首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The recent identification of cardiac progenitor cells (CPCs) provides a new paradigm for studying and treating heart disease.To realize the full potential of CPCs for therapeutic purposes,it is essenti...  相似文献   

2.
The biosynthesis of phosphatidylethanolamine was examined during differentiation of P19 teratocarcinoma cells into cardiac myocytes. P19 cells were induced to undergo differentiation into cardiac myocytes by the addition of dimethyl sulfoxide to the medium. Immunofluorescence labeling confirmed the expression of striated myosin 10 days postinduction of differentiation. The content of phosphatidylethanolamine increased significantly within the first 2 days of differentiation. [1,3-(3)H]Glycerol incorporation into phosphatidylethanolamine was increased 7.2-fold during differentiation, indicating an elevation in de novo synthesis from 1, 2-diacyl-sn-glycerol. The mechanism for the increase in phosphatidylethanolamine levels during cardiac cell differentiation was a 2.8-fold increase in the activity of ethanolaminephosphotransferase, the 1,2-diacyl-sn-glycerol utilizing reaction of the cytidine 5'-diphosphate-ethanolamine pathway of phosphatidylethanolamine biosynthesis. Incubation of P19 cells with the phosphatidylethanolamine biosynthesis inhibitor 8-(4-chlorophenylthio)-cAMP inhibited the differentiation-induced elevation in phosphatidylethanolamine levels but did not affect the expression of striated myosin. The results suggest that elevation in phosphatidylethanolamine is an early event of P19 cell differentiation into cardiac myocytes, but is not essential for differentiation to proceed.  相似文献   

3.
细胞移植是一种有希望的组织再生的治疗手段.多种类型的细胞已经用于动物心 肌损伤的修复中,包括胚胎干细胞、胚胎和新生动物的心肌细胞、骨骼肌成肌细胞、 骨髓干细胞、脂肪来源的干细胞、可诱导的多能干细胞等.但是,这些用于移植的细胞 存在成活率低、在心脏局部存留少、与宿主心肌细胞不能整合和免疫排斥等问题,这 些问题限制了它们的应用.心脏自身存在的干细胞因为没有其他来源细胞存在的种种 问题,因而成为备受关注的治疗心肌梗死的种子细胞.但是,心脏干/祖细胞也有自身 弊端,包括干细胞群的细胞生物学或遗传学标志没有统一,在心肌中数量极少,体外 扩增能力有限等,因而限制了心脏干/祖细胞的有效应用.如何能有效动员和促进心脏 干/祖细胞增殖,依赖于人们对心脏干/祖细胞增殖、分化、归巢的调控机制,包括心 脏干/祖细胞修复损伤心肌的分子机制的深入了解.本文将就近年来在心脏再生领域中 ,心脏干/祖细胞的研究新进展进行综述.  相似文献   

4.
Kinetochores are the chromosomal sites for spindle interaction and play a vital role for chromosome segregation. The composition of kinetochore proteins and their cellular roles are, however, poorly understood in higher eukaryotes. We identified a novel kinetochore protein family conserved from yeast to human that is essential for equal chromosome segregation. The human homologue hMis12 of yeast spMis12/scMtw1 retains conserved sequence features and locates at the kinetochore region indistinguishable from CENP-A, a centromeric histone variant. RNA interference (RNAi) analysis of HeLa cells shows that the reduced hMis12 results in misaligned metaphase chromosomes, lagging anaphase chromosomes, and interphase micronuclei without mitotic delay, while CENP-A is located at kinetochores. Further, the metaphase spindle length is abnormally extended. Spindle checkpoint protein hMad2 temporally localizes at kinetochores at early mitotic stages after RNAi. The RNAi deficiency of CENP-A leads to a similar mitotic phenotype, but the kinetochore signals of other kinetochore proteins, hMis6 and CENP-C, are greatly diminished. RNAi for hMis6, like that of a kinetochore kinesin CENP-E, induces mitotic arrest. Kinetochore localization of hMis12 is unaffected by CENP-A RNAi, demonstrating an independent pathway of CENP-A in human kinetochores.  相似文献   

