首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MRX, an evolutionally conserved DNA damage response complex composed of Mre11, Rad50 and Xrs2, is involved in DNA double strand break (DSB) repair, checkpoint activation and telomere maintenance. At DSBs, MRX plays a role in generating single stranded DNA (ssDNA) and signalling cell cycle arrest. Here we investigated whether MRX also contributes to generating ssDNA or signalling cell cycle arrest at uncapped telomeres. To investigate the role of MRX, we generated a conditionally degradable Rad50 protein and combined this with cdc13-1, a temperature sensitive mutation in the Cdc13 telomere capping protein. We show that Rad50 does not contribute to ssDNA generation or cell cycle arrest in response to cdcl3-1 uncapped telomeres. Instead, we find that Rad50 inhibits ssDNA accumulation and promotes cdc13-1 cell viability, consistent with a major role for MRX in telomere capping.  相似文献   

2.
Shima H  Suzuki M  Shinohara M 《Genetics》2005,170(1):71-85
The Mre11/Rad50/Xrs2 (MRX) complex is involved in DNA damage repair, DNA damage response, telomere control, and meiotic recombination. Here, we constructed and characterized novel mutant alleles of XRS2. The alleles with mutations in the C-terminal conserved domain of Xrs2 were grouped into the same class. Mutant Xrs2 in this class lacked Mre11 interaction ability. The second class, lacking a C-terminal end, showed defects only in telomere control. A previous study showed that this C-terminal end contains a Tel1-association domain. These results indicate that Xrs2 contains two functional domains, Mre11- and Tel1-binding domains. While the Mre11-binding domain is essential for Xrs2 function, the Tel1-binding domain may be essential only for Tel1 function in telomere maintenance. The third class, despite containing a large deletion in the N-terminal region, showed no defects in DNA damage repair. However, some mutants, which showed a reduced level of Xrs2 protein, were partially defective in formation of meiotic DSBs and telomere maintenance. These defects were suppressed by overexpression of the mutant Xrs2 protein. This result suggests that the total amount of Xrs2 protein is a critical determinant for the function of the MRX complex especially with regard to telomere maintenance and meiotic DSB formation.  相似文献   

3.
Homologous recombination is triggered by nucleolytic degradation (resection) of DNA double‐strand breaks (DSBs). DSB resection requires the Mre11‐Rad50‐Xrs2 (MRX) complex, which promotes the activity of Exo1 nuclease through a poorly understood mechanism. Here, we describe the Mre11‐R10T mutant variant that accelerates DSB resection compared to wild‐type Mre11 by potentiating Exo1‐mediated processing. This increased Exo1 resection activity leads to a decreased association of the Ku complex to DSBs and an enhanced DSB resection in G1, indicating that Exo1 has a direct function in preventing Ku association with DSBs. Molecular dynamics simulations show that rotation of the Mre11 capping domains is able to induce unwinding of double‐strand DNA (dsDNA). The R10T substitution causes altered orientation of the Mre11 capping domain that leads to persistent melting of the dsDNA end. We propose that MRX creates a specific DNA end structure that promotes Exo1 resection activity by facilitating the persistence of this nuclease on the DSB ends, uncovering a novel MRX function in DSB resection.  相似文献   

4.
Wu D  Topper LM  Wilson TE 《Genetics》2008,178(3):1237-1249
Nonhomologous end joining (NHEJ) is an important DNA double-strand-break (DSB) repair pathway that requires three protein complexes in Saccharomyces cerevisiae: the Ku heterodimer (Yku70-Yku80), MRX (Mre11-Rad50-Xrs2), and DNA ligase IV (Dnl4-Lif1), as well as the ligase-associated protein Nej1. Here we use chromatin immunoprecipitation from yeast to dissect the recruitment and release of these protein complexes at HO-endonuclease-induced DSBs undergoing productive NHEJ. Results revealed that Ku and MRX assembled at a DSB independently and rapidly after DSB formation. Ligase IV appeared at the DSB later than Ku and MRX and in a strongly Ku-dependent manner. Ligase binding was extensive but slightly delayed in rad50 yeast. Ligase IV binding occurred independently of Nej1, but instead promoted loading of Nej1. Interestingly, dissociation of Ku and ligase from unrepaired DSBs depended on the presence of an intact MRX complex and ATP binding by Rad50, suggesting a possible role of MRX in terminating a NHEJ repair phase. This activity correlated with extended DSB resection, but limited degradation of DSB ends occurred even in MRX mutants with persistently bound Ku. These findings reveal the in vivo assembly of the NHEJ repair complex and shed light on the mechanisms controlling DSB repair pathway utilization.  相似文献   

