首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is a member of the ATP-binding cassette (ABC) family of membrane transport proteins, most members of which function as ATP-dependent pumps. CFTR is unique among human ABC proteins in functioning not as a pump, but as an ion channel. Recent structural data has indicated that CFTR shares broadly similar overall architecture and ATP-dependent conformational changes as other ABC proteins. Functional investigations suggest that CFTR has a unique open portal connecting the cytoplasm to the transmembrane channel pore, that allows for a continuous pathway for Cl? ions to cross the membrane in one conformation. This lateral portal may be what allows CFTR to function as an ion channel rather than as a pump, suggesting a plausible mechanism by which channel function may have evolved in CFTR.  相似文献   

2.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a membrane-spanning adenosine 5′-triphosphate (ATP)-binding cassette (ABC) transporter. ABC transporters and other nuclear and cytoplasmic ABC proteins have ATPase activity that is coupled to their biological function. Recent studies with CFTR and two nonmembrane-bound ABC proteins, the DNA repair enzyme Rad50 and a structural maintenance of chromosome (SMC) protein, challenge the model that the function of all ABC proteins depends solely on their associated ATPase activity. Patch clamp studies indicated that in the presence of physiologically relevant concentrations of adenosine 5′-monophosphate (AMP), CFTR Cl channel function is coupled to adenylate kinase activity (ATP+AMP ⇆ 2 ADP). Work with Rad50 and SMC showed that these enzymes catalyze both ATPase and adenylate kinase reactions. However, despite the supportive electrophysiological results with CFTR, there are no biochemical data demonstrating intrinsic adenylate kinase activity of a membrane-bound ABC transporter. We developed a biochemical assay for adenylate kinase activity, in which the radioactive γ-phosphate of a nucleotide triphosphate could transfer to a photoactivatable AMP analog. UV irradiation could then trap the 32P on the adenylate kinase. With this assay, we discovered phosphoryl group transfer that labeled CFTR, thereby demonstrating its adenylate kinase activity. Our results also suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for adenylate kinase activity. These biochemical data complement earlier biophysical studies of CFTR and indicate that the ABC transporter CFTR can function as an adenylate kinase.  相似文献   

3.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl?channel in the ATP-binding cassette (ABC) transporter protein family. CFTR features the modular design characteristic of ABC transporters, which includes two membrane-spanning domains forming the channel pore, and two ABC nucleotide-binding domains that interact with ATP and contain the enzymatic activity coupled to normal gating. Like other ABC transporters CFTR is an ATPase (ATP + H2O → ADP + Pi). Recent work has shown that CFTR also possesses intrinsic adenylate kinase activity (ATP + AMP ? ADP + ADP). This finding raises important questions: How does AMP influence CFTR gating? Why does ADP inhibit CFTR current? Which enzymatic activity gates CFTR in vivo? Are there implications for other ABC transporters? This minireview attempts to shed light on these questions by summarizing recent advances in our understanding of the role of the CFTR adenylate kinase activity for channel gating.  相似文献   

4.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter superfamily, but little is known about how this ion channel that harbors an uninterrupted ion permeation pathway evolves from a transporter that works by alternately exposing its substrate conduit to the two sides of the membrane. Here, we assessed reactivity of intracellularly applied thiol-specific probes with cysteine residues substituted into the 12th transmembrane segment (TM12) of CFTR. Our experimental data showing high reaction rates of substituted cysteines toward the probes, strong blocker protection of cysteines against reaction, and reaction-induced alterations in channel conductance support the idea that TM12 of CFTR contributes to the lining of the ion permeation pathway. Together with previous work, these findings raise the possibility that pore-lining elements of CFTR involve structural components resembling those that form the substrate translocation pathway of ABC transporters. In addition, comparison of reaction rates in the open and closed states of the CFTR channel leads us to propose that upon channel opening, the wide cytoplasmic vestibule tightens and the pore-lining TM12 rotates along its helical axis. This simple model for gating conformational changes in the inner pore domain of CFTR argues that the gating transition of CFTR and the transport cycle of ABC proteins share analogous conformational changes. Collectively, our data corroborate the popular hypothesis that degradation of the cytoplasmic-side gate turned an ABC transporter into the CFTR channel.  相似文献   

5.
The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P1,P5-di(adenosine-5′) pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5′-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5′-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia.  相似文献   

