VT [2368 (SD 258) vs 2477 (SD 352) ml x min(-1)] and time courses of VO2 between the pre- versus post-triathlon sessions. In contrast, the time courses of HR and blood lactate concentration reached significantly higher values (P < 0.05) in the pre-triathlon session. We concluded that these triathletes when tested 24 h after a classic triathlon displayed their pre-event aerobic exercise capacity, bud did not recover pretriathlon time courses in HR or blood lactate concentration.  相似文献   

20.
The aim of this research was to investigate the physiological responses and, in particular, the participation of lactic acid anaerobic metabolism in aerobic dance, which is claimed to be pure aerobic exercise. In contrast to previous studies, that have put subjects in very unfamiliar situations, the parameters were monitored in the familiar context of gymnasium, practice routine and habitual instructor. A group of 30 skilled fairly well-trained women performed their usual routine,␣a combination of the two styles: low (LI) and high impact (HI), and were continuously monitored for heart rate (HR) and every 8 min for blood lactate concentration ([La]b). Of the group, 15 were tested to determine their maximal aerobic power (O2max) using a cycleergometer. They were also monitored during the routine for oxygen uptake (O2) by a light telemetric apparatus. The oxygen pulses of the routine and of the corresponding exercise intensity in the incremental test were not statistically different. The mean values in the exercise session were: peak HR 92.8 (SD 7.8)% of the subject's maximal theoretical value, peak O2 99.5 (SD 12.4)% of O2max, maximal [La]b 6.1 (SD 1.7) mmol · l−l, and mean 4.8 (SD 1.3) mmol · l−l. Repeated measures ANOVA found statistically significant differences between the increasing [La]b values (P < 0.001). In particular, the difference between the [La]b values at the end of the mainly LI phase and those of the LI-HI combination phase, and the difference between the samples during the combination LI-HI phase were both statistically significant (both P= 0.002 and P= 0.002). The similar oxygen pulses confirmed the validity of the present experiment design and the reliability of HR monitoring in this activity. The HR, O2 and, above all, the increase of [La]b to quite high values, showing a non steady state, demonstrated the high metabolic demand made by this activity that involved lactic acid metabolism at a much higher level than expected. Accepted: 23 September 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号