5.
Studies of human Nijmegen breakage syndrome (NBS) cells have led to the proposal that the Mre11/Rad50/ NBS1 complex, which is involved in the repair of DNA double-strand breaks (DSBs), might also function in activating the DNA damage checkpoint pathways after DSBs occur. We have studied the role of the homologous budding yeast complex, Mre11/Rad50/Xrs2, in checkpoint activation in response to DSB-inducing agents. Here we show that this complex is required for phosphorylation and activation of the Rad53 and Chk1 checkpoint kinases specifically in response to DSBs. Consistent with defective Rad53 activation, we observed defective cell-cycle delays after induction of DSBs in the absence of Mre11. Furthermore, after gamma-irradiation phosphorylation of Rad9, which is an early event in checkpoint activation, is also dependent on Mre11. All three components of the Mre11/Rad50/Xrs2 complex are required for activation of Rad53, however, the Ku80, Rad51 or Rad52 proteins, which are also involved in DSB repair, are not. Thus, the integrity of the Mre11/Rad50/Xrs2 complex is specifically required for checkpoint activation after the formation of DSBs.  相似文献   

6.
Because DNA double-strand breaks (DSBs) are one of the most cytotoxic DNA lesions and often cause genomic instability, precise repair of DSBs is vital for the maintenance of genomic stability. Xrs2/Nbs1 is a multi-functional regulatory subunit of the Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex, and its function is critical for the primary step of DSB repair, whether by homologous recombination (HR) or non-homologous end joining. In human NBS1, mutations result truncation of the N-terminus region, which contains a forkhead-associated (FHA) domain, cause Nijmegen breakage syndrome. Here we show that the Xrs2 FHA domain of budding yeast is required both to suppress the imprecise repair of DSBs and to promote the robust activation of Tel1 in the DNA damage response pathway. The role of the Xrs2 FHA domain in Tel1 activation was independent of the Tel1-binding activity of the Xrs2 C terminus, which mediates Tel1 recruitment to DSB ends. Both the Xrs2 FHA domain and Tel1 were required for the timely removal of the Ku complex from DSB ends, which correlates with a reduced frequency of imprecise end-joining. Thus, the Xrs2 FHA domain and Tel1 kinase work in a coordinated manner to maintain DSB repair fidelity.  相似文献   

7.
Double-strand breaks (DSBs) elicit a DNA damage response, resulting in checkpoint-mediated cell-cycle delay and DNA repair. The Saccharomyces cerevisiae Sae2 protein is known to act together with the MRX complex in meiotic DSB processing, as well as in DNA damage response during the mitotic cell cycle. Here, we report that cells lacking Sae2 fail to turn off both Mec1- and Tel1-dependent checkpoints activated by a single irreparable DSB, and delay Mre11 foci disassembly at DNA breaks, indicating that Sae2 may negatively regulate checkpoint signalling by modulating MRX association at damaged DNA. Consistently, high levels of Sae2 prevent checkpoint activation and impair MRX foci formation in response to unrepaired DSBs. Mec1- and Tel1-dependent Sae2 phosphorylation is necessary for these Sae2 functions, suggesting that the two kinases, once activated, may regulate checkpoint switch off through Sae2-mediated inhibition of MRX signalling.  相似文献   

