首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deletion of putative transmembrane helix III from the lactose permease of Escherichia coli results in complete loss of transport activity. Similarly, replacement of this region en bloc with 23 contiguous Ala, Leu, or Phe residues abolishes active lactose transport. The observations suggest that helix III may contain functionally important residues; therefore, this region was subjected to Cys-scanning mutagenesis. Using a functional mutant devoid of Cys residues (C-less permease) each residue from Tyr 75 to Leu 99 was individually replaced with Cys. Twenty-one of the 25 mutants accumulate lactose to > 70% of the steady-state exhibited by C-less permease, and an additional 3 mutants transport to lower, but significant levels (40-60% of C-less). Cys replacement for Leu 76 results in low transport activity (18% of C-less). However, when placed in the wild-type background, mutant Leu 76-->Cys exhibits highly significant rates of transport (55% of wild type) and steady-state levels of lactose accumulation (65% of wild type). Immunoblots reveal that the mutants are inserted into the membrane at concentrations comparable to wild type. Studies with N-ethylmaleimide show that mutant Gly 96-->Cys is rapidly inactivated, whereas the other single-Cys mutants are not altered significantly by the alkylating agent. Moreover, the rate of inactivation of Gly 96-->Cys permease is enhanced at least 2-fold in the presence of beta-galactopyranosyl 1-thio-beta, D-galactopyranoside. The observations demonstrate that although no residue per se appears to be essential, structural properties of helix III are important for active lactose transport.  相似文献   

2.
Using a functional lactose permease mutant devoid of Cys residues (C-less permease), each amino acid residue in the hydrophilic N-terminus and the first putative transmembrane helix was systematically replaced with Cys (from Tyr-2 to Trp-33). Twenty-three of 32 mutants exhibit high lactose accumulation (70-100% or more of C-less), and an additional 8 mutants accumulate to lower but highly significant levels. Surprisingly, Cys replacement for Gly-24 or Tyr-26 yields fully active permease molecules, and permease with Cys in place of Pro-28 also exhibits significant transport activity, although previous mutagenesis studies on these residues suggested that they may be required for lactose transport. As expected, Cys replacement for Pro-31 completely inactivates, in agreement with previous findings indicating that "helix-breaking" propensity at this position is necessary for full activity (Consler TG, Tsolas O, Kaback HR, 1991, Biochemistry 30:1291-1297). Twenty-nine mutants are present in the membrane in amounts comparable to C-less permease, whereas membrane levels of mutants Tyr-3-->Cys and Phe-12-->Cys are slightly reduced, as judged by immunological techniques. Dramatically, mutant Phe-9-->Cys is hardly detectable when expressed from the lac promoter/operator at a relatively low rate, but is present in the membrane in a stable form when expressed at a high rate from the T7 promoter. Finally, studies with N-ethylmalemide show that 6 Cys-replacement mutants that cluster at the C-terminal end of putative helix I are inactivated significantly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Using a functional lactose permease mutant devoid of Cys residues (C-less permease), each amino-acid residue in putative transmembrane helices IX and X and the short intervening loop was systematically replaced with Cys (from Asn-290 to Lys-335). Thirty-four of 46 mutants accumulate lactose to high levels (70-100% or more of C-less), and an additional 7 mutants exhibit lower but highly significant lactose accumulation. As expected (see Kaback, H.R., 1992, Int. Rev. Cytol. 137A, 97-125), Cys substitution for Arg-302, His-322, or Glu-325 results in inactive permease molecules. Although Cys replacement for Lys-319 or Phe-334 also inactivates lactose accumulation, Lys-319 is not essential for active lactose transport (Sahin-Tóth, M., Dunten, R.L., Gonzalez, A., & Kaback, H.R., 1992, Proc. Natl. Acad. Sci. USA 89, 10547-10551), and replacement of Phe-334 with leucine yields permease with considerable activity. All single-Cys mutants except Gly-296 --> Cys are present in the membrane in amounts comparable to C-less permease, as judged by immunological techniques. In contrast, mutant Gly-296 --> Cys is hardly detectable when expressed at a relatively low rate from the lac promoter/operator but present in the membrane in stable form when expressed at a high rate from T7 promoter. Finally, studies with N-ethylmaleimide (NEM) show that only a few mutants are inactivated significantly. Remarkably, the rate of inactivation of Val-315 --> Cys permease is enhanced at least 10-fold in the presence of beta-galactopyranosyl 1-thio-beta-D-galactopyranoside (TDG) or an H+ electrochemical gradient (delta mu-H+). The results demonstrate that only three residues in this region of the permease -Arg-302, His-322, and Glu-325-are essential for active lactose transport. Furthermore, the enhanced reactivity of the Val-315 --> Cys mutant toward NEM in the presence of TDG or delta mu-H+ probably reflects a conformational alteration induced by either substrate binding or delta mu-H+.  相似文献   

