首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The guanine nucleotide exchange factor (GEF), SmgGDS, promotes nucleotide exchange by several GTPases in both the Ras and Rho families, especially by RhoA. Because RhoA plays an important role in regulating the contraction of vascular smooth muscle cells (VSMC), we examined the expression and function of SmgGDS in VSMC. SmgGDS is expressed in primary rat aortic smooth muscle (ASM) cells, primary bovine coronary artery smooth muscle (BCASM) cells, and the immortalized A7r5 line of rat ASM cells. Down regulation of SmgGDS expression by siRNA transfection resulted in a decrease of RhoA-GTP levels, enhanced cell spreading, and loss of the characteristic elongated morphology of VSMC. A similar morphology was also observed following treatment with the Rho-kinase inhibitor, Y27632. In contrast, cells with reduced RhoA expression exhibit an elongated shape. Subsequent immunofluorescent staining revealed a disruption of the myosin filament organization in the cells with reduced SmgGDS expression. Further studies analyzed the effect of SmgGDS siRNA transfection on the contraction of A7r5 cells and BCASM cells, which is also a Rho-regulated pathway. Transfection of SmgGDS siRNA or RhoA siRNA resulted in an impaired ability of the A7r5 and BCASM cells to undergo contraction in a collagen gel matrix. However, phosphorylation of the myosin-binding subunit of myosin phosphatase (MYPT1) or the light chain of myosin II (MLC) was not altered by downregulating expression of either SmgGDS or RhoA GTPase. Taken together these results identify SmgGDS as a novel regulator of myosin organization and contraction in VSMC.  相似文献   

2.
ABSTRACT

To evaluate the effects of LncRNAZFAS1 on cell proliferation and tumor metastasis in non-small cell lung cancer (NSCLC), we detected the expression level of LncRNAZFAS1 in NSCLC-related tissues and cells. qRT-PCR results revealed that LncRNAZFAS1 in tumor tissues was significantly higher than that in normal lung tissue, especially significantly up-regulated in stage III / IV and in metastatic NSCLC tissues. LncRNAZFAS1 expression was dramatically up-regulated in 4 NSCLC-related cells (A549, SPC-A1, SK-MES-1, and NCI-H1299), with having the highest expression level in A549 cells. Furthermore, we implemented a knockdown of LncRNAZFAS1 in A549 cells, and the results of CCK8 and Transwell assays suggested that knockdown of LncRNAZFAS1 significantly inhibited NSCLC cell proliferation and metastasis. Next, we constructed a tumor xenograft model to evaluate the effect of LncRNAZFAS1 on the NSCLC cell proliferation in vivo. The results indicated that knockdown of LncRNAZFAS1 dramatically inhibited A549 cells proliferation and repressed tumor growth. Additionally, knockdown of LncRNAZFAS1 drastically weakened the expressions of MMP2, MMP9 and Bcl-2 proteins, whereas noticeably strengthened the expression of BAX protein. Our results altogether suggest that knockdown of LncRNAZFAS1 has a negative effect on the proliferation and metastasis of NSCLC cell, which implying LncRNAZFAS1 is a potential unfavorable biomarker in patients with NSCLC.  相似文献   

3.
Sip1/tuftelin‐interacting protein (STIP), a multidomain nuclear protein, is a novel factor associated with the spliceosome, yet its role and molecular function in cancer remain unknown. In this study, we show, for the first time, that STIP is overexpressed in non‐small cell lung cancer (NSCLC) tissues compared to adjacent normal lung tissues. The depletion of endogenous STIP inhibited NSCLC cell proliferation in vitro and in vivo, caused cell cycle arrest and induced apoptosis. Cell cycle arrest at the G2/M phase was associated with the expression and activity of the cyclin B1‐CDK1 (cyclin‐dependent kinase 1) complex. We also provide evidence that STIP knockdown induced apoptosis by activating both caspase‐9 and caspase‐3 and by altering the Bcl‐2/Bax expression ratio. RNA sequencing data indicated that the MAPK mitogen‐activated protein kinases, Wnt, PI3K/AKT, and NF‐κB (nuclear factor kappa‐light‐chain‐enhancer of activated B cells) signalling pathways might be involved in STIP‐mediated tumour regulation. Collectively, these results suggest that STIP may be a novel potential diagnostic and therapeutic target for NSCLC.  相似文献   

