首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

This study investigates whether both the perception of somesthetic sensations arising spontaneously on the hand and their modulation by attention are subject to change with advancing age and sex. Participants aged between 50 and 68 (N?=?24), and younger (19–27; N?=?24), with an equal sex ratio in each group, described the spontaneous sensations they felt on one of their hands. Two 10-s tests were carried out with participants either seeing their tested hand (gaze towards the visible hand) or not (contralateral gaze, hidden hand). Within the age range covered by our participants, aging had an effect on the spatial distribution of sensations, insofar as the older participants reported feeling more sensations in their palm whereas the younger participants had more sensitive fingers. Age also influenced the number, nature, intensity, and duration of sensations in interaction with gaze and/or sex. The most frequent pattern was a benefit of ipsilateral relative to contralateral gazing in young women. Attentional modulation was seldom observed in men and was absent among older participants.  相似文献   

2.
We report two experiments designed to investigate the nature of any cross-modal interactions between olfactory and tactile information processing. In Experiment 1, we assessed the influence of olfactory cues on the tactile perception of fabric softness using computer-controlled stimulus presentation. The results showed that participants rated fabric swatches as feeling significantly softer when presented with a lemon odor than when presented with an animal-like odor, demonstrating that olfactory cues can modulate tactile perception. In Experiment 2, we assessed whether this modulatory effect varied as a function of the particular odors being used and/or of the spatial coincidence between the olfactory and tactile stimuli. The results replicated those reported in Experiment 1 thus further supporting the claim that people's rating of tactile stimuli can be modulated by the presence of an odor. Taken together, the results of the two experiments reported here support the existence of a cross-modal interaction between olfaction and touch.  相似文献   

3.
Despite its theoretical and clinical interest, there are no experimental studies exploring obsessive-compulsive disorder (OCD)-like disgust sensations through using somatosensory illusions. Such illusions provide important clues to the nature and limits of multisensory integration and how the brain constructs body image; and may potentially inform novel therapies. One such effect is the rubber hand illusion (RHI) in which tactile sensations are referred to a rubber hand; if the experimenter simultaneously strokes a subject’s occluded hand together with a visible fake hand, the subject starts experiencing the touch sensations as arising from the dummy. In this study, we explore whether OCD-like disgust may result from contamination of a dummy hand during the RHI; suggesting a possible integration of somatosensory and limbic inputs in the construction of body image. We predicted that participants would experience sensations of disgust, when placing a disgust stimulus (fake feces, vomit or blood) on the dummy hand after establishing the RHI. We found that 9 out of 11 participants experienced greater disgust during the synchronous condition (real hidden hand and fake hand are stroked in synchrony) compared to the asynchronous control condition (real hidden hand and fake hand are stroked in asynchrony); and on average such disgust was significantly greater during the synchronous condition compared to the asynchronous control condition, Z = 2.7, p = .008. These results argue against a strictly hierarchical modular approach to brain function and suggest that a four-way multisensory interaction occurs between vision, touch, proprioception on the one hand and primal emotions like disgust on the other. These findings may inform novel clinical approaches for OCD; that is, contaminating a dummy during the RHI could possibly be used as part of an in-vivo exposure-intervention for OCD.  相似文献   

4.
An important unresolved question in sensory neuroscience is whether, and if so with what time course, tactile perception is enhanced by visual deprivation. In three experiments involving 158 normally sighted human participants, we assessed whether tactile spatial acuity improves with short-term visual deprivation over periods ranging from under 10 to over 110 minutes. We used an automated, precisely controlled two-interval forced-choice grating orientation task to assess each participant's ability to discern the orientation of square-wave gratings pressed against the stationary index finger pad of the dominant hand. A two-down one-up staircase (Experiment 1) or a Bayesian adaptive procedure (Experiments 2 and 3) was used to determine the groove width of the grating whose orientation each participant could reliably discriminate. The experiments consistently showed that tactile grating orientation discrimination does not improve with short-term visual deprivation. In fact, we found that tactile performance degraded slightly but significantly upon a brief period of visual deprivation (Experiment 1) and did not improve over periods of up to 110 minutes of deprivation (Experiments 2 and 3). The results additionally showed that grating orientation discrimination tends to improve upon repeated testing, and confirmed that women significantly outperform men on the grating orientation task. We conclude that, contrary to two recent reports but consistent with an earlier literature, passive tactile spatial acuity is not enhanced by short-term visual deprivation. Our findings have important theoretical and practical implications. On the theoretical side, the findings set limits on the time course over which neural mechanisms such as crossmodal plasticity may operate to drive sensory changes; on the practical side, the findings suggest that researchers who compare tactile acuity of blind and sighted participants should not blindfold the sighted participants.  相似文献   