4.
Lactose permease (LacY) of Escherichia coli is not only a paradigm for secondary transporters but also for difficulties in two-dimensional (2D) crystallization. In this work we present the progresses achieved in the observation of 2D crystals of wild-type LacY by atomic force microscopy (AFM). Crystals were obtained following reconstitution of LacY in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes. Proteolipid sheets (PLSs) 6.4 nm in height were obtained after spreading the samples onto mica. Observations were carried out in liquid medium and in contact mode (CM-AFM). When the crystalline surfaces of the PLSs were imaged regular packing arrangements were observed. The back-Fourier transformation revealed the existence of various orientations mostly consistent with crystals possessing p2 symmetry and unit-cell dimensions: a=13.15 nm, b=16.74 nm, gamma=116 degrees. The characteristics, size, and shape of the repetitive motif could be compatible with dimers of this protein. These preliminary results are compared and discussed with previously reported 2D crystals observed by electron microscopy.  相似文献   

5.
In this work, we will describe in quantitative terms the unspecific recognition between lactose permease (LacY) of Escherichia coli, a polytopic model membrane protein, and one of the main components of the inner membrane of this bacterium. Supported lipid bilayers of 1‐palmitoyl‐2‐oleoyl‐sn‐glycero‐3‐phosphoethanolamine (POPE) and 1‐palmitoyl‐2‐oleoyl‐sn‐glycero‐3‐phosphoglycerol (POPG) (3:1, mol/mol) in the presence of Ca2+ display lateral phase segregation that can be distinguished by atomic force microscopy (AFM) as well as force spectroscopy. LacY shows preference for fluid (Lα) phases when it is reconstituted in POPE : POPG (3:1, mol/mol) proteoliposomes at a lipid‐to‐protein ratio of 40. When the lipid‐to‐protein ratio is decreased down to 0.5, two domains can be distinguished by AFM. While the upper domain is formed by self‐segregated units of LacY, the lower domain is constituted only by phospholipids in gel (Lβ) phase. On the one hand, classical differential scanning calorimetry (DSC) measurements evidenced the segregation of a population of phospholipids and point to the existence of a boundary region at the lipid–protein interface. On the other hand, Förster Resonance Energy Transfer (FRET) measurements in solution evidenced that POPE is selectively recognized by LacY. A binary pseudophase diagram of POPE : POPG built from AFM observations enables to calculate the composition of the fluid phase where LacY is inserted. These results are consistent with a model where POPE constitutes the main component of the lipid–LacY interface segregated from the fluid bulk phase where POPG predominates. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Protein stability, as measured by irreversible protein aggregation, is one of the central difficulties in the handling of detergent-solubilized membrane proteins. We present a quantitative analysis of the stability of the Escherichia coli lactose (lac) permease and a series of lac permease fusion proteins containing an insertion of cytochromeb562, T4 lysozyme or β-lactamase in the central hydrophilic loop of the permease. The stability of the proteins was evaluated under a variety of storage conditions by both a qualitative SDS-PAGE assay and by a quantitative hplc assay. Long-chain maltoside detergents were more effective at maintaining purified protein in solution than detergents with smaller head groups and/or shorter alkyl tails. A full factorial experiment established that the proteins were insensitive to sodium chloride concentrations, but greatly stabilized by glycerol, low temperature and the combination of glycerol and low temperature. The accurate quantitation of the protein by absorbance spectroscopy required exclusion of all contact with clarified polypropylene or polyvinyl chloride (PVC) materials. Although some of the fusion proteins were more prone to aggregation than the wild-type permease, the stability of a fusion protein containing a cytochromeb562 insertion was indistinguishable from that of native lac permease.  相似文献   

