首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A possibility of functional reorganization of initial sensorimotor connections of the forepaw has been shown on seven cats. The main initial relationships between the afferent tactile input and motor output for the ulnar joint of the cat forepaw are as follows: tactile stimulation of the dorsal surface of the paw produces a flexion in the ulnar joint ("placing reaction"), and that of the ventral surface, an extension of the paw in the ulnar joint ("magnetic reflex"); simultaneous tactile stimulation of the ventral surface of the paw blocks the "placing reaction" evoked by a touch of the dorsal side. Extinction was produced of the above unconditioned connections and elaboration of a new "cross" connection consisting in that tactile stimulation of the ventral side of the paw resulted in flexion in the ulnar joint.  相似文献   

2.
We compared whisking movement patterns during acquisition of tactile detection and object discrimination under conditions in which (a) head movements are excluded and (b) exposure to tactile discriminanda is confined to the large, moveable vibrissae (macrovibrissae). We used optoelectronic instrumentation to track the movements of an individual whisker with high spatio-temporal resolution and a testing paradigm, which allowed us to dissociate performance on an "indicator" response (lever pressing) from the rat's "observing" responses (discriminative whisking). We analyzed the relation between discrimination performance and whisking movement patterns in order to clarify the process by which the indicator response comes under the stimulus control of information acquired by the rat's whisking behavior. Whisking patterns over the course of task acquisition differed with task demands. Acquisition of the Detection task was correlated with modulation of only one whisking movement parameter-total number of whisks emitted, and more whisking was seen on trials in which the discriminandum was absent. Discrimination between a sphere and cube differing in size and texture was correlated with a reduction in whisk duration and protraction amplitude and with a shift towards higher whisking frequencies. Our findings confirm previous reports that acquisition of tactile discriminations involves modulation by the animal of both the amount and the type of whisking. In contrast with a previous report (Brecht et al., 1997), they indicate that rats can solve tactile object detection and discrimination tasks (a) using only the large, motile mystacial vibrissae (macrovibrissae) and (b) without engaging in head movements. We conclude that the functional contribution of the macrovibrissae will vary with the nature of the task and the conditions of testing.  相似文献   

3.
We compared whisking movement patterns during acquisition of tactile detection and object discrimination under conditions in which (a) head movements are excluded and (b) exposure to tactile discriminanda is confined to the large, moveable vibrissae (macrovibrissae). We used optoelectronic instrumentation to track the movements of an individual whisker with high spatio-temporal resolution and a testing paradigm, which allowed us to dissociate performance on an “indicator” response (lever pressing) from the rat's “observing” responses (discriminative whisking). We analyzed the relation between discrimination performance and whisking movement patterns in order to clarify the process by which the indicator response comes under the stimulus control of information acquired by the rat's whisking behavior. Whisking patterns over the course of task acquisition differed with task demands. Acquisition of the Detection task was correlated with modulation of only one whisking movement parameter - total number of whisks emitted, and more whisking was seen on trials in which the discriminandum was absent. Discrimination between a sphere and cube differing in size and texture was correlated with a reduction in whisk duration and protraction amplitude and with a shift towards higher whisking frequencies. Our findings confirm previous reports that acquisition of tactile discriminations involves modulation by the animal of both the amount and the type of whisking. In contrast with a previous report (Brecht et al., 1997), they indicate that rats can solve tactile object detection and discrimination tasks (a) using only the large, motile mystacial vibrissae (macrovibrissae) and (b) without engaging in head movements.We conclude that the functional contribution of the macrovibrissae will vary with the nature of the task and the conditions of testing.  相似文献   

4.
Monotremes, perhaps more than any other order of mammals, display an enormous behavioural reliance upon the tactile senses. In the platypus, Ornithorhynchus anatinus, this is manifest most strikingly in the special importance of the bill as a peripheral sensory organ, an importance confirmed by electrophysiological mapping that reveals a vast area of the cerebral cortex allocated to the processing of tactile inputs from the bill. Although behavioural evidence in the echidna, Tachyglossus aculeatus, suggests a similar prominence for tactile inputs from the snout, there is also a great reliance upon the distal limbs for digging and burrowing activity, pointing to the importance of tactile information from these regions for the echidna. In recent studies, we have investigated the peripheral tactile neural mechanisms in the forepaw of the echidna to establish the extent of correspondence or divergence that has emerged over the widely different evolutionary paths taken by monotreme and placental mammals. Electrophysiological recordings were made from single tactile sensory nerve fibres isolated in fine strands of the median or ulnar nerves of the forearm. Controlled tactile stimuli applied to the forepaw glabrous skin permitted an initial classification of tactile sensory fibres into two broad divisions, according to their responses to static skin displacement. One displayed slowly adapting (SA) response properties, while the other showed a selective sensitivity to the dynamic components of the skin displacement. These purely dynamically-sensitive tactile fibres could be subdivided according to vibrotactile sensitivity and receptive field characteristics into a rapidly adapting (RA) class, sensitive to low frequency (相似文献   