8.
DNA double strand breaks (DSB) are repaired by nonhomologous end-joining (NHEJ) or homologous recombination (HR). Recent genetic data in yeast shows that the choice between these two pathways for the repair of DSBs is via competition between the NHEJ protein, Ku, and the HR protein, Mre11/Rad50/Xrs2 (MRX) complex. To study the interrelationship between human Ku and Mre11 or Mre11/Rad50 (MR), we established an in vitro DNA end resection system using a forked model dsDNA substrate and purified human Ku70/80, Mre11, Mre11/Rad50, and exonuclease 1 (Exo1). Our study shows that the addition of Ku70/80 blocks Exo1-mediated DNA end resection of the forked dsDNA substrate. Although human Mre11 and MR bind to the forked double strand DNA, they could not compete with Ku for DNA ends or actively mediate the displacement of Ku from the DNA end either physically or via its exonuclease or endonuclease activity. Our in vitro studies show that Ku can block DNA resection and suggest that Ku must be actively displaced for DNA end processing to occur and is more complicated than the competition model established in yeast.  相似文献   

9.
Repair of double-strand DNA breaks (DSBs) by the homologous recombination (HR) pathway results in crossovers (COs) required for a successful first meiotic division. Mre11 is one member of the MRX/N (Mre11, Rad50, and Xrs2/Nbs1) complex required for meiotic DSB formation and for resection in Saccharomyces cerevisiae. In Caenorhabditis elegans, evidence for the MRX/N role in DSB resection is limited. We report the first separation-of-function allele, mre-11(iow1) in C. elegans, which is specifically defective in meiotic DSB resection but not in formation. The mre-11(iow1) mutants displayed chromosomal fragmentation and aggregation in late prophase I. Recombination intermediates and crossover formation was greatly reduced in mre-11(iow1) mutants. Irradiation-induced DSBs during meiosis failed to be repaired from early to middle prophase I in mre-11(iow1) mutants. In the absence of a functional HR, our data suggest that some DSBs in mre-11(iow1) mutants are repaired by the nonhomologous end joining (NHEJ) pathway, as removing NHEJ partially suppressed the meiotic defects shown by mre-11(iow1). In the absence of NHEJ and a functional MRX/N, meiotic DSBs are channeled to EXO-1-dependent HR repair. Overall, our analysis supports a role for MRE-11 in the resection of DSBs in middle meiotic prophase I and in blocking NHEJ.  相似文献   

10.
Double-strand breaks (DSBs), arising from exposure to exogenous clastogens or as a by-product of endogenous cellular metabolism, pose grave threats to genome integrity. DSBs can sever whole chromosomes, leading to chromosomal instability, a hallmark of cancer. Healing broken DNA takes time, and it is therefore essential to temporarily halt cell division while DSB repair is underway. The seminal discovery of cyclin-dependent kinases as master regulators of the cell cycle unleashed a series of studies aimed at defining how the DNA damage response network delays cell division. These efforts culminated with the identification of Cdc25, the protein phosphatase that activates Cdc2/Cdk1, as a critical target of the checkpoint kinase Chk1. However, regulation works both ways, as recent studies have revealed that Cdc2 activity and cell cycle position determine whether DSBs are repaired by non-homologous end-joining or homologous recombination (HR). Central to this regulation are the proteins that initiate the processing of DNA ends for HR repair, Mre11-Rad50-Nbs1 protein complex and Ctp1/Sae2/CtIP, and the checkpoint kinases Tel1/ATM and Rad3/ATR. Here, we review recent findings and provide insight on how proteins that regulate cell cycle progression affect DSB repair, and, conversely how proteins that repair DSBs affect cell cycle progression.  相似文献   

11.
Yeast Mre11 functions with Rad50 and Xrs2 in a complex that has pivotal roles in homologous recombination (HR) and non-homologous end-joining (NHEJ) DNA double-strand break (DSB) repair pathways. Vertebrate Mre11 is essential. Conditionally, MRE11 null chicken DT40 cells accumulate chromosome breaks and die upon Mre11 repression, showing frequent centrosome amplification. Mre11 deficiency also causes increased radiosensitivity and strongly reduced targeted integration frequencies. Mre11 is, therefore, crucial for HR and essential in mitosis through its role in chromosome maintenance by recombinational repair. Surprisingly perhaps, given the role of Mre11 in yeast NHEJ, disruption of NHEJ by deletion of KU70 greatly exacerbates the effects of MRE11 deficiency, revealing a significant Mre11-independent component of metazoan NHEJ.  相似文献   

