首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterozygous mutations in either the R132 residue of isocitrate dehydrogenase I (IDH1) or the R172 residue of IDH2 in human gliomas were recently highlighted. In the present study, we report that mutations of IDH1 and IDH2 are not detected in the rat C6 glioma cell line model, which suggests that these mutations are not required for the development of glioblastoma induced by N,N′-nitroso-methylurea. The effects of IDH2 and IDH2R172G on C6 cells proliferation and sensitivity to chemotherapy and the possible mechanism are analyzed at the cellular level. IDH1 and IDH2 mutations lead to simultaneous loss and gain of activities in the production of α-ketoglutarate (α-KG) and 2-hydroxyglutarate (2HG), respectively, and result in lowering NADPH levels even further. The low NADPH levels can sensitize tumors to chemotherapy, and account for the prolonged survival of patients harboring the mutations. Our data extrapolate potential importance of the in vitro rat C6 glioma cell model, show that the IDH2R172G mutation in gliomas may give a benefit to traditional chemotherapy of this cancer and serve as an important complement to existing research on this topic.  相似文献   

2.
IDH1 mutations are early events in the development of IDH-mutant gliomas and leukemias and are associated with various regulation of molecular process. Mutations of active site in IDH1 could lead to high levels of 2-HG and the suppression of cellular differentiation, while these changes can be reversed by molecule inhibitors target mutant IDH1. Here, through in-house developed enzymatic assay-based high throughput screening platform, we discovered DC_H31 as a novel IDH1-R132H/C inhibitor, with the IC50 value of 0.41 μmol/L and 2.7 μmol/L respectively. In addition, saturable SPR binding assay indicated that DC_H31 bound to IDH1-R132H/C due to specific interaction. Further computational docking studies and structure-activity relationship (SAR) suggest that DC_H31 could occupy the allosteric pocket between the two monomers of IDH1-R132H homodimer, which accounts for its inhibitory ability. And it is possible to conclude that DC_H31 acts via an allosteric mechanism of inhibition. At the cellular level, DC_H31 could inhibit cell proliferation, promote cell differentiation and reduce the production of 2-HG with a dose-dependent manner in HT1080 cells. Taken together, DC_H31 is a potent selective inhibitor of IDH1-R132H/C both in vitro and in vivo, which can promote the development of more potent pan-inhibitors against IDH1-R132H/C through further structural decoration and provide a new insight for the pharmacological treatment of gliomas.  相似文献   

3.
Mutations in the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) are commonly found in gliomas. AGI-5198, a potent and selective inhibitor of the mutant IDH1 enzyme, was radiolabeled with radioiodine and fluorine-18. These radiotracers were evaluated as potential probes for imaging mutant IDH1 expression in tumors with positron emission tomography (PET). Radioiodination of AGI-5198 was achieved using a tin precursor in 79?±?6% yield (n?=?9), and 18F-labeling was accomplished by the Ugi reaction in a decay-corrected radiochemical yield of 2.6?±?1.6% (n?=?5). The inhibitory potency of the analogous nonradioactive compounds against mutant IDH1 (IDH1-R132H) was determined in enzymatic assays. Cell uptake studies using radiolabeled AGI-5198 analogues revealed somewhat higher uptake in IDH1-mutated cells than that in wild-type IDH1 cells. The radiolabeled compounds displayed favorable tissue distribution characteristics in vivo, and good initial uptake in IDH1-mutated tumor xenografts; however, tumor uptake decreased with time. Radioiodinated AGI-5198 exhibited higher tumor-to-background ratios compared with 18F-labeled AGI-5198; unfortunately, similar results were observed in wild-type IDH1 tumor xenografts as well, indicating lack of selectivity for mutant IDH1 for this tracer. These results suggest that AGI-5198 analogues are not a promising platform for radiotracer development. Nonetheless, insights gained from this study may help in design and optimization of novel chemical scaffolds for developing radiotracers for imaging the mutant IDH1 enzyme.  相似文献   