6.
The cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel contains 12 transmembrane (TM) regions that are presumed to form the channel pore. However, little is known about the relative functional contribution of different TM regions to the pore. We have used patch clamp recording to investigate the functional consequences of point mutations throughout the six transmembrane regions in the N-terminal part of the CFTR protein (TM1-TM6). A range of specific functional assays compared the single channel conductance, anion binding, and anion selectivity properties of different channel variants. Overall, our results suggest that TM1 and -6 play dominant roles in forming the channel pore and determining its functional properties, with TM5 perhaps playing a lesser role. In contrast, TM2, -3, and -4 appear to play only minor supporting roles. These results define transmembrane regions 1 and 6 as major contributors to the CFTR channel pore and have strong implications for emerging structural models of CFTR and related ATP-binding cassette proteins.  相似文献   

7.
Impairment of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel causes cystic fibrosis, a fatal genetic disease. Here, to gain insight into CFTR structure and function, we exploited interspecies differences between CFTR homologues using human (h)-murine (m) CFTR chimeras containing murine nucleotide-binding domains (NBDs) or regulatory domain on an hCFTR backbone. Among 15 hmCFTR chimeras analyzed, all but two were correctly processed, one containing part of mNBD1 and another containing part of mNBD2. Based on physicochemical distance analysis of divergent residues between human and murine CFTR in the two misprocessed hmCFTR chimeras, we generated point mutations for analysis of respective CFTR processing and functional properties. We identified one amino acid substitution (K584E-CFTR) that disrupts CFTR processing in NBD1. No single mutation was identified in NBD2 that disrupts protein processing. However, a number of NBD2 mutants altered channel function. Analysis of structural models of CFTR identified that although Lys584 interacts with residue Leu581 in human CFTR Glu584 interacts with Phe581 in mouse CFTR. Introduction of the murine residue (Phe581) in cis with K584E in human CFTR rescued the processing and trafficking defects of K584E-CFTR. Our data demonstrate that human-murine CFTR chimeras may be used to validate structural models of full-length CFTR. We also conclude that hmCFTR chimeras are a valuable tool to elucidate interactions between different domains of CFTR.  相似文献   

8.
Point mutations within the pore region of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl? channel have previously been shown to alter the selectivity of the channel between different anions, suggesting that part of the pore may form an anion 'selectivity filter'. However, the full extent of this selectivity filter region and the location of anion binding sites in the pore are currently unclear. As a result, comparisons between CFTR and other classes of Cl? channel of known structure are difficult. We compare here the effects of point mutations at each of eight consecutive amino acid residues (arginine 334-serine 341) in the crucial sixth transmembrane region (TM6) of CFTR. Anion selectivity was determined using patch-clamp recording from inside-out membrane patches excised from transiently transfected mammalian cell lines. The results suggest that selectivity is predominantly controlled by a single site involving adjacent residues phenylalanine 337 and threonine 338, and that the selectivity conferred by this 'filter' region is modified by anion binding to flanking sites involving the more extracellular arginine 334 and the more intracellular serine 341. Other residues within this part of the pore play only minor roles in controlling anion permeability and conductance. Our results support a model in which specific TM6 residues make important contributions to a single, localized anion selectivity filter in the CFTR pore, and also contribute to multiple anion binding sites both within and on either side of the filter region.  相似文献   

9.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter superfamily. CFTR controls the flow of anions through the apical membrane of epithelia. Dysfunctional CFTR causes the common lethal genetic disease cystic fibrosis. Transitions between open and closed states of CFTR are regulated by ATP binding and hydrolysis on the cytosolic nucleotide binding domains, which are coupled with the transmembrane (TM) domains forming the pathway for anion permeation. Lack of structural data hampers a global understanding of CFTR and thus the development of “rational” approaches directly targeting defective CFTR. In this work, we explored possible conformational states of the CFTR gating cycle by means of homology modeling. As templates, we used structures of homologous ABC transporters, namely TM(287–288), ABC-B10, McjD, and Sav1866. In the light of published experimental results, structural analysis of the transmembrane cavity suggests that the TM(287–288)-based CFTR model could correspond to a commonly occupied closed state, whereas the McjD-based model could represent an open state. The models capture the important role played by Phe-337 as a filter/gating residue and provide structural information on the conformational transition from closed to open channel.  相似文献   

