首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Embryo implantation into the maternal uterus is a crucial step for the successful establishment of mammalian pregnancy. Following the attachment of embryo to the uterine luminal epithelium, uterine stromal cells undergo steroid hormone-dependent decidualization, which is characterized by stromal cell proliferation and differentiation. The mechanisms underlying steroid hormone-induced stromal cell proliferation and differentiation during decidualization are still poorly understood. Ribonucleotide reductase, consisting of two subunits (RRM1 and RRM2), is a rate-limiting enzyme in deoxynucleotide production for DNA synthesis and plays an important role in cell proliferation and tumorgenicity. Based on our microarray analysis, Rrm2 expression was significantly higher at implantation sites compared with interimplantation sites in mouse uterus. However, the expression, regulation, and function of RRM2 in mouse uterus during embryo implantation and decidualization are still unknown. Here we show that although both RRM1 and RRM2 expression are markedly induced in mouse uterine stromal cells undergoing decidualization, only RRM2 is regulated by progesterone, a key regulator of decidualization. Further studies showed that the induction of progesterone on RRM2 expression in stromal cells is mediated by the AKT/c-MYC pathway. RRM2 can also be induced by replication stress and DNA damage during decidualization through the ATR/ATM-CHK1-E2F1 pathway. The weight of implantation sites and deciduoma was effectively reduced by specific inhibitors for RRM2. The expression of decidual/trophoblast prolactin-related protein (Dtprp), a reliable marker for decidualization in mice, was significantly reduced in deciduoma and steroid-induced decidual cells after HU treatment. Therefore, RRM2 may be an important effector of progesterone signaling to induce cell proliferation and decidualization in mouse uterus.  相似文献   

2.
3.
The mechanism(s) by which localized vascular permeability and angiogenesis occur at the sites of implantation is not clearly understood. Vascular endothelial growth factor (VEGF) is a key regulator of vasculogenesis during embryogenesis and angiogenesis in adult tissues. VEGF is also a vascular permeability factor. VEGF acts via two tyrosine kinase family receptors: VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). Recent evidence suggests that neuropilin-1 (NRP1), a receptor involved in neuronal cell guidance, is expressed in endothelial cells, binds to VEGF(165) and enhances the binding of VEGF(165) to VEGFR2. We examined the spatiotemporal expression of vegf isoforms, nrp1 and vegfr2 as well as their interactions in the periimplantation mouse uterus. We observed that vegf(164) is the predominant isoform in the mouse uterus. vegf(164) mRNA accumulation primarily occurred in epithelial cells on days 1 and 2 of pregnancy. On days 3 and 4, the subepithelial stroma in addition to epithelial cells exhibited accumulation of this mRNA. After the initial attachment reaction on day 5, luminal epithelial and stromal cells immediately surrounding the blastocyst exhibited distinct accumulation of vegf(164) mRNA. On days 6-8, the accumulation of this mRNA occurred in both mesometrial and antimesometrial decidual cells. These results suggest that VEGF(164) is available in mediating vascular changes and angiogenesis in the uterus during implantation and decidualization. This is consistent with coordinate expression of vegfr2, and nrp1, a VEGF(164)-specific receptor, in uterine endothelial cells. Their expression was low during the first 2 days of pregnancy followed by increases thereafter. With the initiation and progression of implantation (days 5-8), these genes were distinctly expressed in endothelial cells of the decidualizing stroma. Expression was more intense on days 6-8 at the mesometrial pole, the presumptive site of heightened angiogenesis and placentation. However, the expression was absent in the avascular primary decidual zone immediately surrounding the implanting embryo. Crosslinking experiments showed that (125)I-VEGF(165) binds to both NRP1 and VEGFR2 present in decidual endothelial cells. These results suggest that VEGF(164), NRP1 and VEGFR2 play a role in VEGF-induced vascular permeability and angiogenesis in the uterus required for implantation. genesis 26:213-224, 2000.  相似文献   