7.
By using a lactose permease mutant containing a single Cys residue in place of Val 331 (helix X), conformational changes induced by ligand binding were studied. With right-side-out membrane vesicles containing Val 331-->Cys permease, lactose transport is inactivated by either N-ethylmaleimide (NEM) or 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin (CPM). Remarkably, beta,D-galactopyranosyl 1-thio-beta,D-galactopyranoside (TDG) enhances the rate of inactivation by CPM, a hydrophobic sulfhydryl reagent, whereas NEM inactivation is attenuated by the ligand. Val 331-->Cys permease was then purified and studied in dodecyl-beta,D-maltoside by site-directed fluorescence spectroscopy. The reactivity of Val 331-->Cys permease with 2-(4'-maleimidylanilino)-naphthalene-6-sulfonic acid (MIANS) is not changed over a low range of TDG concentrations (< 0.8 mM), but the fluorescence of the MIANS-labeled protein is quenched in a saturable manner (apparent Kd approximately equal to 0.12 mM) without a change in emission maximum. In contrast, over a higher range of TDG concentrations (1-10 mM), the reactivity of Val 331-->Cys permease with MIANS is enhanced and the emission maximum of MIANS-labeled permease is blue shifted by 3-7 nm. Furthermore, the fluorescence of MIANS-labeled Val 331 -->Cys permease is quenched by both acrylamide and iodide, but the former is considerably more effective. A low concentration of TDG (0.2 mM) does not alter quenching by either compound, whereas a higher concentration of ligand (10 mM) decreases the quenching constant for iodide by about 50% and for acrylamide by about 20%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We describe the design and characterization of a set of fusion proteins of the Escherichia coli lactose (lac) permease in which a set of five different soluble “carrier” proteins (cytochromeb562, flavodoxin, T4 lysozyme, β-lactamase and 70 kDa heat shock ATPase domain) were systematically inserted into selected loop positions of the transporter. The design goal was to increase the exposed hydrophilic surface area of the permease, while minimizing the internal flexibility of the resulting fusion proteins in order to improve the crystallization properties of the membrane protein. Fusion proteins with insertions into the central hydrophilic loop of the lac permease were active in transport lactose, although only the fusion proteins with E. coli cytochromeb562, E. coli flavodoxin or T4 lysozyme were expressed at near wild-type lac permease levels. Eight other loop positions were tested with these three carriers, leading to the identification of additional fusion proteins that were active and well-expressed. By combining the results from the single carrier insertions, we have expressed functional “double fusion” proteins containing cytochromeb562 domains inserted in two different loop positions.  相似文献   

9.
Binding of alpha- and beta-D-galactopyranosides with different hydrophobic aglycons was compared using substrate protection against N-ethylmaleimide alkylation of single-Cys148 lactose permease. As demonstrated previously, methyl- or allyl-substituted alpha-D-galactopyranosides exhibit a 60-fold increase in binding affinity (K(D) = 0.5 mM), relative to galactose (K(D) = 30 mM), while methyl beta-D-galactopyranoside binds only 3-fold better. In the present study, galactopyranosides with cyclohexyl or phenyl substitutions, both in alpha and beta anomeric configurations, were synthesized. Surprisingly, relative to methyl alpha-D-galactopyranoside, binding of cyclohexyl alpha-D-galactopyranoside to lactose permease is essentially unchanged (K(D) = 0.4 mM), and phenyl alpha-D-galactopyranoside exhibits only a modest increase in binding affinity (K(D) = 0.15 mM). Nitro- or methyl-substituted phenyl alpha-D-galactopyranosides bind with significantly higher affinities (K(D) = 0.014-0.067 mM), and the strongest binding is observed with analogues containing para substituents. In contrast, D-galactopyranosides with a variety of large hydrophobic substituents (isopropyl, cyclohexyl, phenyl, o- or p-nitrophenyl) in beta anomeric configuration exhibit uniformly weak binding (K(D) = 1.0-2.3 mM). The results confirm and extend previous observations that hydrophobic aglycons of D-galactopyranosides increase binding affinity, with a clear predilection toward alpha-substituted sugars. In addition, the data suggest that the primary interaction between the permease and hydrophobic aglycons is directed toward the carbon atom bonded to the anomeric oxygen. The different positioning of this carbon atom in alpha- or beta-D-galactopyranosides thus may provide a rationale for the characteristic binding preference of the permease for alpha anomers.  相似文献   

