首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oncogenic activation in primary murine fibroblasts initiates a senescence-like cell cycle arrest that depends on the p53 tumor suppressor pathway. Conditional p53 activation efficiently induced a reversible cell cycle arrest but was unable to induce features of senescence. In contrast, coexpression of oncogenic ras with p53 produced an irreversible cell cycle arrest that displayed features of cellular senescence. Introduction of a conditional murine p53 allele (p53val135) into double p53/p21-null mouse embryonic fibroblasts showed that p21waf1 was not required for this effect, since p53-/-;p21-/- double-null cells undergo terminal growth arrest with features of senescence following coexpression of oncogenic Ras and p53. Our results indicate that oncogenic activation of the Ras pathway in murine fibroblasts converts p53 into a senescence inducer through a p21waf1-independent mechanism.  相似文献   

2.
p21是近年来发现的一类调控细胞增殖的小分子,是依赖周期素的CDK抑制因子.这些蛋白因子可结合cyclin-CDK并抑制其激酶活性从而调节细胞周期p15、p16、p27均属该类分子,他们在G1期限制点及G1/S检查点调控中发挥作用.进一步的研究表明,p21为p53调控,在p53介导的DNA损伤诱发的细胞周期阻断中发挥作用p21在老化细胞中高表达、细胞分化的同时表达,表明其在细胞增殖、分化及老化中发挥调节作用.  相似文献   

3.
Premature senescence, a key strategy used to suppress carcinogenesis, can be driven by p53/p21 proteins in response to various stresses. Here, we demonstrate that Wig1 plays a critical role in this process through regulation of p21 mRNA stability. Wig1 controls the association of Argonaute2 (Ago2), a central component of the RNA‐induced silencing complex (RISC), with target p21 mRNA via binding of the stem‐loop structure near the microRNA (miRNA) target site. Depletion of Wig1 prohibited miRNA‐mediated p21 mRNA decay and resulted in premature senescence. Wig1 plays an essential role in cell proliferation, as demonstrated in tumour xenografts in mice, and Wig1 and p21 mRNA levels are inversely correlated in human normal and cancer tissues. Together, our data indicate a novel role of Wig1 in RISC target accessibility, which is a key step in RNA‐mediated gene silencing. In addition, these findings indicate that fine‐tuning of p21 levels by Wig1 is essential for the prevention of cellular senescence.  相似文献   

4.
5.
6.
Senescence of alveolar type 2 (ATII) cells, progenitors of the alveolar epithelium, is implicated in the pathogeneses of idiopathic pulmonary fibrosis (IPF), an aging‐related progressive fatal lung disorder with unknown etiology. The mechanism underlying ATII cell senescence in fibrotic lung diseases, however, remains poorly understood. In this study, we report that ATII cells in IPF lungs express higher levels of serpine 1, also known as plasminogen activator inhibitor 1 (PAI‐1), and cell senescence markers p21 and p16, compared to ATII cells in control lungs. Silencing PAI‐1 or inhibition of PAI‐1 activity in cultured rat ATII (L2) cells leads to decreases in p53 serine 18 phosphorylation (p53S18P), p53 and p21 protein expressions; an increase in retinoblastoma protein phosphorylation (ppRb); and a reduction in the sensitivity to bleomycin‐ and doxorubicin‐induced senescence. Silencing p53, on the other hand, abrogates PAI‐1 protein‐stimulated p21 expression and cell senescence. In vivo studies, using ATII cell‐specific PAI‐1 conditional knockout mouse model generated recently in this laboratory, further support the role of PAI‐1 in the activation of p53‐p21‐Rb cell cycle repression pathway, ATII cell senescence, and lung fibrosis induced by bleomycin. This study reveals a novel function of PAI‐1 in regulation of cell cycle and suggests that elevation of PAI‐1 contributes importantly to ATII cell senescence in fibrotic lung diseases.  相似文献   