5.
Cardiac size can be regulated by the balance in activity between cardiac growth factors and inhibiting factors, chalones. This study was undertaken to verify the role of the cardiac growth factor and its purification from hypertrophied hearts. For this propose the hypertrophied hearts of renovascular hypertensive rats were used. The purification was made by using an isoelectric focusing chromatography and the HPLC method. We examined the cardiac growth effect of the isolated fractions with cultured chicken embryonic cardiac myocytes. Simultaneously, the influence of these fractions on the cardiac cell cycle was examined by DNA analysis with the flow cytometric method. If the hearts were overloaded due to hypertension, the growth of the cardiac size could be induced by increased the level of five proteins with different molecular weight and with an isoelectric point of 8.3. The significant growth activities were observed at these five proteins compared to the absence of the fractions. For the appearance of these growth effect, it is necessary that the structure of the protein is there fundamentally as a form with a molecular weight of 27 k dalton. After addition of these isolated fractions, BrdU content is S and G2 phases by flow cytometry was increased. This change indicates that the cardiac myocytes are stimulated in form DNA synthesis.  相似文献   

6.
7.
Cardiac progenitor cells (CPCs) have the potential to differentiate into several cell lineages with the ability to restore in cardiac tissue. Multipotency and self-renewal activity are the crucial characteristics of CPCs. Also, CPCs have promising therapeutic roles in cardiac diseases such as valvular disease, thrombosis, atherosclerosis, congestive heart failure, and cardiac remodeling. Toll-like receptors (TLRs), as the main part of the innate immunity, have a key role in the development and differentiation of immune cells. Some reports are found regarding the effect of TLRs in the maturation of stem cells. This article tried to find the potential role of TLRs in the dynamics of CPCs. By showing possible crosstalk between the TLR signaling pathways and CPCs dynamics, we could achieve a better conception related to TLRs in the regeneration of cardiac tissue.  相似文献   

8.
Cell therapy has been intensely studied for over a decade as a potential treatment for ischaemic heart disease. While initial trials using skeletal myoblasts, bone marrow cells and peripheral blood stem cells showed promise in improving cardiac function, benefits were found to be short‐lived likely related to limited survival and engraftment of the delivered cells. The discovery of putative cardiac ‘progenitor’ cells as well as the creation of induced pluripotent stem cells has led to the delivery of cells potentially capable of electromechanical integration into existing tissue. An alternative strategy involving either direct reprogramming of endogenous cardiac fibroblasts or stimulation of resident cardiomyocytes to regenerate new myocytes can potentially overcome the limitations of exogenous cell delivery. Complimentary approaches utilizing combination cell therapy and bioengineering techniques may be necessary to provide the proper milieu for clinically significant regeneration. Clinical trials employing bone marrow cells, mesenchymal stem cells and cardiac progenitor cells have demonstrated safety of catheter based cell delivery, with suggestion of limited improvement in ventricular function and reduction in infarct size. Ongoing trials are investigating potential benefits to outcome such as morbidity and mortality. These and future trials will clarify the optimal cell types and delivery conditions for therapeutic effect.  相似文献   

9.
Ubiquitin mediated proteolysis is required for transition from one cell cycle phase to another. For instance, the mitosis inhibitor Wee1 is targeted for degradation during S phase and G2 to allow mitotic entry. Wee1 is an essential tyrosine kinase required for the G2/M transition and S-phase progression. Although several studies have concentrated on Wee1 regulation during mitosis, few have elucidated its degradation during interphase. Our prior studies have demonstrated that Wee1 is degraded via CK1δ dependent phosphorylation during the S and G2/M phases of the cell cycle. Here we demonstrate that GSK3β may work in concert with CK1δ to induce Wee1 destruction during interphase. We generated small molecules that specifically stabilized Wee1. We profiled these compounds against 296 kinases and found that they inhibit GSK3α and GSK3β, suggesting that Wee1 may be targeted for proteolysis by GSK3. Consistent with this notion, known GSK3 inhibitors stabilized Wee1 and GSK3β depletion reduced Wee1 turnover. Given Wee1's central role in cell cycle progression, we predicted that GSK3 inhibitors should limit cell proliferation. Indeed, we demonstrate that GSK3 inhibitors potently inhibited proliferation of the most abundant cell in the mammalian brain, the cerebellar granule cell progenitor (GCP). These studies identify a previously unappreciated role for GSK3β mediated regulation of Wee1 during the cell cycle and in neurogenesis. Furthermore, they suggest that pharmacological inhibition of Wee1 may be therapeutically attractive in some cancers where GSK-3β or Wee1 are dysregulated.  相似文献   