10.
Zhao M  Kálai T  Hideg K  Altenbach C  Hubbell WL  Kaback HR 《Biochemistry》2000,39(37):11381-11388
A series of nitroxide spin-labeled alpha- or beta-galactopyranosides and a nitroxide spin-labeled beta-glucopyranoside have been synthesized and examined for binding to the lactose permease of Escherichia coli. Out of the twelve nitroxide spin-labeled galactopyranosides synthesized, 1-oxyl-2, 5, 5-trimethyl-2-[3-nitro-4-N-(hexyl-1-thio-beta-D-galactopyranosid-1 -yl )]aminophenyl pyrrolidine (NN) exhibits the highest affinity for the permease based on the following observations: (a) the analogue inhibits lactose transport with a K(I) about 7 microM; (b) NN blocks labeling of single-Cys148 permease with 2-(4'-maleimidylanilino) naphthalene-6-sulfonic acid (MIANS) with an apparent affinity of about 12 microM; (c) electron paramagnetic resonance demonstrates binding of the spin-labeled sugar by purified wild-type permease in a manner that is reversed by nonspin-labeled ligand. The equilibrium dissociation constant (K(D)) is about 23 microM and binding stoichiometry is approximately unity. In contrast, the nitroxide spin-labeled glucopyranoside does not inhibit active lactose transport or labeling of single-Cys148 permease with MIANS. It is concluded that NN binds specifically to lac permease with an affinity in the low micromolar range. Furthermore, affinity of the permease for the spin-labeled galactopyranosides is directly related to the length, hydrophobicity, and geometry of the linker between the galactoside and the nitroxide spin-label.  相似文献   

11.
Biochemical, luminescence and mass spectroscopy approaches indicate that Trp-151 (helix V) plays an important role in hydrophobic stacking with the galactopyranosyl ring of substrate and that Glu-269 (helix VIII) is essential for substrate affinity and specificity. The x-ray structure of the lactose permease (LacY) with bound substrate is consistent with these conclusions and suggests that a possible H-bond between Glu-269 and Trp-151 may play a critical role in the architecture of the binding site. We have now probed this relationship by exploiting the intrinsic luminescence of a single Trp-151 LacY with various replacements for Glu-269. Mutations at position 269 dramatically alter the environment of Trp-151 in a manner that correlates with binding affinity of LacY substrates. Furthermore, chemical modification of Trp-151 with N-bromosuccinimide indicates that Glu-269 forms an H-bond with the indole N. It is concluded that 1) an H-bond between the indole N and Glu-269 optimizes the formation of the substrate binding site in the inward facing conformation of LacY, and 2) the disposition of the residues implicated in sugar binding in different conformers suggests that sugar binding by LacY involves induced fit.  相似文献   

12.
Techniques for the solubilization and fractionation of integral membrane proteins have been developed in recent years. A small portion of membrane protein (about 2%, proteolipid fraction) will partition into chloroform or 1-butanol, and, in several cases, these proteins retain functional activity. A virtually complete solubilization can be achieved at neutral pH by use of aprotic solvents, like hexamethylphosphoric triamide or N-methylpyrrolidone. At relatively low concentrations (< 3 M) aprotic solvents inhibited β-D-galactoside transport by whole cells and the derivative membrane vesicles of Escherichia coli, but this inhibition could be largely reversed by a simple washing procedure. At higher concentrations of aprotic solvent (5–6 M), 50–80% of the total protein of lactose transport-positive membrane vesicles was solubilized. When these extracts were added to intact lactose transport-negative membrane vesicles, lactose transport was reconstituted, the required energy being provided by either respiration (e.g., addition of D-lactate) or by a K+ diffusion potential established with the aid of valinomycin. The dicyclohexylcarbodiimide (DCCD)-reactive subunit of the E. coli ATPase complex was found to partition into chloroform, and to be amenable to further purification in organic solvent. Ether precipitation and chromatography on DEAE-cellulose and hydroxypropyl-Sephadex G-50 yielded an homogeneous polypeptide of an apparent molecular weight of 9,000. The purified and unlabeled DCCD-reactive protein was incorporated into K+-loaded liposomes, and a membrane potential was generated by the addition of valinomycin. There are indications that the DCCD-reactive protein alone made the membrane specifically permeable for protons.  相似文献   

13.
When the two main energy yielding pathways, respiration and the membrane ATPase of Escherichia coli are poisoned, the lactose permease is unable to accomplish accumulative transport of thiogalactosides, but the efflux of preloaded substrate can be coupled to a transiently uphill transport of exogenous substrate. This transient uphill transport, called overshoot has been reexamined with the possibility of an obligate H+ cotransport in mind. Overshoot can be diminished but not suppressed by a proton-conducting uncoupler, carbonyl cyanide m chlorophenylhydrazone, (CCCP) and by a liposoluble cation, triphenyl-methyl phosphonium (TPMP+). The effect of other factors, such as temperature, amount of permease and pH were also explored. The overshoot was found to decrease with increasing pH, until at pH 8 it became negligible. This is in sharp contrast with the relatively flat pH dependence of uphill and downhill transport in unpoisoned cells. CCCP and TPMP+ had no inhibitory effect on the overshoot at pH 6 and below.  相似文献   