10.
The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is a member of the ATP-binding cassette (ABC) protein family, most members of which act as active transporters. Actively transporting ABC proteins are thought to alternate between "outwardly facing" and "inwardly facing" conformations of the transmembrane substrate pathway. In CFTR, it is assumed that the outwardly facing conformation corresponds to the channel open state, based on homology with other ABC proteins. We have used patch clamp recording to quantify the rate of access of cysteine-reactive probes to cysteines introduced into two different transmembrane regions of CFTR from both the intracellular and extracellular solutions. Two probes, the large [2-sulfonatoethyl]methanethiosulfonate (MTSES) molecule and permeant Au(CN)(2)(-) ions, were applied to either side of the membrane to modify cysteines substituted for Leu-102 (first transmembrane region) and Thr-338 (sixth transmembrane region). Channel opening and closing were altered by mutations in the nucleotide binding domains of the channel. We find that, for both MTSES and Au(CN)(2)(-), access to these two cysteines from the cytoplasmic side is faster in open channels, whereas access to these same sites from the extracellular side is faster in closed channels. These results are consistent with alternating access to the transmembrane regions, however with the open state facing inwardly and the closed state facing outwardly. Our findings therefore prompt revision of current CFTR structural and mechanistic models, as well as having broader implications for transport mechanisms in all ABC proteins. Our results also suggest possible locations of both functional and dysfunctional ("vestigial") gates within the CFTR permeation pathway.  相似文献   

11.
The cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel that regulates the flow of anions across epithelia. Mutations in CFTR cause cystic fibrosis. CFTR belongs to the ATP-binding cassette transporter superfamily, and gating is controlled by phosphorylation and ATP binding and hydrolysis. Recently obtained ATP-free and ATP-bound structures of zebrafish CFTR revealed an unwound segment of transmembrane helix (TM) 8, which appears to be a unique feature of CFTR not present in other ATP-binding cassette transporter structures. Here, using μs-long molecular dynamics simulations, we investigate the interactions formed by this TM8 segment with nearby helices in both ATP-free and ATP-bound states. We highlight ATP-dependent interactions as well as the structural role of TM8 in maintaining the functional architecture of the pore via interactions common to both the ATP-bound and ATP-free state. The results of the molecular dynamics simulations are discussed in the context of the gating mechanism of CFTR.  相似文献   

12.
Peptide toxins from animal venom have been used for many years for the identification and study of cation-permeable ion channels. However, no peptide toxins have been identified that interact with known anion-selective channels, including cystic fibrosis transmembrane conductance regulator (CFTR), the protein defective in cystic fibrosis and a member of the ABC transporter superfamily. Here, we describe the identification and initial characterization of a novel 3.7-kDa peptide toxin, GaTx1, which is a potent and reversible inhibitor of CFTR, acting from the cytoplasmic side of the membrane. Thus, GaTx1 is the first peptide toxin identified that inhibits a chloride channel of known molecular identity. GaTx1 exhibited high specificity, showing no effect on a panel of nine transport proteins, including Cl(-) and K(+) channels, and ABC transporters. GaTx1-mediated inhibition of CFTR channel activity is strongly state-dependent; both potency and efficacy are reduced under conditions of elevated [ATP], suggesting that GaTx1 may function as a non-competitive inhibitor of ATP-dependent channel gating. This tool will allow the application of new quantitative approaches to study CFTR structure and function, particularly with respect to the conformational changes that underlie transitions between open and closed states.  相似文献   

13.
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) that affect protein structure and channel function. CFTR, localized in the apical membrane within cholesterol and sphingomyelin rich regions, is an ABC transporter that functions as a chloride channel. Here, we report that expression of defective CFTR (ΔF508CFTR or decreased CFTR) in human lung epithelial cell lines increases sphingolipid synthesis and mass of sphinganine, sphingosine, four long-chain saturated ceramide species, C16 dihydroceramide, C22, C24, C26-ceramide, and sphingomyelin, and decreases mass of C18 and unsaturated C18:1 ceramide species. Decreased expression of CFTR is associated with increased expression of long-chain base subunit 1 of serine-palmitoyl CoA, the rate-limiting enzyme of de novo sphingolipid synthesis and increased sphingolipid synthesis. Overexpression of ΔF508CFTR in bronchoalveolar cells that do not express CFTR increases sphingolipid synthesis and mass, whereas overexpression of wild-type CFTR, but not of an unrelated ABC transporter, ABCA7, decreases sphingolipid synthesis and mass. The data are consistent with a model in which CFTR functions within a feedback system that affects sphingolipid synthesis and in which increased sphingolipid synthesis could reflect a physiological response to sequestration of sphingolipids or altered membrane structure.  相似文献   