4.
Isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) are enzymes which convert isocitrate to α-ketoglutarate while reducing nicotinamide adenine dinucleotide phosphate (NADP + to NADPH). IDH1/2 were recently identified as mutated in a large percentage of progressive gliomas. These mutations occur at IDH1R132 or the homologous IDH2R172. Melanomas share some genetic features with IDH1/2-mutated gliomas, such as frequent TP53 mutation. We sought to test whether melanoma is associated with IDH1/2 mutations. Seventy-eight human melanoma samples were analyzed for IDH1R132 and IDH2R172 mutation status. A somatic, heterozygous IDH1 c.C394T (p.R132C) mutation was identified in one human melanoma metastasis to the lung. Having identified this mutation in one metastasis, we sought to test the hypothesis that certain selective pressures in the brain environment may specifically favor the cell growth or survival of tumor cells with mutations in IDH1/2, regardless of primary tumor site. To address this, we analyzed IDH1R132 and IDH2R172 mutation status 53 metastatic brain tumors, including nine melanoma metastases. Results revealed no mutations in any samples. This lack of mutations would suggest that mutations in IDH1R132 or IDH2R172 may be necessary for the formation of tumors in a cell-lineage dependent manner, with a particularly strong selective pressure for mutations in progressive gliomas; this also suggests the lack of a particular selective pressure for growth in brain tissue in general. Studies on the cell-lineages of tumors with IDH1/2 mutations may help clarify the role of these mutations in the development of brain tumors.  相似文献   

5.
6.
The discovery and optimization of imidazole cyclopropyl amime analogues as mutant IDH1 inhibitors via structure-based rational design were reported. The optimal compounds demonstrated both potent inhibition in IDH1R132H enzymatic activity and 2HG production in IDH1 mutant HT1080 cell line, moderate liver microsome stability and PK properties.  相似文献   

7.
Gliomas are primary tumors of the human central nervous system with unknown mechanisms of progression. Isocitrate dehydrogenase-1 (IDH1) mutation is frequent in diffuse gliomas such as oligodendrogliomas. To gain insights into the physiopathology of oligodendrogliomas that have a better prognosis than other diffuse gliomas, we combined microdissection, 2-D DIGE and MS/MS focusing on proteome alterations associated with IDH1 mutation. We first compared tumor tissues (TT) and minimally infiltrated parenchymal tissues (MIT) of four IDH1-mutated oligodendrogliomas to verify whether proteins specific to oligodendroglioma tumor cells could be identified from one patient to another. This study resulted in identification of 68 differentially expressed proteins, with functions related to growth of tumor cells in a nervous parenchyma. We then looked for proteins distinctly expressed in TT harboring either mutant (oligodendrogliomas, n=4) or wild-type IDH1 (oligodendroglial component of malignant glio-neuronal tumors, n=4). This second analysis resulted in identification of distinct proteome patterns composed of 42 proteins. Oligodendrogliomas with a mutant IDH1 had noteworthy enhanced expression of enzymes controlling aerobic glycolysis and detoxification, and anti-apoptosis proteins. In addition, the mutant IDH1 migrated differently from the wild-type IDH1 form. Comparative proteomic analysis might thus be suitable to identify proteome alterations associated with a well-defined mutation.  相似文献   

8.
Mutations in the genes for isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) have been recently identified in glioblastoma. In the present study, we investigated IDH1 and IDH2 mutations in follicular thyroid cancer (FTC) and anaplastic thyroid cancer (ATC), with the latter, like glioblastoma, having a rapidly aggressive and lethal clinical course. By direct genomic DNA sequencing, we analyzed exon 4 of the IDH1 and IDH2 genes that harbored the mutation hot spots codon 132 and 172 of the two genes in glioblastoma, respectively, in 12 thyroid cancer cell lines, 20 FTC, and 18 ATC tumor samples. A novel homozygous G367A IDH1 mutation, resulting in a G123R amino acid change in codon 123, was identified in a case of ATC. A previously described IDH1 V71I mutation was found in a case of FTC and a case of ATC and no mutations were found in the cell lines. The overall prevalence of mutations was thus 1/20 (5%) in FTC and 2/18 (11%) in ATC. We did not find mutation in the IDH2 gene in these thyroid cancer cell lines and tumor samples. Sequence alignment analysis of 16 species revealed that the novel IDH1 G123R mutation was located in a highly conserved region, raising the possibility of a serious functional consequence as could also be predicted by the occurrence of a positively charged amino acid from this mutation. To test this, we created a G123R mutant by site-directed mutagenesis and demonstrated a decreased enzymatic activity of IDH1, similar to the expected reduction in the enzymatic activity of the previously described R132H IDH1 mutant measured as a control. Thus, functionally relevant IDH1 mutations can also occur in thyroid cancer, particularly ATC, suggesting a potential tumorigenic role of the IDH1 system that could represent a new therapeutic target for thyroid cancer.  相似文献   