12.
S. cerevisiae RAD50, MRE11, and XRS2 genes are required for telomere maintenance, cell cycle checkpoint signaling, meiotic recombination, and the efficient repair of DNA double-strand breaks (DSB)s by homologous recombination and nonhomologous end-joining (NHEJ). Here, we demonstrate that the complex formed by Rad50, Mre11, and Xrs2 proteins promotes intermolecular DNA joining by DNA ligase IV (Dnl4) and its associated protein Lif1. Our results show that the Rad50/Mre11/Xrs2 complex juxtaposes linear DNA molecules via their ends to form oligomers and interacts directly with Dnl4/Lif1. We also demonstrate that Rad50/Mre11/Xrs2-mediated intermolecular DNA joining is further stimulated by Hdf1/Hdf2, the yeast homolog of the mammalian Ku70/Ku80 heterodimer. These studies reveal specific functional interplay among the Hdf1/Hdf2, Rad50/Mre11/Xrs2, and Dnl4/Lif1 complexes in NHEJ.  相似文献   

13.
Double-strand breaks (DSBs) in chromosomes are the most challenging type of DNA damage. The yeast and mammalian Mre11-Rad50-Xrs2/Nbs1 (MRX/N)-Sae2/Ctp1 complex catalyzes the resection of DSBs induced by secondary structures, chemical adducts or covalently-attached proteins. MRX/N also initiates two parallel DNA damage responses—checkpoint phosphorylation and global SUMOylation—to boost a cell''s ability to repair DSBs. However, the molecular mechanism of this SUMO-mediated response is not completely known. In this study, we report that Saccharomyces cerevisiae Mre11 can non-covalently recruit the conjugated SUMO moieties, particularly the poly-SUMO chain. Mre11 has two evolutionarily-conserved SUMO-interacting motifs, Mre11SIM1 and Mre11SIM2, which reside on the outermost surface of Mre11. Mre11SIM1 is indispensable for MRX assembly. Mre11SIM2 non-covalently links MRX with the SUMO enzymes (E2/Ubc9 and E3/Siz2) to promote global SUMOylation of DNA repair proteins. Mre11SIM2 acts independently of checkpoint phosphorylation. During meiosis, the mre11SIM2 mutant, as for mre11S, rad50S and sae2Δ, allows initiation but not processing of Spo11-induced DSBs. Using MRX and DSB repair as a model, our work reveals a general principle in which the conjugated SUMO moieties non-covalently facilitate the assembly and functions of multi-subunit protein complexes.  相似文献   

14.
The Mre11-Rad50-Xrs2 (MRX) protein complex plays pivotal roles in meiotic recombination, repair of damaged DNA, telomere elongation, and cell cycle checkpoint control. Xrs2p is known to be essential for all the functions of the complex, but its role in the complex has not been clearly elucidated. A 32-amino acid region near the C terminus of Xrs2p was identified as an Mre11p-binding site. No more function of Xrs2p than translocation of Mre11p from the cytoplasm to the nucleus is necessary for response to DNA damage. However, domains in Xrs2p located both 49 amino acids upstream and 104 amino acids downstream of the Mre11p binding site are required for meiotic recombination and telomere elongation, respectively, in addition to the 32-amino acid region. These findings demonstrate that Xrs2p acts as a specificity factor that allows the MRX complex to function in meiotic recombination and in telomere elongation.  相似文献   

15.
Nonhomologous end joining (NHEJ) eliminates DNA double-strand breaks (DSBs) in bacteria and eukaryotes. In Saccharomyces cerevisiae, there are pairwise physical interactions among the core complexes of the NHEJ pathway, namely Yku70-Yku80 (Ku), Dnl4-Lif1 and Mre11-Rad50-Xrs2 (MRX). However, MRX also has a key role in the repair of DSBs by homologous recombination (HR). Here we have examined the assembly of NHEJ complexes at DSBs biochemically and by chromatin immunoprecipitation. Ku first binds to the DNA end and then recruits Dnl4-Lif1. Notably, Dnl4-Lif1 stabilizes the binding of Ku to in vivo DSBs. Ku and Dnl4-Lif1 not only initiate formation of the nucleoprotein NHEJ complex but also attenuate HR by inhibiting DNA end resection. Therefore, Dnl4-Lif1 plays an important part in determining repair pathway choice by participating at an early stage of DSB engagement in addition to providing the DNA ligase activity that completes NHEJ.  相似文献   