14.
The mechanism of Cl ion permeation through single cystic fibrosis transmembrane conductance regulator (CFTR) channels was studied using the channel-blocking ion gluconate. High concentrations of intracellular gluconate ions cause a rapid, voltage-dependent block of CFTR Cl channels by binding to a site ∼40% of the way through the transmembrane electric field. The affinity of gluconate block was influenced by both intracellular and extracellular Cl concentration. Increasing extracellular Cl concentration reduced intracellular gluconate affinity, suggesting that a repulsive interaction occurs between Cl and gluconate ions within the channel pore, an effect that would require the pore to be capable of holding more than one ion simultaneously. This effect of extracellular Cl is not shared by extracellular gluconate ions, suggesting that gluconate is unable to enter the pore from the outside. Increasing the intracellular Cl concentration also reduced the affinity of intracellular gluconate block, consistent with competition between intracellular Cl and gluconate ions for a common binding site in the pore. Based on this evidence that CFTR is a multi-ion pore, we have analyzed Cl permeation and gluconate block using discrete-state models with multiple occupancy. Both two- and three-site models were able to reproduce all of the experimental data with similar accuracy, including the dependence of blocker affinity on external Cl (but not gluconate) ions and the dependence of channel conductance on Cl concentration. The three-site model was also able to predict block by internal and external thiocyanate (SCN) ions and anomalous mole fraction behavior seen in Cl/SCN mixtures.  相似文献   

15.
Substituted cysteine accessibility mutagenesis (SCAM) has been used widely to identify pore-lining amino acid side chains in ion channel proteins. However, functional effects on permeation and gating can be difficult to separate, leading to uncertainty concerning the location of reactive cysteine side chains. We have combined SCAM with investigation of the charge-dependent effects of methanethiosulfonate (MTS) reagents on the functional permeation properties of cystic fibrosis transmembrane conductance regulator (CFTR) Cl channels. We find that cysteines substituted for seven out of 21 continuous amino acids in the eleventh and twelfth transmembrane (TM) regions can be modified by external application of positively charged [2-(trimethylammonium)ethyl] MTS bromide (MTSET) and negatively charged sodium [2-sulfonatoethyl] MTS (MTSES). Modification of these cysteines leads to changes in the open channel current–voltage relationship at both the macroscopic and single-channel current levels that reflect specific, charge-dependent effects on the rate of Cl permeation through the channel from the external solution. This approach therefore identifies amino acid side chains that lie within the permeation pathway. Cysteine mutagenesis of pore-lining residues also affects intrapore anion binding and anion selectivity, giving more information regarding the roles of these residues. Our results demonstrate a straightforward method of screening for pore-lining amino acids in ion channels. We suggest that TM11 contributes to the CFTR pore and that the extracellular loop between TMs 11 and 12 lies close to the outer mouth of the pore.  相似文献   

16.
The human cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the superfamily of adenosine triphosphate (ATP)-binding cassette (ABC) transporter ATPases. This protein forms a Cl- channel with a complex regulation; gene mutations cause cystic fibrosis disease. We investigated the interaction between the protein and the flavone UCCF-029 using the patch-clamp technique in the excised inside-out configuration in order to study the molecular mechanism of action for this potentiator on completely phosphorylated channel (25 U/ml protein kinase A) and a relatively low level of ATP (0.3 mm). Low concentrations of UCCF-029 (<50 nm) increase the open probability (p o), favoring the channel transition to an activated state, while high UCCF-029 (>50 nm) levels determine inhibition of the CFTR by a reduction of the total open time. Our data suggest that this drug can potentiate CFTR by binding to a specific site on the nucleotide binding domain, promoting dimer formation. The response of CFTR to variable concentrations of ATP is not modified by application of the potentiator UCCF-029 at either low, activatory, concentration or high, inhibitory, levels. Hence, we conclude that the potentiator may not interfere with binding of ATP but probably acts at an independent site in the protein, interacting directly with CFTR to modulate channel activity.  相似文献   

17.
Background information. Cystic fibrosis results from mutations in the ABC transporter CFTR (cystic fibrosis transmembrane conductance regulator), which functions as a cAMP‐regulated anion channel. The most prevalent mutation in CFTR, the Phe508 deletion, results in the generation of a trafficking and functionally deficient channel. The cellular machineries involved in modulating CFTR trafficking and function have not been fully characterized. In the present study, we identified a role for the COPI (coatomer protein I) cellular trafficking machinery in the development of the CFTR polypeptide into a functional chloride channel. To examine the role of COPI in CFTR biosynthesis, we employed the cell line ldlF, which harbours a temperature‐sensitive mutation in ε‐COP, a COPI subunit, to inhibit COPI function and then determined whether the CFTR polypeptide produced from the transfected gene developed into a cAMP‐regulated chloride channel. Results. When COPI was inactivated in the ldlF cells by an elevated temperature pulse (39°C), the CFTR polypeptide was detected on the cell surface by immunofluorescence microscopy and cell‐surface biotinylation. Therefore, CFTR proceeded upstream in the secretory pathway in the absence of COPI function, a result demonstrated previously by others. In contrast, electrophysiological measurements indicated an absence of cAMP‐stimulated chloride efflux, suggesting that channel function was impaired. In comparison, expression of CFTR at the same elevated temperature (39°C) in an ε‐COP‐rescued cell line [ldlF(ldlF)], which has an introduced wild‐type ε‐COP gene in addition to the mutant ε‐COP gene, showed restoration of cAMP‐stimulated channel activity, confirming the requirement of COPI for channel function. Conclusions. These results therefore suggest that generation of the folded‐functional conformation of CFTR requires COPI.  相似文献   