4.
During implantation in mice, tissue inhibitor of matrix metalloproteinases-3 is believed to play a key role in inhibiting matrix metalloproteinase activity associated with embryo invasion and tissue remodeling. The first objective of this study was to quantitatively compare the steady-state mRNA levels of tissue inhibitors of matrix metalloproteinases between segments of the mouse uterus undergoing decidualization compared to those that are not during early pregnancy plus oil-induced decidualization. Steady-state tissue inhibitor of metalloproteinase-3 mRNA levels were significantly greater in implantation compared to interimplantation areas on days 6 and 7 of pregnancy and in stimulated compared to nonstimulated uterine horns at 48 and 72 hr after artificial induction of decidualization. Steady-state tissue inhibitor of metalloproteinase-1 mRNA levels were significantly greater in implantation compared to interimplantation areas on days 5-8 of pregnancy and in stimulated compared to nonstimulated uterine horns at 24, 48, and 72 hr after oil stimulation. Therefore, the steady-state mRNA levels of tissue inhibitors of metalloproteinase-1 and -3 increased in the uterus during decidualization. The second objective of this study was to determine if transforming growth factor-beta1 influences tissue inhibitors of metalloproteinase mRNA concentrations in mouse endometrial stromal cells. As determined by Northern blot analyses, transforming growth factor beta1 significantly increased tissue inhibitors of matrix metalloproteinases-1 and -3 mRNA levels in cultured mouse endometrial stromal cells isolated from uteri sensitized for decidualization. On the other hand, interleukin-1, epidermal growth factor, and leukemia inhibitory factor had no effect. The results of this study further characterize the tissue inhibitor of metalloproteinase expression in the uterus during implantation and artificially induced decidualization and the potential control of their expression in the stroma by transforming growth factor.  相似文献   

5.
6.
7.
8.
Embryo implantation is an essential step for a successful pregnancy, and any defect in this process can lead to a range of pregnancy pathologies. The objective of this study was to explore the role of N‐myc downregulated gene 1 (NDRG1) in embryo implantation. It was found that uterine NDRG1 expression has a dynamic pattern during the estrous cycle in nonpregnant mice and that uterine NDRG1 expression was elevated during the implantation process in pregnant mice. The distinct accumulation of NDRG1 protein signals was observed in the primary decidual zone adjacent to the implanting embryo during early pregnancy. Furthermore, uterine NDRG1 expression could be induced by activated implantation or artificial decidualization in mice. Decreased uterine NDRG1 expression was associated with pregnancy loss in mice and was associated with recurrent miscarriages in humans. The in vitro decidualization of both mouse and human endometrial stromal cells (ESCs) was accompanied by increased NDRG1 expression and downregulated NDRG1 expression in ESCs effectively inhibited decidualization. Collectively, these data suggest that NDRG1 plays an important role in decidualization during the implantation process, and the abnormal expression of NDRG1 may be involved in pregnancy loss.  相似文献   

9.
The purpose of this study was to demonstrate the expression of nidogen-1 and nidogen-2 and their possible role in decidualization and implantation events during early pregnancy in rats. The tissue samples were examined from pregnant animals between gestational days 1-8 using immunocytochemistry. The uterine luminal epithelium, the glandular epithelium, and the myometrial smooth muscle cells stained strongly from gestational days 1-8 with both nidogen antibodies. At day 4 the decidual reaction areas began to appear in the stromal matrix and immunostaining of both nidogens revealed that the basement membrane of the surface epithelium was discontinuous. The differentiation of stromal cells into decidual cells was seen at gestational day 5 and both nidogens were weakly expressed in the decidualizing cells. At day 6, nidogen-2 immunoreactivity was higher in the primary decidual cells close to the embryo than nidogen-1, and during development of the decidual tissue both nidogens appeared in the endometrial stromal cells. At day 7, while expression of both nidogens declined in the primary decidual cells, their expression was markedly observed in the secondary decidual cells close to the myometrium. At day 8, expression of both nidogens was also observed to increase in the primary decidual cells. While nidogen-2 expression was seen in the parietal endoderm and primary ectoderm of the rat embryos at this developmental stage, nidogen-1 expression was only detected in the parietal endoderm. These results indicate that nidogen-1 and nidogen-2 could play important roles during embryogenesis, decidualization, and implantation in the endometrium of rat uterus.  相似文献   