4.
To observe in vivo cell cycle perturbation in the chemotherapy of lung cancer, tumour cell kinetics during the first course of chemotherapy were measured in seven patients with histologically-verified non-small cell lung cancer. The tumour cells were aspirated from six lymph nodes and one subcutaneous nodule both prior to treatment and twice weekly after the administration of chemotherapeutic agents. The nuclear DNA content of aspirated tumour cells was measured with a scanning microdensitometer at a wavelength of 550 nm after the modified Feulgen reaction. The cell population in cell cycle was estimated with a cumulated percentage scale. Marked cell cycle perturbation occurred within one week after initiation of chemotherapy. There was a decrease in the G1 cell population, from 70.6 +/- 9.1% to 26.1 +/- 11.4%, and a corresponding increase of cells in G2-M phase, from 21.4 +/- 8.7% to 63.7 +/- 10.0%. The proportion of cells in S phase was slightly increased from 8.0 +/- 1.5% to 10.1 +/- 3.2% during this period. The degree of cell cycle changes was unrelated to the clinical response to chemotherapy.  相似文献   

5.
6.
Lung cancer is globally widespread and associated with high morbidity and mortality. DDA1 (DET1 and DDB1 associated 1) was first discovered and registered in the GenBank database by our colleagues. DDA1, an evolutionarily conserved gene, might have significant functions. Recent reports have demonstrated that DDA1 is linked to the ubiquitin–proteasome pathway and facilitates the degradation of target proteins. However, the function of DDA1 in lung cancer was previously unknown. This study aimed to investigate whether DDA1 contributes to tumorigenesis and progression of lung cancer. We found that the expression of DDA1 in normal lung cells and tissue was significantly lower than that in lung cancer and was associated with poor prognosis. DDA1 overexpression promoted proliferation of lung tumour cells and facilitated cell cycle progression in vitro and subcutaneous xenograft tumour progression in vivo. Mechanistically, this was associated with the regulation of S phase and cyclins including cyclin D1/D3/E1. These results indicate that DDA1 promotes lung cancer progression, potentially through promoting cyclins and cell cycle progression. Therefore, DDA1 may be a potential novel target for lung cancer treatment, and a biomarker for tumour prognosis.  相似文献   

7.
Ubiquitin activating enzyme 2 (UBA2) is a basic component of E1-activating enzyme in the SUMOylation system. Expression and function of UBA2 in human cancers are largely unknown. In this study we investigate UBA2 expression the function in human non–small-cell lung cancer. Immunochemistry study showed that UBA2 was overexpressed in cancer tissues (53.3%, 40 of 75) compared with normal lung tissues (14.3%, 4 of 28) (P < 0.05). Immunostaining of UBA2 was mainly detected in nucleus. Overexpression of UBA2 in cancer tissues was significantly associated with poor differentiation, large tumor size ( > 5.0 cm), higher T stages (T3 + 4), lymph node metastasis and advanced TNM stages (III + IV). In vitro study showed that UBA2 was expressed in A549, 95D, H1975, and H1299 cells. Knockdown of UBA2 in A549 cells significantly inhibited cancer cell proliferation and upregulated cancer cell apoptosis (P < 0.05). Cell cycle analysis showed that knockdown of UBA2 in A549 cell significantly increased the G1 and G2/M phase cells and reduced the S phase cells (P < 0.05). Gene expression profile after knockdown of UBA2 in A549 cells showed that the most related function was cell cycle, cell death and survival, and cellular growth and proliferation. Western blot analysis study showed that knockdown of UBA2 significantly inhibited expression of poly(ADP-ribose) polymerase 1, mini-chromosome maintenance 7 (MCM7), MCM2, MCM3 and MCM7. These results indicated that UBA2 was a critical cell cycle and proliferation regulator and may be a novel cancer marker in this malignant tumor.  相似文献   