18.
Cystic fibrosis is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). This protein belongs to the large ATP-binding cassette (ABC) family of transporters. Most patients with cystic fibrosis bear a mutation in the nucleotide-binding domain 1 (NBD1) of CFTR, which plays a key role in the activation of the channel function of CFTR. Determination of the three dimensional structure of NBD1 is essential to better understand its structure-function relationship, and relate it to the biological features of CFTR. In this paper, we report the first preparation of recombinant His-tagged NBD1, as a soluble, stable and isolated domain. The method avoids the use of renaturing processes or fusion constructs. ATPase activity assays show that the recombinant domain is functional. Using tryptophan intrinsic fluorescence, we point out that the local conformation, in the region of the most frequent mutation DeltaF508, could differ from that of the nucleotide-binding subunit of histidine permease, the only available ABC structure. We have undertaken three dimensional structure determination of NBD1, and the first two dimensional 15N-1H NMR spectra demonstrate that the domain is folded. The method should be applicable to the structural studies of NBD2 or of other NBDs from different ABC proteins of major biological interest, such as multidrug resistance protein 1 or multidrug resistance associated protein 1.  相似文献   

19.
Mammalian sperm must undergo a maturational process, named capacitation, in the female reproductive tract to fertilize the egg. Sperm capacitation is regulated by a cAMP/protein kinase A (PKA) pathway and involves increases in intracellular Ca2+, pH, Cl?, protein tyrosine phosphorylation, and in mouse and some other mammals a membrane potential hyperpolarization. The cystic fibrosis transmembrane conductance regulator (CFTR), a Cl? channel modulated by cAMP/PKA and ATP, was detected in mammalian sperm and proposed to modulate capacitation. Our whole‐cell patch‐clamp recordings from testicular mouse sperm now reveal a Cl? selective component to membrane current that is ATP‐dependent, stimulated by cAMP, cGMP, and genistein (a CFTR agonist, at low concentrations), and inhibited by DPC and CFTRinh‐172, two well‐known CFTR antagonists. Furthermore, the Cl? current component activated by cAMP and inhibited by CFTRinh‐172 is absent in recordings on testicular sperm from mice possessing the CFTR ΔF508 loss‐of‐function mutation, indicating that CFTR is responsible for this component. A Cl? selective like current component displaying CFTR characteristics was also found in wild type epididymal sperm bearing the cytoplasmatic droplet. Capacitated sperm treated with CFTRinh‐172 undergo a shape change, suggesting that CFTR is involved in cell volume regulation. These findings indicate that functional CFTR channels are present in mouse sperm and their biophysical properties are consistent with their proposed participation in capacitation. J. Cell. Physiol. 228: 590–601, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, also have adenylate kinase activity. All three ABC adenylate kinases bind and hydrolyze ATP in the absence of other nucleotides. However, little is known about how an ABC adenylate kinase interacts with ATP and AMP when both are present. Based on data from non-ABC adenylate kinases, we hypothesized that ATP and AMP mutually influence their interaction with CFTR at separate binding sites. We further hypothesized that only one of the two CFTR ATP-binding sites is involved in the adenylate kinase reaction. We found that 8-azidoadenosine 5′-triphosphate (8-N3-ATP) and 8-azidoadenosine 5′-monophosphate (8-N3-AMP) photolabeled separate sites in CFTR. Labeling of the AMP-binding site with 8-N3-AMP required the presence of ATP. Conversely, AMP enhanced photolabeling with 8-N3-ATP at ATP-binding site 2. The adenylate kinase active center probe P1,P5-di(adenosine-5′) pentaphosphate interacted simultaneously with an AMP-binding site and ATP-binding site 2. These results show that ATP and AMP interact with separate binding sites but mutually influence their interaction with the ABC adenylate kinase CFTR. They further indicate that the active center of the adenylate kinase comprises ATP-binding site 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号