10.
The uterus undergoes a series of dramatic changes in response to an implanting conceptus that, in some mammalian species, includes differentiation of the endometrial stroma into decidual tissue. This process, called decidualization, can be induced artificially in rodents indicating that the conceptus may not be essential for a proper maternal response in early pregnancy. In order to test this hypothesis, we determined if and how the conceptus affects uterine gene expression. We identified 5 genes (Angpt1, Angpt2, Dtprp, G1p2 and Prlpa) whose steady-state levels in the uterus undergoing decidualization depends on the presence of a conceptus. In situ hybridization revealed region-specific effects which suggested that various components of the conceptus and more than one signal from the conceptus are likely responsible for altering decidual cell function. Using cell culture models we found that trophoblast giant cells secrete a type I interferon-like molecule which can induce G1p2 expression in endometrial stromal cells. Finally, decidual Prlpa expression was reduced in the uterus adjacent to Hand1- and Ets2-deficient embryos, suggesting that normal trophoblast giant cells in the placenta are required for the conceptus-dependent effects on Prlpa expression in the mesometrial decidua. Overall, these results provide support for the hypothesis that molecular signals from the mouse conceptus have local effects on uterine gene expression during decidualization.  相似文献   

11.
12.
Embryo implantation into the maternal uterus is a decisive step for successful mammalian pregnancy. Osteopontin (OPN) is a member of the small integrin-binding ligand N-linked glycoprotein family and participates in cell adhesion and invasion. In this study, we showed that Opn mRNA levels are up-regulated in the mouse uterus on day 4 and at the implantation sites on days 5 and 8 of pregnancy. Immunohistochemistry localized the OPN protein to the glandular epithelium on day 4 and to the decidual zone on day 8 of pregnancy. OPN mRNA and proteins are induced by in vivo and in vitro decidualization. OPN expression in the endometrial stromal cells is regulated by progesterone, a key regulator during decidualization. As a secreted protein, the protein level of OPN in the uterine cavity is enriched on day 4, and in vitro embryo culturing has indicated that OPN can facilitate blastocyst hatching and adhesion. Knockdown of OPN attenuates the adhesion and invasion of blastocysts in mouse endometrial stromal cells by suppressing the expression and enzymatic activity of matrix metalloproteinase-9 in the trophoblast. Our data indicated that OPN expression in the mouse uterus during early pregnancy is essential for blastocyst hatching and adhesion and that the knockdown of OPN in mouse endometrial stroma cells could lead to a restrained in vitro trophoblast invasion.  相似文献   

13.
Successful embryo implantation depends on intricate epithelial-stromal cross-talk. However, molecular modulators involved in this cellular communication remain poorly elucidated. Using multiple approaches, we have investigated the spatiotemporal expression and regulation of serine protease inhibitor Kazal type 3 (SPINK3) in mouse uterus during the estrous cycle and early pregnancy. In cycling mice, both SPINK3 mRNA and protein are only expressed during proestrus. In the pregnant mouse, the expression levels of both SPINK3 mRNA and protein increase on days 5-8 and then decline. Spink3 mRNA is expressed exclusively in the uterine glandular epithelium, whereas SPINK3 protein is localized on the surface of both luminal and glandular epithelium and in the decidua. Moreover, SPINK3 in the decidua has been observed in the primary decidual zone on day 6 and the secondary decidual zone on days 7-8; this is tightly associated with the progression of decidualization. SPINK3 has also been found in decidual cells of the artificially decidualized uterine horn but not control horn, whereas Spink3 mRNA localizes in the glands of both horns. The expression of endometrial Spink3 is not regulated by the blastocyst according to its expression pattern during pseudopregnancy and delayed implantation but is induced by progesterone and further augmented by a combination of progesterone and estrogen in ovariectomized mice. Thus, uterine-gland-derived SPINK3, as a new paracrine modulator, might play an important role in embryo implantation through its influence on stromal decidualization in mice.  相似文献   