5.
Honeybees learn and discriminate excellently between different surface structures and different forms of objects, which they scan with their antennae. The sensory plate on the antennal tip plays a key role in the perception of mechanosensory and gustatory information. It is densely covered with small tactile hairs and carries a few large taste hairs. Both types of sensilla contain a mechanoreceptor, which is involved in the antennal scanning of an object. Our experiments test the roles of the mechanoreceptors on the antennal tip in tactile antennal learning and discrimination. Joints between head capsule and scapus and between scapus and pedicellus enable the bee to perform three-dimensional movements when they scan an object. The role of these joints in tactile antennal learning and discrimination is studied in separate experiments. The mechanoreceptors on the antennal tip were decisive for surface discrimination, but not for tactile acquisition or discrimination of shapes. When the scapus–pedicellus joint or the headcapsule–scapus joint was fixed on both antennae, tactile learning was still apparent but surface discrimination was abolished. Fixing both scapi to the head capsule reduced tactile acquisition.  相似文献   

6.
Abstract

The neural substrates of tactile roughness perception have been investigated by many neuroimaging studies, while relatively little effort has been devoted to the investigation of neural representations of visually perceived roughness. In this human fMRI study, we looked for neural activity patterns that could be attributed to five different roughness intensity levels when the stimuli were perceived visually, i.e., in absence of any tactile sensation. During functional image acquisition, participants viewed video clips displaying a right index fingertip actively exploring the sandpapers that had been used for the behavioural experiment. A whole brain multivariate pattern analysis found four brain regions in which visual roughness intensities could be decoded: the bilateral posterior parietal cortex (PPC), the primary somatosensory cortex (S1) extending to the primary motor cortex (M1) in the right hemisphere, and the inferior occipital gyrus (IOG). In a follow-up analysis, we tested for correlations between the decoding accuracies and the tactile roughness discriminability obtained from a preceding behavioural experiment. We could not find any correlation between both although, during scanning, participants were asked to recall the tactilely perceived roughness of the sandpapers. We presume that a better paradigm is needed to reveal any potential visuo-tactile convergence. However, the present study identified brain regions that may subserve the discrimination of different intensities of visual roughness. This finding may contribute to elucidate the neural mechanisms related to the visual roughness perception in the human brain.  相似文献   

7.

Background

The question of how the brain encodes letter position in written words has attracted increasing attention in recent years. A number of models have recently been proposed to accommodate the fact that transposed-letter stimuli like jugde or caniso are perceptually very close to their base words.

Methodology

Here we examined how letter position coding is attained in the tactile modality via Braille reading. The idea is that Braille word recognition may provide more serial processing than the visual modality, and this may produce differences in the input coding schemes employed to encode letters in written words. To that end, we conducted a lexical decision experiment with adult Braille readers in which the pseudowords were created by transposing/replacing two letters.

Principal Findings

We found a word-frequency effect for words. In addition, unlike parallel experiments in the visual modality, we failed to find any clear signs of transposed-letter confusability effects. This dissociation highlights the differences between modalities.

Conclusions

The present data argue against models of letter position coding that assume that transposed-letter effects (in the visual modality) occur at a relatively late, abstract locus.  相似文献   

8.
In the honeybee, the conditioning of the proboscis extension response using tactile antennal stimulations is well suited for studying the side-specificity of learning including the possible bilateral transfer of memory traces in the brain, and the role of inhibitory networks. A tactile stimulus was presented to one antenna in association with a sucrose reward to the proboscis. The other antenna was either not stimulated (A+/0 training), stimulated with a non-reinforced tactile stimulus B (A+/B− training) or stimulated with B reinforced with sucrose to the proboscis (A+/B+ training). Memory tests performed 3 and 24 h after training showed in all situations that a tactile stimulus learnt on one side was only retrieved ipsilaterally, indicating no bilateral transfer of information. In all these groups, we investigated the effect of the phenylpyrazole insecticide fipronil by applying a sublethal dose (0.5 ng/bee) on the thorax 15 min before training. This treatment decreased acquisition success and the subsequent memory performances were lowered but the distribution of responses to the tactile stimuli between sides was not affected. These results underline the role of the inhibitory networks targeted by fipronil on tactile learning and memory processes.  相似文献   