9.
Nonalcoholic fatty liver disease (NAFLD) has a high prevalence in the general population and can evolve into nonalcoholic steatohepatosis (NASH), cirrhosis, and complications such as liver failure and hepatocellular carcinoma. Recently, we reported that mitochondrial NADP+-dependent isocitrate dehydrogenase, encoded by the IDH2, plays an important role in the regulation of redox balance and oxidative stress levels, which are tightly associated with intermediary metabolism and energy production. In the present study, we showed that in mice targeted disruption of IDH2 attenuates age-associated hepatic steatosis by the activation of p38/cJun NH2-terminal kinase (JNK) and p53, presumably induced by the elevation of mitochondrial reactive oxygen species (ROS), which in turn resulted in the suppression of hepatic lipogenesis and inflammation via the upregulation of fibroblast growth factor 21 (FGF21) and the inhibition of NFκB signaling pathways. Our finding uncovers a new mechanism involved in hepatocellular steatosis and IDH2 may be a valuable therapeutic target for the management of NAFLD.  相似文献   

10.
Heterozygous mutations in either the R132 residue of isocitrate dehydrogenase I (IDH1) or the R172 residue of IDH2 in human gliomas were recently highlighted. Heterozygous mutations in the IDH1 occur in the majority of grade II and grade III gliomas and secondary glioblastomas and change the structure of the enzyme, which diminishes its ability to convert isocitrate (ICT) to α-ketoglutarate (α-KG) and provides it with a newly acquired ability to convert α-KG to R(-)-2-hydroxyglutarate [R(-)-2HG]. The IDH1 and IDH2 mutations are relevant to the progression of gliomas, the prognosis and treatment of the patients with gliomas harboring the mutation. In this paper, we reviewed these recent findings which were essential for the further exploration of human glioma cancer and might be responsible for developing a newer and more effective therapeutic approach in clinical treatment of this cancer.  相似文献   

11.
Chondrosarcomas are malignant bone tumors that produce cartilaginous matrix. Mutations in isocitrate dehydrogenase enzymes (IDH1/2) were recently described in several cancers including chondrosarcomas. The IDH1 inhibitor AGI-5198 abrogates the ability of mutant IDH1 to produce the oncometabolite D-2 hydroxyglutarate (D-2HG) in gliomas. We sought to determine if treatment with AGI-5198 would similarly inhibit tumorigenic activity and D-2HG production in IDH1-mutant human chondrosarcoma cells. Two human chondrosarcoma cell lines, JJ012 and HT1080 with endogenous IDH1 mutations and a human chondrocyte cell line C28 with wild type IDH1 were employed in our study. Mutation analysis of IDH was performed by PCR-based DNA sequencing, and D-2HG was detected using tandem mass spectrometry. We confirmed that JJ012 and HT1080 harbor IDH1 R132G and R132C mutation, respectively, while C28 has no mutation. D-2HG was detectable in cell pellets and media of JJ012 and HT1080 cells, as well as plasma and urine from an IDH-mutant chondrosarcoma patient, which decreased after tumor resection. AGI-5198 treatment decreased D-2HG levels in JJ012 and HT1080 cells in a dose-dependent manner, and dramatically inhibited colony formation and migration, interrupted cell cycling, and induced apoptosis. In conclusion, our study demonstrates anti-tumor activity of a mutant IDH1 inhibitor in human chondrosarcoma cell lines, and suggests that D-2HG is a potential biomarker for IDH mutations in chondrosarcoma cells. Thus, clinical trials of mutant IDH inhibitors are warranted for patients with IDH-mutant chondrosarcomas.  相似文献   