14.
During implantation, matrix metalloproteinases are believed to play roles in the tissue remodelling that accompanies decidualization in the endometrium and in embryo invasion. The objective of this study was to characterize further the expression of matrix metalloproteinases 2 and 9 in the mouse uterus during early pregnancy and oil-induced decidualization. mRNA encoding matrix metalloproteinase 2 was detected in pregnant uteri and uteri undergoing oil-induced decidualization by northern blot analyses. The steady-state concentrations of mRNA encoding matrix metalloproteinase 2 did not change significantly in implantation compared with inter-implantation areas on days 5-8 of pregnancy but were significantly lower in stimulated compared with non-stimulated uterine horns during artificially induced decidualization. mRNA encoding matrix metalloproteinase 9 was also detected in uteri undergoing oil-induced decidualization but not in pregnant uteri. Its concentration was significantly greater in uterine horns undergoing oil-induced decidualization compared with control horns. Immunoreactive matrix metalloproteinases 2 and 9 were detected in the uterus during early pregnancy and oil-induced decidualization by immunohistochemistry, localized to the endometrial stroma, but the staining progressively became weaker and was absent in areas that had undergone decidualization. By day 8 of pregnancy and 72 h after the induction of decidualization, matrix metalloproteinase 2 and 9 proteins remained mainly in the region of non-decidualized stromal cells adjacent to the myometrium. In implantation segments, they were also localized to the region of the trophoblast giant cells. The second objective of the present study was to determine whether endometrial stromal cells isolated from uteri sensitized for decidualization express matrix metalloproteinases 2 and 9. Northern blot analyses and gelatin zymography showed that these cultured cells expressed matrix metalloproteinase 2 and 9, and that transforming growth factor beta1 significantly increased matrix metalloproteinase 9 expression. The results of the present study further characterize matrix metalloproteinases 2 and 9 expression in the uterus during implantation and artificially induced decidualization.  相似文献   

15.
腺病毒E4启动子结合蛋白-4(E4BP4)是哺乳动物细胞核内的一种碱性亮氨酸拉链(bZIP)型转录因子,参与调控细胞的存活和增殖。前期研究表明,它在孕第5天的小鼠着床位点有明显的高表达。本文分别应用Northem blot、in situ杂交、Western blot和免疫组织化学技术,对E4BP4基因在小鼠妊娠初始期子宫、着床期胚胎着床位点和非着床位点的表达情况进行了研究。观察发现:在小鼠妊娠初始期,E4BP4基因在子宫组织中的表达逐步上调;至胚胎着床期间,其在胚胎着床位点的表达水平进一步提高,并明显高于非着床位点;该基因的表达不依赖于胚胎,人工蜕膜化可诱导其表达:E4BP4 mRNA和E4BP4蛋白分子都主要分布于子宫腔周围的基质细胞和蜕膜细胞。上述结果提示E4BP4基因可能通过促进着床位点基质细胞的增殖和抑制蜕膜细胞的凋亡而参与胚胎着床过程的调控。  相似文献   