5.
Feeling touch on a body part is paradigmatically considered to require stimulation of tactile afferents from the body part in question, at least in healthy non-synaesthetic individuals. In contrast to this view, we report a perceptual illusion where people experience “phantom touches” on a right rubber hand when they see it brushed simultaneously with brushes applied to their left hand. Such illusory duplication and transfer of touch from the left to the right hand was only elicited when a homologous (i.e., left and right) pair of hands was brushed in synchrony for an extended period of time. This stimulation caused the majority of our participants to perceive the right rubber hand as their own and to sense two distinct touches – one located on the right rubber hand and the other on their left (stimulated) hand. This effect was supported by quantitative subjective reports in the form of questionnaires, behavioral data from a task in which participants pointed to the felt location of their right hand, and physiological evidence obtained by skin conductance responses when threatening the model hand. Our findings suggest that visual information augments subthreshold somatosensory responses in the ipsilateral hemisphere, thus producing a tactile experience from the non-stimulated body part. This finding is important because it reveals a new bilateral multisensory mechanism for tactile perception and limb ownership.  相似文献   

6.
Kirsch W  Herbort O  Butz MV  Kunde W 《PloS one》2012,7(4):e34880
We examined whether movement costs as defined by movement magnitude have an impact on distance perception in near space. In Experiment 1, participants were given a numerical cue regarding the amplitude of a hand movement to be carried out. Before the movement execution, the length of a visual distance had to be judged. These visual distances were judged to be larger, the larger the amplitude of the concurrently prepared hand movement was. In Experiment 2, in which numerical cues were merely memorized without concurrent movement planning, this general increase of distance with cue size was not observed. The results of these experiments indicate that visual perception of near space is specifically affected by the costs of planned hand movements.  相似文献   

7.
It has been suggested that incongruence between signals for motor intention and sensory input can cause pain and other sensory abnormalities. This claim is supported by reports that moving in an environment of induced sensorimotor conflict leads to elevated pain and sensory symptoms in those with certain painful conditions. Similar procedures can lead to reports of anomalous sensations in healthy volunteers too. In the present study, we used mirror visual feedback to investigate the effects of sensorimotor incongruence on responses to stimuli that arise from sources external to the body, in particular, touch. Incongruence between the sensory and motor signals for the right arm was manipulated by having the participants make symmetrical or asymmetrical movements while watching a reflection of their left arm in a parasagittal mirror, or the left hand surface of a similarly positioned opaque board. In contrast to our prediction, sensitivity to the presence of gaps in tactile stimulation of the right forearm was not reduced when participants made asymmetrical movements during mirror visual feedback, as compared to when they made symmetrical or asymmetrical movements with no visual feedback. Instead, sensitivity was reduced when participants made symmetrical movements during mirror visual feedback relative to the other three conditions. We suggest that small discrepancies between sensory and motor information, as they occur during mirror visual feedback with symmetrical movements, can impair tactile processing. In contrast, asymmetrical movements with mirror visual feedback may not impact tactile processing because the larger discrepancies between sensory and motor information may prevent the integration of these sources of information. These results contrast with previous reports of anomalous sensations during exposure to both low and high sensorimotor conflict, but are nevertheless in agreement with a forward model interpretation of perceptual modulations during goal directed movement.  相似文献   

8.
Manipulation of hand posture, such as crossing the hands, has been frequently used to study how the body and its immediately surrounding space are represented in the brain. Abundant data show that crossed arms posture impairs remapping of tactile stimuli from somatotopic to external space reference frame and deteriorates performance on several tactile processing tasks. Here we investigated how impaired tactile remapping affects the illusory self-touch, induced by the non-visual variant of the rubber hand illusion (RHI) paradigm. In this paradigm blindfolded participants (Experiment 1) had their hands either uncrossed or crossed over the body midline. The strength of illusory self-touch was measured with questionnaire ratings and proprioceptive drift. Our results showed that, during synchronous tactile stimulation, the strength of illusory self-touch increased when hands were crossed compared to the uncrossed posture. Follow-up experiments showed that the increase in illusion strength was not related to unfamiliar hand position (Experiment 2) and that it was equally strengthened regardless of where in the peripersonal space the hands were crossed (Experiment 3). However, while the boosting effect of crossing the hands was evident from subjective ratings, the proprioceptive drift was not modulated by crossed posture. Finally, in contrast to the illusion increase in the non-visual RHI, the crossed hand postures did not alter illusory ownership or proprioceptive drift in the classical, visuo-tactile version of RHI (Experiment 4). We argue that the increase in illusory self-touch is related to misalignment of somatotopic and external reference frames and consequently inadequate tactile-proprioceptive integration, leading to re-weighting of the tactile and proprioceptive signals.The present study not only shows that illusory self-touch can be induced by crossing the hands, but importantly, that this posture is associated with a stronger illusion.  相似文献   