10.
Ubiquitin mediated proteolysis is required for transition from one cell cycle phase to another. For instance, the mitosis inhibitor Wee1 is targeted for degradation during S phase and G2 to allow mitotic entry. Wee1 is an essential tyrosine kinase required for the G2/M transition and S-phase progression. Although several studies have concentrated on Wee1 regulation during mitosis, few have elucidated its degradation during interphase. Our prior studies have demonstrated that Wee1 is degraded via CK1δ dependent phosphorylation during the S and G2/M phases of the cell cycle. Here we demonstrate that GSK3β may work in concert with CK1δ to induce Wee1 destruction during interphase. We generated small molecules that specifically stabilized Wee1. We profiled these compounds against 296 kinases and found that they inhibit GSK3α and GSK3β, suggesting that Wee1 may be targeted for proteolysis by GSK3. Consistent with this notion, known GSK3 inhibitors stabilized Wee1 and GSK3β depletion reduced Wee1 turnover. Given Wee1''s central role in cell cycle progression, we predicted that GSK3 inhibitors should limit cell proliferation. Indeed, we demonstrate that GSK3 inhibitors potently inhibited proliferation of the most abundant cell in the mammalian brain, the cerebellar granule cell progenitor (GCP). These studies identify a previously unappreciated role for GSK3β mediated regulation of Wee1 during the cell cycle and in neurogenesis. Furthermore, they suggest that pharmacological inhibition of Wee1 may be therapeutically attractive in some cancers where GSK-3β or Wee1 are dysregulated.  相似文献   

11.
Das S  Basu A 《Journal of neurochemistry》2008,106(4):1624-1636
Japanese encephalitis virus (JEV), a common cause of encephalitis in humans, especially in children, leads to substantial neuronal injury. The survivors of JEV infection have severe cognitive impairment, motor and behavioral disorders. We hypothesize that depletion of neural progenitor cells (NPCs) by the virus culminates in neurological sequelae in survivors of Japanese encephalitis (JE). We utilized both in vivo model of JEV infection and in vitro neurosphere cultures to study progressive JEV infection. Cellular infection and cell death was determined by flow cytometry. BrdU administration in animals and in neurospheres was used to determine the proliferative ability of NPCs. JEV leads to massive loss of actively proliferating NPC population from the subventricular zone (SVZ). The ability of JEV infected subventricular zone cells to form neurospheres is severely compromised. This can be attributed to JEV infection in NPCs, which however do not result in robust death of the resilient NPC cells. Instead, JEV suppresses the cycling ability of these cells, preventing their proliferation. JEV primarily targets at a critical postnatal age and severely diminishes the NPC pool in SVZ, thus impairing the process of recovery after the insult. This arrested growth and proliferation of NPCs might have an effect on the neurological consequences in JE survivors.  相似文献   