9.
Previous studies investigated the effects of crossmodal spatial attention by comparing the responses to validly versus invalidly cued target stimuli. Dynamics of cortical rhythms in the time interval between cue and target might contribute to cue effects on performance. Here, we studied the influence of spatial attention on ongoing oscillatory brain activity in the interval between cue and target onset. In a first experiment, subjects underwent periods of tactile stimulation (cue) followed by visual stimulation (target) in a spatial cueing task as well as tactile stimulation as a control. In a second experiment, cue validity was modified to be 50%, 75%, or else 25%, to separate effects of exogenous shifts of attention caused by tactile stimuli from that of endogenous shifts. Tactile stimuli produced: 1) a stronger lateralization of the sensorimotor beta-rhythm rebound (15-22 Hz) after tactile stimuli serving as cues versus not serving as cues; 2) a suppression of the occipital alpha-rhythm (7-13 Hz) appearing only in the cueing task (this suppression was stronger contralateral to the endogenously attended side and was predictive of behavioral success); 3) an increase of prefrontal gamma-activity (25-35 Hz) specifically in the cueing task. We measured cue-related modulations of cortical rhythms which may accompany crossmodal spatial attention, expectation or decision, and therefore contribute to cue validity effects. The clearly lateralized alpha suppression after tactile cues in our data indicates its dependence on endogenous rather than exogenous shifts of visuo-spatial attention following a cue independent of its modality.  相似文献   

10.
Studies of the visual system suggest that, at an early stage of form processing, a stimulus is represented as a set of contours and that a critical feature of these local contours is their orientation. Here, we characterize the ability of human observers to identify or discriminate the orientation of bars and edges presented to the distal fingerpad. The experiments were performed using a 400-probe stimulator that allowed us to flexibly deliver stimuli across a wide range of conditions. Orientation thresholds, approximately 20 degrees on average, varied only slightly across modes of stimulus presentation (scanned or indented), stimulus amplitudes, scanning speeds, and different stimulus types (bars or edges). The tactile orientation acuity was found to be poorer than its visual counterpart for stimuli of similar aspect ratio, contrast, and size. This result stands in contrast to the equivalent spatial acuity of the two systems (at the limit set by peripheral innervation density) and to the results of studies of tactile and visual letter recognition, which show that the two modalities yield comparable performance when stimuli are scaled appropriately.  相似文献   

11.
In the so-called rubber hand illusion, synchronous visuotactile stimulation of a visible rubber hand together with one''s own hidden hand elicits ownership experiences for the artificial limb. Recently, advanced virtual reality setups were developed to induce a virtual hand illusion (VHI). Here, we present functional imaging data from a sample of 25 healthy participants using a new device to induce the VHI in the environment of a magnetic resonance imaging (MRI) system. In order to evaluate the neuronal robustness of the illusion, we varied the degree of synchrony between visual and tactile events in five steps: in two conditions, the tactile stimulation was applied prior to visual stimulation (asynchrony of −300 ms or −600 ms), whereas in another two conditions, the tactile stimulation was applied after visual stimulation (asynchrony of +300 ms or +600 ms). In the fifth condition, tactile and visual stimulation was applied synchronously. On a subjective level, the VHI was successfully induced by synchronous visuotactile stimulation. Asynchronies between visual and tactile input of ±300 ms did not significantly diminish the vividness of illusion, whereas asynchronies of ±600 ms did. The temporal order of visual and tactile stimulation had no effect on VHI vividness. Conjunction analyses of functional MRI data across all conditions revealed significant activation in bilateral ventral premotor cortex (PMv). Further characteristic activation patterns included bilateral activity in the motion-sensitive medial superior temporal area as well as in the bilateral Rolandic operculum, suggesting their involvement in the processing of bodily awareness through the integration of visual and tactile events. A comparison of the VHI-inducing conditions with asynchronous control conditions of ±600 ms yielded significant PMv activity only contralateral to the stimulation site. These results underline the temporal limits of the induction of limb ownership related to multisensory body-related input.  相似文献   

12.
Administration of cocaine increases locomotor activity by enhancing dopamine transmission. To explore the peripheral mechanisms underlying acupuncture treatment for drug addiction, we developed a novel mechanical acupuncture instrument (MAI) for objective mechanical stimulation. The aim of this study was to evaluate whether acupuncture inhibition of cocaine-induced locomotor activity is mediated through specific peripheral nerves, the afferents from superficial or deep tissues, or specific groups of nerve fibers. Mechanical stimulation of acupuncture point HT7 with MAI suppressed cocaine-induced locomotor activity in a stimulus time-dependent manner, which was blocked by severing the ulnar nerve or by local anesthesia. Suppression of cocaine-induced locomotor activity was elicited after HT7 stimulation at frequencies of either 50 (for Meissner corpuscles) or 200 (for Pacinian corpuscles) Hz and was not affected by block of C/Aδ-fibers in the ulnar nerve with resiniferatoxin, nor generated by direct stimulation of C/Aδ-fiber afferents with capsaicin. These findings suggest that HT7 inhibition of cocaine-induced locomotor activity is mediated by A-fiber activation of ulnar nerve that originates in superficial and deep tissue.  相似文献   