8.
9.
10.
Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer. Ubiquitination is closely related to the development of lung cancer. However, the biological importance of newly discovered ubiquitin-specific peptidase (USP) 52 (USP52) in NSCLC remained unclear. Here, our findings identify USP52 as a novel tumor suppressor of NSCLC, the low expression of USP52 predicts a poor prognosis for NSCLC patients. The present study demonstrates that USP52 inhibits cancer cell proliferation through down-regulation of cyclin D1 (CCND1) as well as AKT/mTOR signaling pathway inhibition. Meanwhile, USP25 also suppresses NSCLC progression via enhancing phosphatase and tensin homolog (PTEN) stability in cancer cells, which further indicates the significance/importance of USP52 in NSCLC suppression.  相似文献   

11.
12.
13.
WD‐repeat protein 79 (WDR79), a member of the WD‐repeat protein family, acts as a scaffold protein, participating in telomerase assembly, Cajal body formation and DNA double‐strand break repair. Here, we first report that WDR79 is frequently overexpressed in cell lines and tissues derived from non‐small cell lung cancer (NSCLC). Knockdown of WDR79 significantly inhibited the proliferation of NSCLC cells in vitro and in vivo by inducing cell cycle arrest and apoptosis. WD‐repeat protein 79 ‐induced cell cycle arrest at the G0/G1 phase was associated with the expression of G0/G1‐related cyclins and cyclin‐dependent kinase complexes. We also provide evidence that WDR79 knockdown induces apoptosis via a mitochondrial pathway. Collectively, these results suggest that WDR79 is involved in the tumorigenesis of NSCLC and is a potential novel diagnostic marker and therapeutic target for NSCLC.  相似文献   

14.
Normal cell-cycle progression is a crucial task for every multicellular organism, as it determines body size and shape, tissue renewal and senescence, and is also crucial for reproduction. On the other hand, dysregulation of the cell-cycle progression leading to uncontrolled cell proliferation is the hallmark of cancer. Therefore, it is not surprising that it is a tightly regulated process, with multifaceted and very complex control mechanisms. It is now well established that one of those mechanisms relies on ion channels, and in many cases specifically on potassium channels. Here, we summarize the possible mechanisms underlying the importance of potassium channels in cell-cycle control and briefly review some of the identified channels that illustrate the multiple ways in which this group of proteins can influence cell proliferation and modulate cell-cycle progression.  相似文献   

15.
Genes integrated near the telomeres of budding yeast have a variegated pattern of gene repression that is mediated by the silent information regulatory proteins Sir2p, Sir3p, and Sir4p. Immunolocalization and fluorescence in situ hybridization (FISH) reveal 6-10 perinuclear foci in which silencing proteins and subtelomeric sequences colocalize, suggesting that these are sites of Sir-mediated repression. Telomeres lacking subtelomeric repeat elements and the silent mating locus, HML, also localize to the periphery of the nucleus. Conditions that disrupt telomere proximal repression disrupt the focal staining pattern of Sir proteins, but not necessarily the localization of telomeric DNA. To monitor the telomere-associated pools of heterochromatin-binding proteins (Sir and Rap1 proteins) during mitotic cell division, we have performed immunofluorescence and telomeric FISH on populations of yeast cells synchronously traversing the cell cycle. We observe a partial release of Rap1p from telomeres in late G2/M, although telomeres appear to stay clustered during G2-phase and throughout mitosis. A partial release of Sir3p and Sir4p during mitosis also occurs. This is not observed upon HU arrest, although other types of DNA damage cause a dramatic relocalization of Sir and Rap1 proteins. The observed cell cycle dynamics were confirmed by direct epifluorescence of a GFP-Rap1p fusion. Using live GFP fluorescence we show that the diffuse mitotic distribution of GFP-Rap1p is restored to the interphase pattern of foci in early G1-phase.  相似文献   

16.
Some key elements are common to two fundamental periodic regulatory processes; the circadian cycle and the cell cycle. Underlying mechanisms of coordination between the two processes are critical for proper cellular functioning and physiology. Disruption in the mechanisms of one process may affect the role of other that may direct critical physiological changes and may cause severe diseases like cancer, etc. More or less persuasive evidences evolve from the breast cancer research. In this mini review, we highlighted the molecular coordination’s of the elements of circadian cycle and the cell cycle and their altered expressions associated with the genesis and progression of breast cancer.  相似文献   