14.
ABSTRACT

Sliding clamps and clamp loaders are processivity factors required for efficient DNA replication. Sliding clamps are ring-shaped complexes that tether DNA polymerases to DNA to increase the processivity of synthesis. Clamp loaders assemble these ring-shaped clamps onto DNA in an ATP-dependent reaction. The overall process of clamp loading is dynamic in that protein–protein and protein–DNA interactions must actively change in a coordinated fashion to complete the mechanical clamp-loading reaction cycle. The clamp loader must initially have a high affinity for both the clamp and DNA to bring these macromolecules together, but then must release the clamp on DNA for synthesis to begin. Evidence is presented for a mechanism in which the clamp-loading reaction comprises a series of binding reactions to ATP, the clamp, DNA, and ADP, each of which promotes some change in the conformation of the clamp loader that alters interactions with the next component of the pathway. These changes in interactions must be rapid enough to allow the clamp loader to keep pace with replication fork movement. This review focuses on the measurement of dynamic and transient interactions required to assemble the Escherichia coli sliding clamp on DNA.  相似文献   

15.
The signal recognition particle (SRP) initiates the co-translational targeting of proteins to the plasma membrane in bacteria by binding to the N-terminal signal sequence emerging from the translating ribosome. SRP in Escherichia coli is composed of one protein, Ffh, and 4.5S RNA. In the present work, we probe the structure of Ffh alone and in the complex with 4.5S RNA by measuring distances between different positions within Ffh and between Ffh and 4.5S RNA by fluorescence resonance energy transfer (FRET). According to the FRET distances, NG and M domains in free Ffh are in close contact, as in the A/A arrangement in the crystal structure of Ffh from Thermus aquaticus, in agreement with the formation of a crosslink between cysteine residues at two critical positions in the G and M domains. Upon Ffh binding to 4.5S RNA or a 61 nucleotide fragment comprising internal loops A-C, the G and M domains move apart to assume a more open conformation, as indicated by changes of FRET distances. The movement is smaller when Ffh binds to a 49 nucleotide fragment of 4.5S RNA comprising only internal loops A and B, i.e. lacking the binding site of the NG domain. The FRET results suggest that in the SRP complex 4.5S RNA is present in a bent, rather than extended, conformation. The domain rearrangement of Ffh that takes place upon formation of the SRP is probably important for subsequent steps of membrane targeting, including interactions with the translating ribosome and the SRP receptor.  相似文献   

16.
A mechanism proposed for lactose/H(+) symport by the lactose permease of Escherichia coli indicates that lactose permease is protonated prior to ligand binding. Moreover, in the ground state, the symported H(+) is shared between His322 (helix X) and Glu269 (helix VIII), while Glu325 (helix X) is charge-paired with Arg302 (helix IX). Substrate binding at the outer surface between helices IV (Glu126) and V (Arg144, Cys148) induces a conformational change that leads to transfer of the H(+) to Glu325 and reorientation of the binding site to the inner surface. After release of substrate, Glu325 is deprotonated on the inside due to re-juxtapositioning with Arg302. The conservative mutation Glu269-->Asp causes a 50-100-fold decrease in substrate binding affinity and markedly reduced active lactose transport, as well as decreased rates of equilibrium exchange and efflux. Gly-scanning mutagenesis of helix VIII was employed systematically with mutant Glu269-->Asp in an attempt to rescue function, and two mutants with increased activity are identified and characterized. Mutant Thr266-->Gly/Met267-->Gly/Glu269-->Asp binds ligand with increased affinity and catalyzes active lactose transport with a marked increase in rate; however, little improvement in efflux or equilibrium exchange is observed. In contrast, mutant Gly262-->Ala/Glu269-->Asp exhibits no improvement in ligand binding but a small increase in the rate of active transport; however, an increase in the steady-state level of accumulation, as well as efflux and equilibrium exchange is observed. Remarkably, when the two sets of mutations are combined, all translocation reactions are rescued to levels approximating those of wild-type permease. The findings support the contention that Glu269 plays a pivotal role in the mechanism of lactose/H(+) symport. Moreover, the results suggest that the two classes of mutants rescue activity by altering the equilibrium between outwardly and inwardly facing conformations of the permease such that impaired protonation and/or H(+) transfer is enhanced from one side of the membrane or the other. When the two sets of mutants are combined, the equilibrium between outwardly and inwardly facing conformations and thus protonation and H(+) transfer are restored.  相似文献   