13.
F K Fuss 《Acta anatomica》1989,134(3):199-205
In 158 brachial plexuses the origin of the fibers of the ulnar nerve-whether only from the medial or also from the lateral fascicle-was investigated. A lateral root was found in 56%. This lateral root may either be accompanied by fibers of the median nerve (type 1) or may run separately (type 2). Where this root crosses the medial root of the median nerve, either a small minority of fibers of the latter nerve may run behind the ulnar fibers (type a), or all median fibers are in front of them (type b). Considering the relation 56:44% between ulnar nerves with and without a lateral root both possibilities have to be considered as normal variations, none as a variety. In analogy to the term 'median loop' the term 'ulnaris loop' is suggested for specimens with a lateral root.  相似文献   

14.
Previous work has demonstrated that upcoming saccades influence visual and auditory performance even for stimuli presented before the saccade is executed. These studies suggest a close relationship between saccade generation and visual/auditory attention. Furthermore, they provide support for Rizzolatti et al.'s premotor model of attention, which suggests that the same circuits involved in motor programming are also responsible for shifts in covert orienting (shifting attention without moving the eyes or changing posture). In a series of experiments, we demonstrate that saccade programming also affects tactile perception. Participants made speeded saccades to the left and right side as well as tactile discriminations of up versus down. The first experiment demonstrates that participants were reliably faster at responding to tactile stimuli near the location of upcoming saccades. In our second experiment, we had the subjects cross their hands and demonstrated that the effect occurs in visual space (rather than the early representations of touch). In our third experiment, the tactile events usually occurred on the opposite side of upcoming eye movement. We found that the benefit at the saccade target location vanished, suggesting that this shift is not obligatory but that it may be vetoed on the basis of expectation.  相似文献   

15.
Ulnar and peroneal motor nerve conduction volocities (MNCVs) were measured in 47 children in a dialysis-transplantation program. Mean peroneal MNCV was significantly decreased from normal in children with mild renal failure (serum creatinine concentration, 1.5 to 2.9 mg/dl), whereas ulnar MNCV was significantly decreased only when the serum creatinine value was at least 9 mg/dl. Both ulnar and peroneal MNCVs remained unchanged during long-term hemodialysis or peritoneal dialysis; however, after individual dialyses ulnar MNCV increased. After renal transplantation ulnar MNCV returned to normal within a year and peroneal MNCV within 3 years. Before dialysis was required and during long-term dialysis most plasma magnesium values were elevated; ionized calcium activity was decreased in about 50% of determinations. After transplantation and the concentration of divalent cations rapidly returned to normal. These children differed from adults studied in that (a) there was no correlation between severity of renal failure and MNCV, (b) long-term dialysis did not improve MNCV and (c) peroneal velocities did not recover for 3 years after transplantation.  相似文献   

16.
In this article, we investigated the effects of variations at encoding and retrieval on recollection. We argue that recollection is more likely to be affected by the processing that information undergoes at encoding than at retrieval. To date, manipulations shown to affect recollection were typically carried out at encoding. Therefore, an open question is whether these same manipulations would also affect recollection when carried out at retrieval, or whether there is an inherent connection between their effects on recollection and the encoding stage. We therefore manipulated, at either encoding or retrieval, fluency of processing (Experiment 1)—typically found not to affect recollection—and the amount of attentional resources available for processing (Experiments 2 and 3)—typically reported to affect recollection. We found that regardless of the type of manipulation, recollection was affected more by manipulations carried out at encoding and was essentially unaffected when these manipulations were carried out at retrieval. These findings suggest an inherent dependency between recollection-based retrieval and the encoding stage. It seems that because recollection is a contextual-based retrieval process, it is determined by the processing information undergoes at encoding—at the time when context is bound with the items—but not at retrieval—when context is only recovered.  相似文献   