16.
Stathmin, a cytosolic phosphoprotein that regulates microtubule dynamics during cell-cycle progression, is abundantly expressed at embryo implantation sites in rats. Here, we characterized the expression of stathmin and its family genes in the murine uterus during the peri-implantation period. Stathmin protein was expressed in the glandular and luminal epithelium, blood vessels, and stromal cells on day 3 of pregnancy. On the day of implantation (day 5), stathmin was mainly localized in blood vessels in the endometrium. On day 7, intense stathmin expression was limited to capillary vessels and secondary decidual cells. Stathmin expression was higher at implantation sites than at uterine segments between implantation sites and increased during oil-induced decidualization. Although the artificially-induced deciduoma weights and number of implantation sites were similar between stathmin-knockout (KO) and wild-type (WT) mice, the stathmin-KO mice had fewer newborn pups (reduced by 30%). The expression of alkaline phosphatase, desmin, and cyclin D3 was attenuated in decidual zones of stathmin-KO mice. Messenger RNA level of the stathmin family gene, SCG10, was high at the time of decidualization in WT and stathmin-KO mice. In contrast, the others of stathmin family members, SCLIP and RB3 were highly expressed in stathmin-KO mice compared to WT mice. These results suggest that stathmin and stathmin family genes are expressed in the murine endometrium with enhanced expression in the implantation or the decidualization process.  相似文献   

17.
A critical role of progesterone (P) during early pregnancy is to induce differentiation of the endometrial stromal cells into specialized decidual cells that support the development of the implanting embryo. The P-induced signaling pathways that participate in the formation and function of the decidual cells remain poorly understood. We report here that the expression of the bone morphogenetic protein 2 (BMP2), a morphogen belonging to the TGFbeta superfamily, is induced downstream of P action in the mouse uterine stroma during decidualization. To determine the function of BMP2 during this differentiation process, we employed a primary culture system in which undifferentiated stromal cells isolated from pregnant mouse uterus undergo decidualization. When recombinant BMP2 was added to these stromal cultures, it markedly advanced the differentiation program. We also found that siRNA-mediated silencing of BMP2 expression in these cells efficiently blocked the differentiation process. Gene expression profiling experiments identified Wnt4 as a downstream target of BMP2 regulation in stromal cells undergoing decidualization. Attenuation of Wnt4 expression by siRNAs greatly reduced stromal differentiation in vitro, indicating that it is a key mediator of BMP2-induced decidualization. We also observed a remarkable induction in the expression of BMP2 in human endometrial stromal cells during decidualization in vitro in response to steroids and cAMP. Addition of BMP2 to these cultures led to a robust enhancement of Wnt4 expression and stimulated the differentiation process. Collectively, our studies uncovered a unique conserved pathway involving BMP2 and Wnt4 that mediates P-induced stromal decidualization in the mouse and the human.  相似文献   

18.
19.
20.
Impairment of decidualization in SRC-deficient mice   总被引:4,自引:0,他引:4  
Many signaling events induced by ovarian steroid hormones, cytokines, and growth factors are involved in the process of decidualization of human and rodent endometrium. We have reported previously that tyrosine kinase activation of SRC functionally participates in decidualization of human endometrial stromal cells. To address its essential role in decidualization, we examined, using wild-type and Src knockout mice, whether the process of decidualization was impaired in the absence of SRC. Immunohistochemistry using an antibody specific for the active form of SRC revealed that the active SRC was expressed prominently in the decidualizing stromal cells of the pregnant wild-type mouse. Moreover, the active SRC was upregulated in the uterine horn with artificially stimulated decidual reaction. In comparison with wild-type and Src heterozygous mice, the uterus of Src null mice showed no apparent decidual response following artificial stimulation. Ovarian steroid-induced decidualization in vitro, as determined by morphological changes and expression of decidual/trophoblast prolactin-related protein and prostaglandin-endoperoxide synthase 2 (also known as Cox2), both of which are decidualization markers, did not occur in a timely fashion in endometrial stromal cells isolated from the uteri of SRC-deficient mice compared to those from wild-type and Src heterozygous mice. Our results collectively suggest that SRC is an indispensable signaling component for maximal decidualization in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号