12.
Centromeric loci of chromosomes are defined by nucleosomes containing the histone H3 variant CENP-A, which bind their DNA termini more permissively than their canonical counterpart, a feature that is critical for the mitotic fidelity. A recent cryo-EM study demonstrated that the DNA termini of CENP-A nucleosomes, reconstituted with the Widom 601 DNA sequence, are asymmetrically flexible, meaning one terminus is more clearly resolved than the other. However, an earlier work claimed that both ends could be resolved in the presence of two stabilizing single chain variable fragment (scFv) antibodies per nucleosome, and thus are likely permanently bound to the histone octamer. This suggests that the binding of scFv antibodies to the histone octamer surface would be associated with CENP-A nucleosome conformational changes, including stable binding of the DNA termini. Here, we present computational evidence that allows to explain at atomistic level the structural rearrangements of CENP-A nucleosomes resulting from the antibody binding. The antibodies, while they only bind the octamer façades, are capable of altering the dynamics of the nucleosomal core, and indirectly also the surrounding DNA. This effect has more drastic implications for the structure and the dynamics of the CENP-A nucleosome in comparison to its canonical counterpart. Furthermore, we find evidence that the antibodies bind the left and the right octamer façades at different affinities, another manifestation of the DNA sequence. We speculate that the cells could use induction of similar allosteric effects to control centromere function.  相似文献   

13.
Irisin, a newly identified hormone and cardiokine, is critical for modulating body metabolism. New evidence indicates that irisin protects the heart against myocardial ischemic injury. However, whether irisin enhances cardiac progenitor cell (CPC)-induced cardiac repair remains unknown. This study examines the effect of irisin on CPC-induced cardiac repair when these cells are introduced into the infarcted myocardium. Nkx2.5+ CPC stable cells were isolated from mouse embryonic stem cells. Nkx2.5 + CPCs (0.5 × 10 6) were reintroduced into the infarcted myocardium using PEGlylated fibrin delivery. The mouse myocardial infarction model was created by permanent ligation of the left anterior descending (LAD) artery. Nkx2.5 + CPCs were pretreated with irisin at a concentration of 5 ng/ml in vitro for 24 hr before transplantation. Myocardial functions were evaluated by echocardiographic measurement. Eight weeks after engraftment, Nkx2.5 + CPCs improved ventricular function as evident by an increase in ejection fraction and fractional shortening. These findings are concomitant with the suppression of cardiac hypertrophy and attenuation of myocardial interstitial fibrosis. Transplantation of Nkx2.5 + CPCs promoted cardiac regeneration and neovascularization, which were increased with the pretreatment of Nkx2.5 + CPCs with irisin. Furthermore, irisin treatment promoted myocyte proliferation as indicated by proliferative markers Ki67 and phosphorylated histone 3 and decreased apoptosis. Additionally, irisin resulted in a marked reduction of histone deacetylase 4 and increased p38 acetylation in cultured CPCs. These results indicate that irisin promoted Nkx2.5 + CPC-induced cardiac regeneration and functional improvement and that irisin serves as a novel therapeutic approach for stem cells in cardiac repair.  相似文献   

14.
The centromere plays an essential role in accurate chromosome segregation, and defects in its function lead to aneuploidy and thus cancer. The centromere-specific histone H3 variant CENP-A is proposed to be the epigenetic mark of the centromere, as active centromeres require CENP-A–containing nucleosomes to direct the recruitment of multiple kinetochore proteins. CENP-A K124 ubiquitylation, mediated by CUL4A-RBX1-COPS8 E3 ligase activity, is required for CENP-A deposition at the centromere. However, the mechanism that controls the E3 ligase activity of the CUL4A-RBX1-COPS8 complex remains obscure. We have discovered that the SGT1-HSP90 complex is required for recognition of CENP-A by COPS8. Thus, the SGT1-HSP90 complex contributes to the E3 ligase activity of the CUL4A complex that is necessary for CENP-A ubiquitylation and CENP-A deposition at the centromere.  相似文献   