17.
The role of Cholecystokinin (CCK), a gut hormone and neuropeptide, in early learning was examined. Pairing a novel odor (presented away from the nest) with exogenously administered CCK (0.25 & 0.5 microg/kg IP) has been shown to produce a conditioned-odor preference in infant rats (Weller, A.; Blass, E.M. Behav. Neurosci. 104:199-206; 1990). This suggests that CCK can act as a positive unconditioned stimulus (UCS). In the present study the possibility that CCK mediates learning was examined in 12-day-old rats, using rewards that represent aspects of the dam and the nest. In Experiments 1 and 2, pups received the selective CCK1 receptor antagonist devazepide (600 microg/kg), the selective CCK2 receptor antagonist L365,260 (600 microg/kg), or vehicle. In a series of training trials, choosing a particular floor texture was rewarded by 20 sec. on a rug texture (experiment 1) or with maternal (feces) odor (experiment 2). In experiment 3, after administering devazepide (0, 600, or 1000 microg/kg) a novel odor was paired once with reunion of the pup with its dam. The dependent measure in all studies was the pup's relative preference toward the (tactile or olfactory) conditioned stimulus (CS), determined in preference tests. Conditioned preferences were evident in all experiments. The CCK receptor antagonists did not increase conditioned preference levels. L365, 260 (experiment 2) and devazepide (experiment 1) clearly blocked the appearance of the conditioned effect in one of the experiments. In addition, devazepide treatment eliminated the conditioned effect in the two other experiments, by increasing preference levels in the control groups. In summary, the results suggest that endogenous CCK mediates some aspects of the infant's acquisition of new associations. The role of the two receptor-subtypes appears to be different, depending on the context and the nature of the rewarding stimulus.  相似文献   

18.
Human perception of touch is mediated by inputs from multiple channels. Classical theories postulate independent contributions of each channel to each tactile feature, with little or no interaction between channels. In contrast to this view, we show that inputs from two sub-modalities of mechanical input channels interact to determine tactile perception. The flutter-range vibration channel was activated anomalously using hydroxy-α-sanshool, a bioactive compound of Szechuan pepper, which chemically induces vibration-like tingling sensations. We tested whether this tingling sensation on the lips was modulated by sustained mechanical pressure. Across four experiments, we show that sustained touch inhibits sanshool tingling sensations in a location-specific, pressure-level and time-dependent manner. Additional experiments ruled out the mediation of this interaction by nociceptive or affective (C-tactile) channels. These results reveal novel inhibitory influence from steady pressure onto flutter-range tactile perceptual channels, consistent with early-stage interactions between mechanoreceptor inputs within the somatosensory pathway.  相似文献   

19.
Emotional events are usually better remembered than neutral ones. This effect is mediated in part by a modulation of the hippocampus by the amygdala. Sleep plays a role in the consolidation of declarative memory. We examined the impact of sleep and lack of sleep on the consolidation of emotional (negative and positive) memories at the macroscopic systems level. Using functional MRI (fMRI), we compared the neural correlates of successful recollection by humans of emotional and neutral stimuli, 72 h after encoding, with or without total sleep deprivation during the first post-encoding night. In contrast to recollection of neutral and positive stimuli, which was deteriorated by sleep deprivation, similar recollection levels were achieved for negative stimuli in both groups. Successful recollection of emotional stimuli elicited larger responses in the hippocampus and various cortical areas, including the medial prefrontal cortex, in the sleep group than in the sleep deprived group. This effect was consistent across subjects for negative items but depended linearly on individual memory performance for positive items. In addition, the hippocampus and medial prefrontal cortex were functionally more connected during recollection of either negative or positive than neutral items, and more so in sleeping than in sleep-deprived subjects. In the sleep-deprived group, recollection of negative items elicited larger responses in the amygdala and an occipital area than in the sleep group. In contrast, no such difference in brain responses between groups was associated with recollection of positive stimuli. The results suggest that the emotional significance of memories influences their sleep-dependent systems-level consolidation. The recruitment of hippocampo-neocortical networks during recollection is enhanced after sleep and is hindered by sleep deprivation. After sleep deprivation, recollection of negative, potentially dangerous, memories recruits an alternate amygdalo-cortical network, which would keep track of emotional information despite sleep deprivation.  相似文献   

20.
Degeneration of the tactile cells in epithelium of the cat sinuous hairs after sectioning the infraorbital nerve manifests itself as cytoplasmic vacuolization and induration with electron opaque bodies in it, changes in nuclear configuration and in chromatin density. At all stages of the experiment the tactile cells were practically observed demonstrating various degenerative signs. On the 45th day after sectioning the tactile cells disappeared completely. Structural changes in the tactile cells were preceded by degeneration and complete disappearance of tactile menisci from epithelium of the sinuous hairs. Perhaps, sensitive innervation is necessary to maintain differential status of the tactile cells in epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号