9.
Recent studies suggest that sensory input generated during highly repetitive tasks can degrade the sensory representation of the hand and eventually lead to sensory and motor problems. In this study, we investigated whether early changes in tactile perception and manual dexterity could be detected in persons exposed to computer tasks. Performance in tests designed to assess tactile perception (grating orientation task for spatial acuity and roughness discrimination) and manual dexterity (grooved pegboard test) was compared between two groups of healthy individuals, matched for age, gender, and experience, who differed in terms of computer habits. One group consisted of frequent users (FU, > 2 h/day, n = 36) and the other of non or occasional users (OU, < 2 h/day, n = 28). Comparison of performance between groups with subjects sorted by gender revealed significant differences ( t -test, p < 0.05) in female, but not male, participants. Grating resolution thresholds at the tip on the second and fifth digits were, on average, 40% higher in female FU ( n = 13) than in female OU ( n = 10) and performance scores on the dexterity test were significantly higher for the left hand. The results of this study indicate that early signs of deterioration in hand function can be present in persons constantly exposed to computer tasks and that these signs are more readily apparent in women than in men. The loss of tactile spatial acuity found in female FU possibly reflect an early consequence of the degraded sensory representation of the hand resulting from constant repetitions of fine motor tasks.  相似文献   

10.
While quite some research has focussed on the accuracy of haptic perception of distance, information on the precision of haptic perception of distance is still scarce, particularly regarding distances perceived by making arm movements. In this study, eight conditions were measured to answer four main questions, which are: what is the influence of reference distance, movement axis, perceptual mode (active or passive) and stimulus type on the precision of this kind of distance perception? A discrimination experiment was performed with twelve participants. The participants were presented with two distances, using either a haptic device or a real stimulus. Participants compared the distances by moving their hand from a start to an end position. They were then asked to judge which of the distances was the longer, from which the discrimination threshold was determined for each participant and condition. The precision was influenced by reference distance. No effect of movement axis was found. The precision was higher for active than for passive movements and it was a bit lower for real stimuli than for rendered stimuli, but it was not affected by adding cutaneous information. Overall, the Weber fraction for the active perception of a distance of 25 or 35 cm was about 11% for all cardinal axes. The recorded position data suggest that participants, in order to be able to judge which distance was the longer, tried to produce similar speed profiles in both movements. This knowledge could be useful in the design of haptic devices.  相似文献   

11.
Recent studies suggest that sensory input generated during highly repetitive tasks can degrade the sensory representation of the hand and eventually lead to sensory and motor problems. In this study, we investigated whether early changes in tactile perception and manual dexterity could be detected in persons exposed to computer tasks. Performance in tests designed to assess tactile perception (grating orientation task for spatial acuity and roughness discrimination) and manual dexterity (grooved pegboard test) was compared between two groups of healthy individuals, matched for age, gender, and experience, who differed in terms of computer habits. One group consisted of frequent users (FU, > 2 h/day, n = 36) and the other of non or occasional users (OU, < 2 h/day, n = 28). Comparison of performance between groups with subjects sorted by gender revealed significant differences (t-test, p < 0.05) in female, but not male, participants. Grating resolution thresholds at the tip on the second and fifth digits were, on average, 40% higher in female FU (n = 13) than in female OU (n = 10) and performance scores on the dexterity test were significantly higher for the left hand. The results of this study indicate that early signs of deterioration in hand function can be present in persons constantly exposed to computer tasks and that these signs are more readily apparent in women than in men. The loss of tactile spatial acuity found in female FU possibly reflect an early consequence of the degraded sensory representation of the hand resulting from constant repetitions of fine motor tasks.  相似文献   