7.
Osteopontin (OPN), a senescence‐associated secretory phenotype factor, is increased in patients with nonalcoholic fatty liver disease (NAFLD). Cellular senescence has been associated with age‐dependent hepatosteatosis. Thus, we investigated the role of OPN in the age‐related hepatosteatosis. For this, human serum samples, animal models of aging, and cell lines in which senescence was induced were used. Metabolic fluxes, lipid, and protein concentration were determined. Among individuals with a normal liver, we observed a positive correlation between serum OPN levels and increasing age. This correlation with age, however, was absent in patients with NAFLD. In wild‐type (WT) mice, serum and liver OPN were increased at 10 months old (m) along with liver p53 levels and remained elevated at 20m. Markers of liver senescence increased in association with synthesis and concentration of triglycerides (TG) in 10m OPN‐deficient (KO) hepatocytes when compared to WT hepatocytes. These changes in senescence and lipid metabolism in 10m OPN‐KO mice liver were associated with the decrease of 78 kDa glucose‐regulated protein (GRP78), induction of ER stress, and the increase in fatty acid synthase and CD36 levels. OPN deficiency in senescent cells also diminished GRP78, the accumulation of intracellular TG, and the increase in CD36 levels. In 20m mice, OPN loss led to increased liver fibrosis. Finally, we showed that OPN expression in vitro and in vivo was regulated by p53. In conclusion, OPN deficiency leads to earlier cellular senescence, ER stress, and TG accumulation during aging. The p53‐OPN axis is required to inhibit the onset of age‐related hepatosteatosis.  相似文献   

8.
9.
Cellular senescence has been implicated in normal aging, tissue homeostasis, and tumor suppression. Although p53 has been shown to be a central mediator of cellular senescence, the signaling pathway by which it induces senescence remains incompletely understood. In this study, we have shown that both Akt and p21 are required to induce cellular senescence in response to p53 expression. In a p53‐induced senescence model, we found that Akt activation was essential for inducing a cellular senescence phenotype. Surprisingly, Akt inhibition did not abolish p53‐induced cell cycle arrest, but it suppressed the increase in intracellular reactive oxygen species (ROS) levels. The results of the cell cycle and morphological analysis suggest that p53 induced quiescence, not senescence, following Akt inhibition. Conversely, the inhibition of p21 induction abolished cell cycle arrest but did not affect the p53‐induced increase in ROS levels. Additionally, p21 and Akt separately controlled cell cycle arrest and ROS levels, respectively, during H‐Ras‐induced senescence in human normal fibroblasts. The mechanistic analysis revealed that Akt increased ROS levels through NOX4 induction, and increased Akt‐dependent NF‐κB binding to the NOX4 promoter is responsible for NOX4 induction upon p53 expression. We further showed that Akt activation upon p53 expression is mediated by mammalian target of rapamycin complex 2. In addition, p53‐mediated IL6 and IL8 induction was abrogated by Akt inhibition, suggesting that Akt activation is also required for the senescence‐associated secretory phenotype. Collectively, these results suggest that p53 simultaneously controls multiple pathways to induce cellular senescence through p21 and Akt.  相似文献   

10.
Although recent evidence has shown that hepatocyte senescence plays a crucial role in the pathogenesis and development of non-alcoholic fatty liver disease (NAFLD), the mechanism is still not clear. The purpose of this study was to investigate the signal transduction pathways involved in the senescence of hepatocyte, in order to provide a potential strategy for blocking the process of NAFLD. The results confirmed that hepatocyte senescence occurred in HFD-fed Golden hamsters and PA-treated LO2 cells as manifested by increased levels of senescence marker SA-β-gal, p16 and p21, heterochromatin marker H3K9me3, DNA damage marker γ-H2AX and decreased activity of telomerase. Further studies demonstrated that iron overload could promote the senescence of hepatocyte, whereas the overexpression of Yes-associated protein (YAP) could blunt iron overload and alleviate the senescence of hepatocyte. Of importance, depression of lncRNA MAYA (MAYA) reduced iron overload and cellular senescence via promotion of YAP in PA-treated hepatocytes. These effects were further supported by in vivo experiments. In conclusion, these data suggested that inhibition of MAYA could up-regulate YAP, which might repress hepatocyte senescence through modulating iron overload. In addition, these findings provided a promising option for heading off the development of NAFLD by abrogating hepatocyte senescence.  相似文献   