12.
Cancer-associated point mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) confer a neomorphic enzymatic activity: the reduction of α-ketoglutarate to d-2-hydroxyglutaric acid, which is proposed to act as an oncogenic metabolite by inducing hypermethylation of histones and DNA. Although selective inhibitors of mutant IDH1 and IDH2 have been identified and are currently under investigation as potential cancer therapeutics, the mechanistic basis for their selectivity is not yet well understood. A high throughput screen for selective inhibitors of IDH1 bearing the oncogenic mutation R132H identified compound 1, a bis-imidazole phenol that inhibits d-2-hydroxyglutaric acid production in cells. We investigated the mode of inhibition of compound 1 and a previously published IDH1 mutant inhibitor with a different chemical scaffold. Steady-state kinetics and biophysical studies show that both of these compounds selectively inhibit mutant IDH1 by binding to an allosteric site and that inhibition is competitive with respect to Mg2+. A crystal structure of compound 1 complexed with R132H IDH1 indicates that the inhibitor binds at the dimer interface and makes direct contact with a residue involved in binding of the catalytically essential divalent cation. These results show that targeting a divalent cation binding residue can enable selective inhibition of mutant IDH1 and suggest that differences in magnesium binding between wild-type and mutant enzymes may contribute to the inhibitors'' selectivity for the mutant enzyme.  相似文献   

13.
《Epigenetics》2013,8(11):1454-1460
The CpG Island Methylator Phenotype (CIMP) is fundamental to an important subset of colorectal cancer; however, its cause is unknown. CIMP is associated with microsatellite instability but is also found in BRAF mutant microsatellite stable cancers that are associated with poor prognosis. The isocitrate dehydrogenase 1 (IDH1) gene causes CIMP in glioma due to an activating mutation that produces the 2-hydroxyglutarate oncometabolite. We therefore examined IDH1 alteration as a potential cause of CIMP in colorectal cancer. The IDH1 mutational hotspot was screened in 86 CIMP-positive and 80 CIMP-negative cancers. The entire coding sequence was examined in 81 CIMP-positive colorectal cancers. Forty-seven cancers varying by CIMP-status and IDH1 mutation status were examined using Illumina 450K DNA methylation microarrays. The R132C IDH1 mutation was detected in 4/166 cancers. All IDH1 mutations were in CIMP cancers that were BRAF mutant and microsatellite stable (4/45, 8.9%). Unsupervised hierarchical cluster analysis identified an IDH1 mutation-like methylation signature in approximately half of the CIMP-positive cancers. IDH1 mutation appears to cause CIMP in a small proportion of BRAF mutant, microsatellite stable colorectal cancers. This study provides a precedent that a single gene mutation may cause CIMP in colorectal cancer, and that this will be associated with a specific epigenetic signature and clinicopathological features.  相似文献   

14.
15.
Mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are key events in the development of glioma, acute myeloid leukemia (AML), chondrosarcoma, intrahepatic cholangiocarcinoma (ICC), and angioimmunoblastic T-cell lymphoma. They also cause D-2-hydroxyglutaric aciduria and Ollier and Maffucci syndromes. IDH1/2 mutations are associated with prolonged survival in glioma and in ICC, but not in AML. The reason for this is unknown. In their wild-type forms, IDH1 and IDH2 convert isocitrate and NADP+ to α-ketoglutarate (αKG) and NADPH. Missense mutations in the active sites of these enzymes induce a neo-enzymatic reaction wherein NADPH reduces αKG to D-2-hydroxyglutarate (D-2HG). The resulting D-2HG accumulation leads to hypoxia-inducible factor 1α degradation, and changes in epigenetics and extracellular matrix homeostasis. Such mutations also imply less NADPH production capacity. Each of these effects could play a role in cancer formation. Here, we provide an overview of the literature and discuss which downstream molecular effects are likely to be the drivers of the oncogenic and survival-prolonging properties of IDH1/2 mutations. We discuss interactions between mutant IDH1/2 inhibitors and conventional therapies. Understanding of the biochemical consequences of IDH1/2 mutations in oncogenesis and survival prolongation will yield valuable information for rational therapy design: it will tell us which oncogenic processes should be blocked and which “survivalogenic” effects should be retained.  相似文献   