12.
13.
The gold standard to acquire motor skills is through intensive training and practicing. Recent studies have demonstrated that behavioral gains can also be acquired by mere exposure to repetitive sensory stimulation to drive the plasticity processes. Single application of repetitive electric stimulation (rES) of the fingers has been shown to improve tactile perception in young adults as well as sensorimotor performance in healthy elderly individuals. The combination of repetitive motor training with a preceding rES has not been reported yet. In addition, the impact of such a training on somatosensory tactile and spatial sensitivity as well as on somatosensory cortical activation remains elusive. Therefore, we tested 15 right-handed participants who underwent repetitive electric stimulation of all finger tips of the left hand for 20 minutes prior to one hour of motor training of the left hand over the period of two weeks. Overall, participants substantially improved the motor performance of the left trained hand by 34%, but also showed a relevant transfer to the untrained right hand by 24%. Baseline ipsilateral activation fMRI-magnitude in BA 1 to sensory index finger stimulation predicted training outcome for somatosensory guided movements: those who showed higher ipsilateral activation were those who did profit less from training. Improvement of spatial tactile discrimination was positively associated with gains in pinch grip velocity. Overall, a combination of priming rES and repetitive motor training is capable to induce motor and somatosensory performance increase and representation changes in BA1 in healthy young subjects.  相似文献   

14.
In two experiments, we measured the direction, duration, frequency, and vividness of the tactile motion aftereffect (MAE) induced by a rotating drum with a ridged surface. In Experiment 1, we adapted the: (1) fingers and palm, including the thumb, (2) fingers and palm, excluding the thumb, and (3) fingers only, excluding the thumb. In each condition the drum rotated at 60 rpm for 120 s. There was no difference in duration, frequency, or vividness between the skin surfaces tested. In Experiment 2, we tested several adapting speeds: 15, 30, 45, 60, and 75 rpm. At each speed the fingers and palm, excluding the thumb, were adapted for 120 s. The duration, frequency, and vividness of the tactile MAE increased linearly with adapting speed. Overall, the tactile MAE was reported on approximately half of the trials, suggesting that it is not as robust as its visual counterpart.  相似文献   

15.
Tactile perception is typically considered the result of cortical interpretation of afferent signals from a network of mechanical sensors underneath the skin. Yet, tactile illusion studies suggest that tactile perception can be elicited without afferent signals from mechanoceptors. Therefore, the extent that tactile perception arises from isomorphic mapping of tactile afferents onto the somatosensory cortex remains controversial. We tested whether isomorphic mapping of tactile afferent fibers onto the cortex leads directly to tactile perception by examining whether it is independent from proprioceptive input by evaluating the impact of different hand postures on the perception of a tactile illusion across fingertips. Using the Cutaneous Rabbit Effect, a well studied illusion evoking the perception that a stimulus occurs at a location where none has been delivered, we found that hand posture has a significant effect on the perception of the illusion across the fingertips. This finding emphasizes that tactile perception arises from integration of perceived mechanical and proprioceptive input and not purely from tactile interaction with the external environment.  相似文献   

16.
Human perception of touch is mediated by inputs from multiple channels. Classical theories postulate independent contributions of each channel to each tactile feature, with little or no interaction between channels. In contrast to this view, we show that inputs from two sub-modalities of mechanical input channels interact to determine tactile perception. The flutter-range vibration channel was activated anomalously using hydroxy-α-sanshool, a bioactive compound of Szechuan pepper, which chemically induces vibration-like tingling sensations. We tested whether this tingling sensation on the lips was modulated by sustained mechanical pressure. Across four experiments, we show that sustained touch inhibits sanshool tingling sensations in a location-specific, pressure-level and time-dependent manner. Additional experiments ruled out the mediation of this interaction by nociceptive or affective (C-tactile) channels. These results reveal novel inhibitory influence from steady pressure onto flutter-range tactile perceptual channels, consistent with early-stage interactions between mechanoreceptor inputs within the somatosensory pathway.  相似文献   

17.

Background

We physically interact with external stimuli when they occur within a limited space immediately surrounding the body, i.e., Peripersonal Space (PPS). In the primate brain, specific fronto-parietal areas are responsible for the multisensory representation of PPS, by integrating tactile, visual and auditory information occurring on and near the body. Dynamic stimuli are particularly relevant for PPS representation, as they might refer to potential harms approaching the body. However, behavioural tasks for studying PPS representation with moving stimuli are lacking. Here we propose a new dynamic audio-tactile interaction task in order to assess the extension of PPS in a more functionally and ecologically valid condition.