11.
Functional wild-type p53 is required for human diploid fibroblasts (HDF) to enter an irreversible growth arrest known as replicative senescence. Experimentally, abrogation of p53 function by expression of human papillomavirus type 16 E6 or disruption of a key downstream effector p21 by homologous recombination both extended HDF life span. However, although sufficient to extend life span, p21 down-regulation is not necessary, because expression of a dominant-negative mutant p53 (143(ala)) extends life span without apparently decreasing p21 expression. Given the importance of p53 in cellular senescence and the general assumption that p21 may be the sole mediator of its action in this process, we have investigated how abrogation of p53 function can overcome senescence without lowering expression of p21. We have found up-regulated levels of the cyclin-dependent kinase 2 (cdk2) protein in HDF expressing 143(ala) mutant p53 as compared to senescent controls, together with an increase in p21-free cdk2 which, in conjunction with cyclin E, is able to form an active kinase which can phosphorylate the retinoblastoma protein. However, forced overexpression of cdk2 in near-senescent HDF failed to restore cdk2-associated kinase activity. Our data suggest that p53-mediated senescence depends on factor(s) other than p21 which modulate formation of cyclin E-cdk2 complexes.  相似文献   

12.
13.
Senescence drives the onset and severity of multiple ageing-associated diseases and frailty. As a result, there has been an increased interest in mechanistic studies and in the search for compounds targeting senescent cells, known as senolytics. Mammalian models are commonly used to test senolytics and generate functional and toxicity data at the level of organs and systems, yet this is expensive and time consuming. Zebrafish share high homology in genes associated with human ageing and disease. They can be genetically modified relatively easily. In larvae, most organs develop within 5 days of fertilisation and are transparent, which allows tracking of fluorescent cells in vivo in real time, testing drug off-target toxicity and assessment of cellular and phenotypic changes. Here, we have generated a transgenic zebrafish line that expresses green fluorescent protein (GFP) under the promoter of a key senescence marker, p21. We show an increase in p21:GFP+ cells in larvae following exposure to ionising radiation and with natural ageing. p21:GFP+ cells display other markers of senescence, including senescence-associated β-galactosidase and IL6. The observed increase in senescent cells following irradiation is associated with a reduction in the thickness of muscle fibres and mobility, two important ageing phenotypes. We also show that quercetin and dasatinib, two senolytics currently in clinical trials, reduce the number of p21:GFP+ cells, in a rapid 5-day assay. This model provides an important tool to study senescence in a living organism, allowing the rapid selection of senolytics before moving to more expensive and time-consuming mammalian systems.  相似文献   

14.
15.
Cyclin-dependent kinase inhibitor p21Waf1/Cip1 plays the key part in cell cycle arrest at the G1/S checkpoint in response to DNA damage, and is involved in the assembly of active cyclin–kinase complexes, in particular, cyclin D–Cdk4/6. Recent studies extended the range of known p21Waf1/Cip1 functions. In addition to the cell-cycle control, p21Waf1/Cip1 participates in important cell processes such as differentiation, senescence, and apoptosis. The balance of p21Waf1/Cip1 functional activity appears to shift depending on the cell state (senescence, exposure to stress, expression of viral oncogenes). This is due to direct or indirect interaction with various modulators or to modification (phosphorylation, partial proteolysis) of p21Waf1/Cip1. The review considers the structure of p21Waf1/Cip1, its posttranslational modification, interactions with various cell or viral proteins, and their effects on the p21Waf1/Cip1 function and on the cell.  相似文献   