16.
Rad50, Mre11, and Xrs2 form a nuclease complex that functions in both nonhomologous end-joining (NHEJ) and recombinational repair of DNA double-strand breaks (DSBs). A search for highly expressed cDNAs that suppress the DNA repair deficiency of rad50 mutants yielded multiple isolates of two genes: EXO1 and TLC1. Overexpression of EXO1 or TLC1 increased the resistance of rad50, mre11, and xrs2 mutants to ionizing radiation and MMS, but did not increase resistance in strains defective in recombination (rad51, rad52, rad54, rad59) or NHEJ only (yku70, sir4). Increased Exo1 or TLC1 RNA did not alter checkpoint responses or restore NHEJ proficiency, but DNA repair defects of yku70 and rad27 (fen) mutants were differentially suppressed by the two genes. Overexpression of Exo1, but not mutant proteins containing substitutions in the conserved nuclease domain, increased recombination and suppressed HO and EcoRI endonuclease-induced killing of rad50 strains. exo1 rad50 mutants lacking both nuclease activities exhibited a high proportion of enlarged, G2-arrested cells and displayed a synergistic decrease in DSB-induced plasmid:chromosome recombination. These results support a model in which the nuclease activity of the Rad50/Mre11/Xrs2 complex is required for recombinational repair, but not NHEJ. We suggest that the 5'-3' exo activity of Exo1 is able to substitute for Rad50/Mre11/Xrs2 in rescission of specific classes of DSB end structures. Gene-specific suppression by TLC1, which encodes the RNA subunit of the yeast telomerase complex, demonstrates that components of telomerase can also impact on DSB repair pathways.  相似文献   

17.
The multifunctional Mre11-Rad50-Nbs1 (MRN) protein complex recruits ATM/Tel1 checkpoint kinase and CtIP/Ctp1 homologous recombination (HR) repair factor to double-strand breaks (DSBs). HR repair commences with the 5'-to-3' resection of DNA ends, generating 3' single-strand DNA (ssDNA) overhangs that bind Replication Protein A (RPA) complex, followed by Rad51 recombinase. In Saccharomyces cerevisiae, the Mre11-Rad50-Xrs2 (MRX) complex is critical for DSB resection, although the enigmatic ssDNA endonuclease activity of Mre11 and the DNA-end processing factor Sae2 (CtIP/Ctp1 ortholog) are largely unnecessary unless the resection activities of Exo1 and Sgs1-Dna2 are also eliminated. Mre11 nuclease activity and Ctp1/CtIP are essential for DSB repair in Schizosaccharomyces pombe and mammals. To investigate DNA end resection in Schizo. pombe, we adapted an assay that directly measures ssDNA formation at a defined DSB. We found that Mre11 and Ctp1 are essential for the efficient initiation of resection, consistent with their equally crucial roles in DSB repair. Exo1 is largely responsible for extended resection up to 3.1 kb from a DSB, with an activity dependent on Rqh1 (Sgs1) DNA helicase having a minor role. Despite its critical function in DSB repair, Mre11 nuclease activity is not required for resection in fission yeast. However, Mre11 nuclease and Ctp1 are required to disassociate the MRN complex and the Ku70-Ku80 nonhomologous end-joining (NHEJ) complex from DSBs, which is required for efficient RPA localization. Eliminating Ku makes Mre11 nuclease activity dispensable for MRN disassociation and RPA localization, while improving repair of a one-ended DSB formed by replication fork collapse. From these data we propose that release of the MRN complex and Ku from DNA ends by Mre11 nuclease activity and Ctp1 is a critical step required to expose ssDNA for RPA localization and ensuing HR repair.  相似文献   