Methodology/Principal Findings

Participants vocally responded to a tactile stimulus administered at the hand at different delays from the onset of task-irrelevant dynamic sounds which gave the impression of a sound source either approaching or receding from the subject’s hand. Results showed that a moving auditory stimulus speeded up the processing of a tactile stimulus at the hand as long as it was perceived at a limited distance from the hand, that is within the boundaries of PPS representation. The audio-tactile interaction effect was stronger when sounds were approaching compared to when sounds were receding.

Conclusion/Significance

This study provides a new method to dynamically assess PPS representation: The function describing the relationship between tactile processing and the position of sounds in space can be used to estimate the location of PPS boundaries, along a spatial continuum between far and near space, in a valuable and ecologically significant way.  相似文献   

18.
In order to determine precisely the location of a tactile stimulus presented to the hand it is necessary to know not only which part of the body has been stimulated, but also where that part of the body lies in space. This involves the multisensory integration of visual, tactile, proprioceptive, and even auditory cues regarding limb position. In recent years, researchers have become increasingly interested in the question of how these various sensory cues are weighted and integrated in order to enable people to localize tactile stimuli, as well as to give rise to the 'felt' position of our limbs, and ultimately the multisensory representation of 3-D peripersonal space. We highlight recent research on this topic using the crossmodal congruency task, in which participants make speeded elevation discrimination responses to vibrotactile targets presented to the thumb or index finger, while simultaneously trying to ignore irrelevant visual distractors presented from either the same (i.e., congruent) or a different (i.e., incongruent) elevation. Crossmodal congruency effects (calculated as performance on incongruent-congruent trials) are greatest when visual and vibrotactile stimuli are presented from the same azimuthal location, thus providing an index of common position across different sensory modalities. The crossmodal congruency task has been used to investigate a number of questions related to the representation of space in both normal participants and brain-damaged patients. In this review, we detail the major findings from this research, and highlight areas of convergence with other cognitive neuroscience disciplines.  相似文献   

19.
Perception is fundamentally underconstrained because different combinations of object properties can generate the same sensory information. To disambiguate sensory information into estimates of scene properties, our brains incorporate prior knowledge and additional “auxiliary” (i.e., not directly relevant to desired scene property) sensory information to constrain perceptual interpretations. For example, knowing the distance to an object helps in perceiving its size. The literature contains few demonstrations of the use of prior knowledge and auxiliary information in combined visual and haptic disambiguation and almost no examination of haptic disambiguation of vision beyond “bistable” stimuli. Previous studies have reported humans integrate multiple unambiguous sensations to perceive single, continuous object properties, like size or position. Here we test whether humans use visual and haptic information, individually and jointly, to disambiguate size from distance. We presented participants with a ball moving in depth with a changing diameter. Because no unambiguous distance information is available under monocular viewing, participants rely on prior assumptions about the ball''s distance to disambiguate their -size percept. Presenting auxiliary binocular and/or haptic distance information augments participants'' prior distance assumptions and improves their size judgment accuracy—though binocular cues were trusted more than haptic. Our results suggest both visual and haptic distance information disambiguate size perception, and we interpret these results in the context of probabilistic perceptual reasoning.  相似文献   

20.
The aim of this study was to investigate tactile sensitivity near the site of primary hyperalgesia evoked by capsaicin applied topically to the dorsolateral aspect of the hand. In the first experiment (N = 15), touch thresholds increased in the fifth finger ipsilateral to the topically applied capsaicin, but remained unchanged at greater distances from the site of capsaicin treatment. In a second experiment (N = 12), the effect of the capsaicin treatment on sensations evoked not only by light touch but also by warmth, heat-pain, and pressure-pain to a 2-mm diameter steel probe was investigated in the fifth finger. Again, tactile sensitivity was inhibited at the fifth finger, even though stimulation with a cotton bud evoked no discomfort; moreover, sensitivity to warmth and heat-pain were unimpaired. However, sensitivity to pressure-pain increased in the fifth finger after the capsaicin treatment, possibly due to activation of nociceptors sandwiched between the probe tip and bone that normally responded to sharp stimuli. These findings suggest that the central mechanisms that mediate secondary mechanical hyperalgesia suppress sensitivity to innocuous tactile sensations. This effect may contribute to tactile hypoesthesia in chronic pain conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号