17.
Li JS  Zhu M  Tian D  Wang MX  Wang F  Li NP  Wu RL 《生理学报》2007,59(2):204-209
对糖原合酶激酶3β(glycogen synthase kinase 3β,6SK3β)在细胞增殖中的作用研究,在不同细胞系和不同刺激因素作用下得出了不同结论,本文旨在探讨GSK3β在人肺腺癌细胞系A549细胞生长中的直接作用。A549细胞瞬时转染持续激活型S9A-GSK3β以及显性负突变型KM-GSK3β两种GSK3β突变型质粒,改变GSK3β活性。24 h后,分别进行细胞计数,流式细胞术及Western blot检测。结果显示,增强GSK3β活性可导致细胞数量下降,G.期细胞百分比升高。细胞周期蛋白D1表达水平被GSK3β下调。结果提示,GSK3β可能以细胞周期蛋白D1依赖性方式引发A549细胞的G,期阻滞,从而发挥生长抑制效应。  相似文献   

18.
19.
Polo-like kinase 1 is a serine/threonine kinase which plays an essential role in mitosis and malignant transformation. The aim of this study was to investigate the prognostic significance of polo-like kinase 1 expression and determine its possibility as a therapeutic target in non-small cell lung cancer. Semi-quantitative RT-PCR assay was performed to detect polo-like kinase 1 mRNA expression in non-small cell lung cancer cells or tissues. Immunohistochemistry was performed to detect polo-like kinase 1 protein expression in 100 non-small cell lung cancer tissue samples, and the associations of polo-like kinase 1 expression with clinicopathological factors or prognosis of non-small cell lung cancer patients were evaluated. RNA interference was employed to inhibit endogenous polo-like kinase 1 expression and analyzed the effects of polo-like kinase 1 inhibition on the malignant phenotypes of non-small cell lung cancer cells including growth, apoptosis, radio- or chemoresistance. Also, the possible molecular mechanisms were also investigated. The levels of polo-like kinase 1 mRNA expression in non-small cell lung cancer cell lines or tissues were significantly higher than those in normal human bronchial epithelial cell line or corresponding non-tumor tissues. High polo-like kinase 1 expression was significantly correlated with advanced clinical stage, higher tumor classification and lymph node metastasis of non-small cell lung cancer patients (P = 0.001, 0.004 and 0.001, respectively). Meanwhile, high polo-like kinase 1 protein expression was also an independent prognostic molecular marker for non-small cell lung cancer patients (hazard ratio: 2.113; 95% confidence interval: 1.326-3.557; P = 0.017). Polo-like kinase 1 inhibition could significantly inhibit in vitro and in vivo proliferation, induce cell arrest of G2/M phase and apoptosis enhancement in non-small cell lung cancer cells, which might be activation of the p53 pathway and the Cdc25C/cdc2/cyclin B1 feedback loop. Further, inhibition of polo-like kinase 1 could enhance the sensitivity of non-small cell lung cancer cells to taxanes or irradiation. Thus, polo-like kinase 1 might be a prognostic marker and a chemo- or radiotherapeutic target for non-small cell lung cancer.  相似文献   

20.
Although the Eukaryotic Translation Initiation Factor 4 Gamma 1 (EIF4G1) has been found overexpressed in a variety of cancers, its role in non–small cell lung cancers (NSCLC) pathogenesis especially in immunoregulatory functions, its clinical relevance and therapeutic potential remain largely unknown. By using cancer patients tissue assays, the results indicate that EIF4G1 expressional levels are much higher in NSCLC tissues than in adjacent or normal lung tissues, which are also associated with NSCLC patient survival. By using an RNA-Sequencing based pipeline, the data show that EIF4G1 has a significant association with immune checkpoint molecules such as PD-1/PD-L1 in NSCLC. EIF4G1 small-molecule inhibitors effectively repress NSCLC growth in cell culture and xenograft animal models. Protein array results identify the signature of proteins controlled by EIF4G1 in NSCLC cells, in which new candidates such as MUC1 and NRG1 are required for NSCLC survival and tumorigenesis with clinical relevance. Taken together, these results have for the first time demonstrated the immunoregulatory functions, clinical relevance and therapeutic potential of the EIF4G1 network in NSCLC, which may represent a promising and novel target to improve lung cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号