17.
Lactose killing is a peculiar phenomenon in which 80 to 98% of the Escherichia coli cells taken from a lactose-limited chemostat die when plated on standard lactose minimal media. This unique form of suicide is caused by the action of the lactose permease. Since uptake of either lactose or galactose by the lactose permease caused death, the action of rapid transport across the membrane must be the cause of the phenomenon. Alternative causes of lactose killing, such as accumulation of toxic metabolic intermediates or action of the beta-galactosidase, have been eliminated. It is proposed that rapid uptake of sugars by the lactose permease disrupts membrane function, perhaps causing collapse of the membrane potential.  相似文献   

18.
Biochemical and structural work has revealed the importance of phospholipids in biogenesis, folding and functional modulation of membrane proteins. Therefore, the nature of protein-phospholipid interaction is critical to understand such processes. Here, we have studied the interaction of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) mixtures with the lactose permease (LacY), the sugar/H+ symporter from Escherichia coli and a well characterized membrane transport protein. FRET measurements between single-W151/C154G LacY reconstituted in a lipid mixture composed of POPE and POPG at different molar ratios and pyrene-labeled PE or PG revealed a different phospholipid distribution between the annular region of LacY and the bulk lipid phase. Results also showed that both PE and PG can be part of the annular region, being PE the predominant when the PE:PG molar ratio mimics the membrane of E. coli. Furthermore, changes in the thermotropic behavior of phospholipids located in this annular region confirm that the interaction between LacY and PE is stronger than that of LacY and PG. Since PE is a proton donor, the results obtained here are discussed in the context of the transport mechanism of LacY.  相似文献   

19.
Isothermal titration calorimetry has been applied to characterize the thermodynamics of ligand binding to wild-type lactose permease (LacY) and a mutant (C154G) that strongly favors an inward facing conformation. The affinity of wild-type or mutant LacY for ligand and the change in free energy (DeltaG) upon binding are similar. However, with the wild type, the change in free energy upon binding is due primarily to an increase in the entropic free energy component (TDeltaS), whereas in marked contrast, an increase in enthalpy (DeltaH) is responsible for DeltaG in the mutant. Thus, wild-type LacY behaves as if there are multiple ligand-bound conformational states, whereas the mutant is severely restricted. The findings also indicate that the structure of the mutant represents a conformational intermediate in the overall transport cycle.  相似文献   

20.
Kwaw I  Sun J  Kaback HR 《Biochemistry》2000,39(11):3134-3140
The N- and C-terminal halves of lactose permease, each with a single-Cys residue in a cytoplasmic loop, were coexpressed, and cross-linking was studied in the absence or presence of ligand. Out of the 68 paired-Cys mutants in cytoplasmic loops IV/V and VIII/IX or X/XI, three pairs in loop IV/V and X/XI, (i) Arg135 --> Cys/Thr338 --> Cys, (ii) Arg134 --> Cys/Val343 --> Cys, and (iii) Arg134 --> Cys/Phe345 --> Cys, form a spontaneous disulfide bond, indicating that loops IV/V and X/XI are in close proximity. In addition, specific paired-Cys residues in loop IV/V (132-138) and loop VIII/IX (282-290) or loop X/XI (335-345) cross-link with iodine and/or the homobifunctional cross-linking agents N, N'-o-phenylenedimaleimide, N,N'-p-phenylenedimaleimide, and 1, 6-bis(maleimido)hexane. The results demonstrate that loop IV/V is close to both loop VIII/IX and loop X/XI. On the other hand, similar though less extensive cross-linking studies indicate that neither the N terminus nor loop II/III appear to be close to loops VIII/IX or X/XI. The findings suggest that the longer cytoplasmic loops are highly flexible and interact in a largely random fashion. However, although a Cys residue at position 134 in loop IV/V, for example, is able to cross-link with a Cys residue at each position in loop VIII/IX or loop X/XI, Cys residues at other positions in loop IV/V exhibit markedly different cross-linking patterns. Therefore, although the domains appear to be very flexible, the interactions are not completely random, suggesting that there are probably at least some structural constraints that limit the degree of flexibility. In addition, evidence is presented suggesting that ligand binding induces conformational alterations between loop IV/V and loop VIII/IX or X/XI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号