首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromatin remodeling complex PBAF(SWI/SNF) alters the structure of chromatin and controls gene expression. PHF10 is a specific subunit of PBAF complex and is expressed as four isoforms in mammalian cells. We demonstrated that all isoforms are expressed in various human cell types of different histological origins. All four isoforms are extensively phosphorylated and their phosphorylation level is depended on the cell type. Phosphorylation of PHF10 isoforms occurs while they are incorporated as a subunit of the PBAF complex, and therefore phosphorylation of PHF10 isoforms may play an essential role in regulation of PBAF complex’s function and mechanism of action.  相似文献   

2.
ATP-dependent SWI/SNF chromatin remodeling complexes utilize ATP hydrolysis to non-covalently change nucleosome-DNA interactions and are essential in stem cell development, organogenesis, and tumorigenesis. Biochemical studies show that SWI/SNF in mammalian cells can be divided into two subcomplexes BAF and PBAF based on the subunit composition. ARID2 or BAF200 has been defined as an intrinsic subunit of PBAF complex. However, the function of BAF200 in vivo is not clear. To dissect the possible role of BAF200 in regulating embryogenesis and organ development, we generated BAF200 mutant mice and found they were embryonic lethal. BAF200 mutant embryos exhibited multiple cardiac defects including thin myocardium, ventricular septum defect, common atrioventricular valve, and double outlet right ventricle around E14.5. Moreover, we also detected reduced intramyocardial coronary arteries in BAF200 mutants, suggesting that BAF200 is required for proper migration and differentiation of subepicardial venous cells into arterial endothelial cells. Our work revealed that PBAF complex plays a critical role in heart morphogenesis and coronary artery angiogenesis.  相似文献   

3.
Unfolding of the gene expression program that converts precursor cells to their terminally differentiated counterparts is critically dependent on the nucleosome-remodeling activity of the mammalian SWI/SNF complex. The complex can be powered by either of two alternative ATPases, BRM or BRG1. BRG1 is critical for development and the activation of tissue specific genes and is found in two major stable configurations. The complex of BRG1-associated factors termed BAF is the originally characterized form of mammalian SWI/SNF. A more recently recognized configuration shares many of the same subunits but is termed PBAF in recognition of a unique subunit, the polybromo protein (PBRM1). Two other unique subunits, BRD7 and ARID2, are also diagnostic of PBAF. PBAF plays an essential role in development, apparent from the embryonic lethality of Pbmr1-null mice, but very little is known about the role of PBAF, or its signature subunits, in tissue-specific gene expression in individual differentiation programs. Osteoblast differentiation is an attractive model for tissue-specific gene expression because the process is highly regulated and remains tightly synchronized over a period of several weeks. This model was used here, with a stable shRNA-mediated depletion approach, to examine the role of the signature PBAF subunit, ARID2, during differentiation. This analysis identifies a critical role for ARID2-containing complexes in promoting osteoblast differentiation and supports a view that the PBAF subset of SWI/SNF contributes importantly to maintaining cellular identity and activating tissue-specific gene expression.  相似文献   

4.
5.
6.
7.
8.
It was found that, in the differentiated cells of mouse brain, the level of core (Brg1 and BAF155) and specific (BRD7, BAF180, and PHF10) subunits of the chromatin-remodeling complex PBAF is reduced compared to the undifferentiated proliferating cells. Phosphorylation of PBAF complex subunits is required for maintaining their stability in differentiated brain cells.  相似文献   

9.
The mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) families of ATP-dependent chromatin remodeling enzymes are established co-regulators of gene expression. mSWI/SNF complexes can be assembled into three major subfamilies: BAF (BRG1 or BRM-Associated Factor), PBAF (Polybromo containing BAF), or ncBAF (non-canonical BAF) that are distinguished by the presence of mutually exclusive subunits. The mechanisms by which each subfamily contributes to the establishment or function of specific cell lineages are poorly understood. Here, we determined the contributions of the BAF, ncBAF, and PBAF complexes to myoblast proliferation via knock down (KD) of distinguishing subunits from each complex. KD of subunits unique to the BAF or the ncBAF complexes reduced myoblast proliferation rate, while KD of PBAF-specific subunits did not affect proliferation. RNA-seq from proliferating KD myoblasts targeting Baf250A (BAF complex), Brd9 (ncBAF complex), or Baf180 (PBAF complex) showed mis-regulation of a limited number of genes. KD of Baf250A specifically reduced the expression of Pax7, which is required for myoblast proliferation, concomitant with decreased binding of Baf250A to and impaired chromatin remodeling at the Pax7 gene promoter. Although Brd9 also bound to the Pax7 promoter, suggesting occupancy by the ncBAF complex, no changes were detected in Pax7 gene expression, Pax7 protein expression or chromatin remodeling at the Pax7 promoter upon Brd9 KD. The data indicate that the BAF subfamily of the mSWI/SNF enzymes is specifically required for myoblast proliferation via regulation of Pax7 expression.  相似文献   

10.
11.
12.
13.
14.
15.
Chromatin remodelling complexes alter the structure of chromatin and have central roles in all DNA-templated activities, including regulation of gene expression and DNA repair. Mutations in subunits of the PBAF (polybromo/Brg1-associated factor) or SWI/SNF-B remodelling complex, including BAF180, are frequently associated with cancer. There are six potential acetyl-lysine-binding BDs (bromodomains) in BAF180, which may function to target the PBAF complex to promoters or sites of DNA repair. In the present review, we discuss what is currently known about the BDs of BAF180 and their potential significance in cancer.  相似文献   

16.
17.
18.
Cancer development is a complex process involving both genetic and epigenetic changes. The SWI/SNF (switch/sucrose non-fermentable) chromatin remodelling complex, one of the most studied ATP-dependent complexes, plays an important role in coordinating chromatin structural stability, gene expression and post-translational modifications. The SWI/SNF complex can be classified into BAF, PBAF and GBAF according to their constituent subunits. Cancer genome sequencing studies have shown a high incidence of mutations in genes encoding subunits of the SWI/SNF chromatin remodelling complex, with abnormalities in one or more of these genes present in nearly 25% of all cancers, which indicating that stabilizing normal expression of genes encoding subunits in the SWI/SNF complex may prevent tumorigenesis. In this paper, we will review the relationship between the SWI/SNF complex and some clinical tumours and its mechanism of action. The aim is to provide a theoretical basis to guide the diagnosis and treatment of tumours caused by mutations or inactivation of one or more genes encoding subunits of the SWI/SNF complex in the clinical setting.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号