18.
DNA double-strand breaks (DSB) are repaired through two different pathways, homologous recombination (HR) and nonhomologous end joining (NHEJ). Yeast Xrs2, a homolog of human Nbs1, is a component of the Mre11-Rad50-Xrs2 (MRX) complex required for both HR and NHEJ. Previous studies showed that the N-terminal forkhead-associated (FHA) domain of Xrs2/Nbs1 in yeast is not involved in HR, but is likely to be in NHEJ. In this study, we showed that the FHA domain of Xrs2 plays a critical role in efficient DSB repair by NHEJ. The FHA domain of Xrs2 specifically interacts with Lif1, a component of the ligase IV complex, Dnl4-Nej1-Lif1 (DNL). Lif1, which is phosphorylated in vivo, contains two Xrs2-binding regions. Serine 383 of Lif1 plays an important role in the interaction with Xrs2 as well as in NHEJ. Interestingly, the phospho-mimetic substitutions of serine 383 enhance the NHEJ activity of Lif1. Our results suggest that the phosphorylation of Lif1 at serine 383 is recognized by the Xrs2 FHA domain, which in turn may promote recruitment of the DNL complex to DSB for NHEJ. The interaction between Xrs2 and Lif1 through the FHA domain is conserved in humans; the FHA domain Nbs1 interacts with Xrcc4, a Lif1 homolog of human.  相似文献   

19.
Non-homologous DNA end joining   总被引:9,自引:0,他引:9  
DNA double-strand breaks (DSBs) are a serious threat for the cell and when not repaired or misrepaired can result in mutations or chromosome rearrangements and eventually in cell death. Therefore, cells have evolved a number of pathways to deal with DSB including homologous recombination (HR), single-strand annealing (SSA) and non-homologous end joining (NHEJ). In mammals DSBs are primarily repaired by NHEJ and HR, while HR repair dominates in yeast, but this depends also on the phase of the cell cycle. NHEJ functions in all kinds of cells, from bacteria to man, and depends on the structure of DSB termini. In this process two DNA ends are joined directly, usually with no sequence homology, although in the case of same polarity of the single stranded overhangs in DSBs, regions of microhomology are utilized. The usage of microhomology is common in DNA end-joining of physiological DSBs, such as at the coding ends in V(D)J (variable(diversity) joining) recombination. The main components of the NHEJ system in eukaryotes are the catalytic subunit of DNA protein kinase (DNA-PK(cs)), which is recruited by DNA Ku protein, a heterodimer of Ku70 and Ku80, as well as XRCC4 protein and DNA ligase IV. A complex of Rad50/Mre11/Xrs2, a family of Sir proteins and probably other yet unidentified proteins can be also involved in this process. NHEJ and HR may play overlapping roles in the repair of DSBs produced in the S phase of the cell cycle or at replication forks. Aside from DNA repair, NHEJ may play a role in many different processes, including the maintenance of telomeres and integration of HIV-1 genome into a host genome, as well as the insertion of pseudogenes and repetitive sequences into the genome of mammalian cells. Inhibition of NHEJ can be exploited in cancer therapy in radio-sensitizing cancer cells. Identification of all key players and fundamental mechanisms underlying NHEJ still requires further research.  相似文献   

20.
The repair of DNA double-strand breaks (DSBs) requires the activity of the Mre11/Rad50/Xrs2(Nbs1) complex. In Saccharomyces cerevisiae, this complex is required for both the initiation of meiotic recombination by Spo11p-catalyzed programmed DSBs and for break end resection, which is necessary for repair by homologous recombination. We report that Mre11p transiently associates with the chromatin of Spo11-dependent DSB regions throughout the genome. Mutant analyses show that Mre11p binding requires the function of all genes required for DSB formation, with the exception of RAD50. However, Mre11p binding does not require DSB formation itself, since Mre11p transiently associates with DSB regions in the catalysis-negative mutant spo11-Y135F. Mre11p release from chromatin is blocked in mutants that accumulate unresected DSBs. We propose that Mre11p is a component of a pre-DSB complex that assembles on the DSB sites, thus ensuring a tight coupling between DSB formation by Spo11p and the processing of break ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号