16.
P21Waf1/Cip1 is a potent cyclin-dependent kinase inhibitor. As a downstream mediator of p53, p21Waf1/cip1involves in cell cycle arrest, differentiation and apoptosis. Previous studies in human cells provided evidencefor a link between p21Waf1/cip1 and cellular senescence. While in murine cells, the role of p21Waf1/Cip1is indefinite. We explored this issue using NIH3T3 cells with inducible p21Waf1/cip1 expression. Induc-tion of p21Waf1/Cip1 triggered G1 growth arrest, and NIH3T3-p21 cells exhibited morphologic features,such as enlarged and flattened cellular shape, specific to the senescence phenotype. We also showed thatp21Waf1/Cip1-transduced NIH3T3 cells expressedβ-galactosidase activity at pH 6.0, which is known to bea marker of senescence. Our results suggest that p21Waf1/cipx can also induce senescence-like changes inmurine cells.  相似文献   

17.
Sirtuins (SIRT) belonging to the NAD+ dependent histone deacetylase III class of enzymes have emerged as master regulators of metabolism and longevity. However, their role in prevention of organismal aging and cellular senescence still remains controversial. In the present study, we now report upregulation of SIRT2 as a specific feature associated with stress induced premature senescence but not with either quiescence or cell death. Additionally, increase in SIRT2 expression was noted in different types of senescent conditions such as replicative and oncogene induced senescence using multiple cell lines. Induction of SIRT2 expression during senescence was dependent on p53 status as depletion of p53 by shRNA prevented its accumulation. Chromatin immunoprecipitation revealed the presence of p53 binding sites on the SIRT2 promoter suggesting its regulation by p53, which was also corroborated by the SEAP reporter assay. Overexpression or knockdown of SIRT2 had no effect on stress induced premature senescence, thereby indicating that SIRT2 increase is not a cause of senescence; rather it is an effect linked to senescence-associated changes. Overall, our results suggest SIRT2 as a promising marker of cellular senescence at least in cells with wild type p53 status.  相似文献   

18.
Nutlin-3 selectively activates p53 by inhibiting the interaction of this tumor suppressor with its negative regulator murine double minute 2 (mdm2), while trichostatin A (TSA) is one of the most potent histone deacetylase (HDAC) inhibitors currently available. As both Nutlin-3 and TSA increase the levels of the cell cycle inhibitor p21(cip1/waf1) in cells, we investigated whether a combination of these compounds would further augment p21 levels. Contrary to expectations, we found that short-term exposure to Nutlin-3 and TSA in combination did not have an additive effect on p21 expression. Instead, we observed that activation of p53 prevented the ability of TSA to increase p21 levels. Furthermore, TSA inhibited Nutlin-3-induced expression of p53-dependent mRNAs including P21. This negative effect of TSA on Nutlin-3 was significantly less pronounced in the case of hdm2, another p53 downstream target. Aside from suggesting a model to explain these incompatible effects of Nutlin-3 and TSA, we discuss the implications of our findings in cancer therapy and cell reprogramming.  相似文献   

19.
Obesity is a major contributor to the development of steatohepatitis and fibrosis from nonalcoholic fatty liver disease (NAFLD). Hypoxia aggravates progression of NAFLD. In mice on high-fat diet (HFD), hepatic steatosis leads to liver tissue hypoxia, evidenced by accumulation of hypoxia inducible factor-1-alpha (HIF-1α), which is a central regulator of the global response to hypoxia. Hepatocyte cell signaling is an important factor in hepatic fibrogenesis. We here hypothesize that HIF-1α knockout in hepatocyte may protect against liver fibrosis. We first found that HFD led to 80% more hepatic collagen deposition than Hif1a−/−hep mice, which was confirmed by a-SMA staining of liver tissue. Body weight and liver weight were similar between groups. We then found the increasing HIF1a expression and decreasing PTEN expression in the mice on HFD and in PA-treated HepG2 cells. Finally, we found that HIF1 mediated PTEN/nfkb-p65 pathway plays an important role in the development of NAFLD to liver fibrosis. Collectively, these results identify a novel HIF1a/PTEN/NF-κ Bp65 signaling pathway in NAFLD, which could be targeted for the therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号