16.
The discovery and optimization of various of indane amides as mutant IDH1 inhibitors via structure-based rational design were reported. The optimal compounds demonstrated both potent inhibition in IDH1R132H enzymatic activity and 2HG production in IDH1 mutant HT1080 cell line, favorable PK properties and great selectivity against IDH1wt and IDH2R140Q.  相似文献   

17.
IDH1 mutations are closely related to the development and progression of various human cancers, such as glioblastoma, sarcoma, and acute myeloid leukemia. By screening dozens of reported natural compounds using both wild-type and mutant IDH1 enzymatic assays, we discovered Licochalcone A is a selective inhibitor to the R132C-mutant IDH1 with an IC50 value of 5.176 μM, and inhibits the proliferation of sarcoma HT-1080 cells with an IC50 value of 10.75 μM. Suggested by the molecular docking results, Licochalcone A might occupy the allosteric pocket between the two monomers of IDH1 homodimer, and the R132H mutation was unfavorable for the binding of Licochalcone A with the IDH1 protein, as compared to the R132C mutation. Revealed by the RNA-Seq data analysis, the Cell Cycle pathway was the most over-represented pathway for HT-1080 cells treated with Licochalcone A. Consistent with these results, Licochalcone A induced apoptosis and cell cycle arrest of HT-1080 cells, while it showed minimal effect against the proliferation of normal RCTEC cells. The discovery of Licochalcone A as a mutation-selective IDH1 inhibitor can serve as a promising starting point for the development of mutation-selective anti-tumor lead compounds targeting IDH1.  相似文献   

18.
19.
Frequent mutations in the isocitrate dehydrogenase 1 and 2 genes (IDH1 and IDH2) have been identified in gliomas and acute myeloid leukemia (AML). Our aim is to assess whether IDH mutations were presented in Chinese patients with various hematological disorders. In this study, we screened the IDH1 and IDH2 mutations in a cohort of 456 Chinese patients with various hematological malignancies and disorders. We found three missense (p.R132C, p.R132G, and p.I99M; occurred in five patients) and one silent mutation (c.315C>T; occurred in two patients) in the IDH1 gene and two missense mutations (p.R140Q and p.R172K; occurred in four AML patients) and one silent mutation (c.435G>A) in the IDH2 gene. Except for one non-Hodgkin lymphoma (NHL) patient harboring IDH1 mutation p.R132C, all IDH1 and IDH2 missense mutations were observed in patients with AML. Intriguingly, the IDH2 mutation p.R140Q and novel IDH1 mutation p.I99M co-occurred in a 75-year-old patient with AML developed from myelodysplastic syndromes (MDS). The frequency of IDH1 and IDH2 missense mutations in Chinese AML patients reached 5.9% and 8.3%, respectively. Our results supported the recent findings that IDH gene mutations were common in AML. Conversely, IDH mutations were rather rare in Chinese patients with other types of hematological disorders.  相似文献   

20.
The development of alcoholic liver diseases depends on the ability of hepatocyte to proliferate and differentiate in the case of alcohol-induced injury. Our previous work showed an inhibitory effect of alcohol on hepatocyte proliferation. However, the effect of alcohol on hepatocyte differentiation has not yet been precisely characterized. In the present study, we evaluated the effect of alcohol on hepatocyte differentiation in relationship with changes of iron metabolism in HepaRG cells. This unique bipotent human cell line can differentiate into hepatocytes and biliary epithelial cells, paralleling liver development. Results showed that alcohol reduced cell viability, total protein level and enhanced hepatic enzymes leakage in differentiated HepaRG cells. Moreover, it caused cell enlargement, decreased number of hepatocyte and expression of C/EBPα as well as bile canaliculi F-actin. Alcohol increased expression of hepatic cell-specific markers and alcohol-metabolizing enzymes (ADH2, CYP2E1). This was associated with a lipid peroxidation and an iron excess expressed by an increase in total iron content, ferritin level, iron uptake as well as an overexpression of genes involved in iron transport and storage. Alcohol-induced hepatoxicity was amplified by exogenous iron via exceeding iron overload. Taken together, our data demonstrate that in differentiated hepatocytes, alcohol reduces proliferation while increasing expression of hepatic cell-specific markers. Moreover, iron overload could be one of the underlying mechanisms of effect of alcohol on the whole differentiation process of hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号