15.
Resident cardiac progenitor cells (CPCs) have gained attention in cardiac regenerative medicine primarily due to their paracrine activity. In our current study we determined the role of pathological conditions such as heart failure on the autocrine-paracrine action of stem cell antigen-1 (Sca-1) expressing CPC. This comparative secretome profiling of Sca-1+ cells derived from transgenic heart failure (αMHC–cyclin-T1/Gαq overexpression [Cyc] cells) versus healthy (wild-type [Wt] cells) mice, achieved via mass-spectrometric quantification, enabled the identification of over 700 proteins. Our results demonstrate that the heart failure milieu caused a 2-fold enrichment of extracellular matrix proteins (ECM) like biglycan, versican, collagen XII, and angiogenic factors like heparan sulfate proteoglycan 2, plasminogen activator inhibitor 1 in the secretome. We further elucidated the direct influence of the secretome on the functional behavior of Sca-1 + cells via in vitro tube forming assay. Secreted factors present in the diseased milieu induced tube formation in Cyc cells (1.7-fold; p < 0.01) when compared with Wt cells after 24 hr of exposure. The presence of conditioned media moderately increased the proliferation of Cyc cells but had a more pronounced effect on Wt cells. Overall, these findings revealed global modifications in the secretory activity of adult Sca-1 + cells in the heart failure milieu. The secretion of ECM proteins and angiogenic factors, which are crucial for cardiac remodeling and recovery, was notably enriched in the supernatant of Cyc cells. Thus, during heart failure the microenvironment of Sca-1 + cells might favor angiogenesis and proliferation suggesting their potential to recover the damaged heart.  相似文献   

16.
目的 探讨黄芪甲苷对心肌干细胞分化的促进作用。方法 采用磁珠分选法,分离小鼠Sca-1+心肌干细胞,通过免疫组化方法观察黄芪甲甙处理后心肌细胞表面标志蛋白desmin、α-sarcomeric?actin和C-TnT表达的变化,以判断是否对心肌干细胞分化有促进作用。结果 250 mg/L的黄芪甲甙诱导4周后免疫组化染色显示心肌干细胞明显表达desmin、α-sarcomeric actin和C-TnT。而未诱导的细胞desmin、α-sarcomeric actin、C-TnT 均为阴性。因此黄芪甲甙可以促进小鼠Sca-1+心肌干细胞分化为心肌样细胞,这些细胞表达心肌特异性的蛋白。结论 黄芪甲苷对心肌干细胞分化的促进作用表明其在心肌损伤性疾病的康复中有潜在的治疗价值,值得进一步研究。  相似文献   

17.
Endothelial progenitor cells (EPCs) have been reported to replace the damaged endothelial cells to repair the injured or dead endothelium. However, EPC senescence might lead to the failure in EPC function. Thus, developing an in-depth understanding of the mechanism of EPC senescence might provide novel strategies for related vascular disorders’ treatments. Herein, nicotinamide phosphoribosyltransferase (NAMPT) overexpression could increase cell proliferation and suppress cell senescence in EPCs. miR-223 directly bound to the 3′-untranslated region of NAMPT to inhibit its expression, therefore modulating EPC proliferation and senescence through NAMPT and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling. Long noncoding RNA (lncRNA) GAS5 sponges miR-223, consequently downregulating miR-223 expression. GAS5 knockdown inhibited EPC proliferation and promoted senescence. GAS5 might serve as a competing endogenous RNA for miR-223 to counteract miR-223-mediated suppression on NAMPT, thus regulating EPC proliferation and senescence via the PI3K/AKT signaling pathway. In summary, our findings provide a solid experimental basis for understanding the role and mechanism of lncRNA GAS5/miR-223/NAMPT axis in EPC proliferation and senescence.  相似文献   

18.
19.
20.
The latest discoveries and advanced knowledge in the fields of stem cell biology and developmental cardiology hold great promise for cardiac regenerative medicine, enabling researchers to design novel therapeutic tools and approaches to regenerate cardiac muscle for diseased hearts. However, progress in this arena has been hampered by a lack of reproducible and convincing evidence, which at best has yielded modest outcomes and is still far from clinical practice. To address current controversies and move cardiac regenerative therapeutics forward, it is crucial to gain a deeper understanding of the key cellular and molecular programs involved in human cardiogenesis and cardiac regeneration. In this review, we consider the fundamental principles that govern the “programming” and “reprogramming” of a human heart cell and discuss updated therapeutic strategies to regenerate a damaged heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号