首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A peptide fragment of Mr 16 K was purified from the cyanogen bromide digest of human thyroglobulin either normally iodinated in vivo (0.21 % I) or highly iodinated in vitro (1.40 % I). This peptide segment represents in the native molecule a zone in which tyrosine residues are not or poorly accessible to iodination and consequently do not produce thyroxine. In contrast, after isolation from thyroglobulin and iodination in vitro, the peptide is capable of synthesizing thyroxine with a high efficiency. It is concluded that the peptide described which probably represents a potential hormone forming site in the whole thyroglobulin molecule should constitute a valuable model to study the mechanism of thyroxine formation in vitro.  相似文献   

2.
Myeloperoxidase (MPO), which displays considerable amino acid sequence homology with thyroid peroxidase (TPO) and lactoperoxidase (LPO), was tested for its ability to catalyze iodination of thyroglobulin and coupling of two diiodotyrosyl residues within thyroglobulin to form thyroxine. After 1 min of incubation in a system containing goiter thyroglobulin, I-, and H2O2, the pH optimum of MPO-catalyzed iodination was markedly acidic (approximately 4.0), compared to LPO (approximately 5.4) and TPO (approximately 6.6). The presence of 0.1 N Cl- or Br- shifted the pH optimum for MPO to about 5.4 but had little or no effect on TPO- or LPO-catalyzed iodination. At pH 5.4, 0.1 N Cl- and 0.1 N Br- had a marked stimulatory effect on MPO-catalyzed iodination. At pH 4.0, however, iodinating activity of MPO was almost completely inhibited by 0.1 N Cl- or Br-. Inhibition of chlorinating activity of MPO by Cl- at pH 4.0 has been previously described. When iodination of goiter thyroglobulin was performed with MPO plus the H2O2 generating system, glucose-glucose oxidase, at pH 7.0, the iodinating activity was markedly increased by 0.1 N Cl-. Under these conditions iodination and thyroxine formation were comparable to values observed with TPO. MPO and TPO were also compared for coupling activity in a system that measures coupling of diiodotyrosyl residues in thyroglobulin in the absence of iodination. MPO displayed very significant coupling activity, and, like TPO, this activity was stimulated by a low concentration of free diiodotyrosine (1 microM). The thioureylene drugs, propylthiouracil and methimazole, inhibited MPO-catalyzed iodination both reversibly and irreversibly, in a manner similar to that previously described for TPO-catalyzed iodination.  相似文献   

3.
Thyroglobulin (mol. wt. 660 kDa) is the specific protein of the thyroid gland in which are synthesized and stored the thyroid hormones (thyroxine and 3,5,3'-triiodothyronine). It is formed of equal-sized subunits (330 kDa) containing each identical polypeptide chains to which are associated two types of oligosaccharide units representing 8 to 10% by weight of the protein. The studies reported in this paper describe the presence in thyroglobulin of discrete hormonogenic sites. After chemical (CNBr) and enzymatic (trypsin and protease V8 of S. aureus) treatments of the protein, four different hormone-containing peptide segments have been isolated, purified and sequenced. They correspond to the hormonogenic tyrosine-containing sites of the protein. One tyrosine is located at 4 amino acid residues from the N-terminal asparagine of the chain and is a major site for thyroxine synthesis. Another one which represents the triiodothyronine site is situated 2 amino acids before the C-terminal lysine. Finally, two other sites, one of low affinity and the other of high affinity for iodine and thyroxine formation, are equally located in the C-terminal part of the chain. The hormone-forming regions localized at the opposite far ends of the thyroglobulin chain(s) likely represent zones more accessible to iodination and with a conformation suited for the coupling of iodotyrosine into iodothyronine residues and ultimately protease attack to release the free hormones into the circulation. The presence of hormonogenic sites of different affinities for iodine allows thyroglobulin to modulate adaptively its hormonogenic capacity to external iodine supply. The molecular mechanism of this process is still unknown.  相似文献   

4.
5.
A golgi-enriched subfraction was obtained from porcine thyroid glands by differential centrifugation. When incubated in a suitable medium, these vesicles were able to concentrate iodide from the medium and bind it to protein. The iodination process was inhibited by methylmercapto-imidazole and was increased by the addition of an H2O2 generating system to the medium. Analysis of the protein content of the vesicles revealed the presence of 18 and 12-13 S thyroglobulin molecules, lacking mannose residues, and containing only monoiodotyrosine. It is concluded that in vitro, iodination can begin before exocytosis, in the smooth-surfaced vesicles derived from the golgi apparatus, as soon as N-acetylglucosamine is incorporated onto the pre-thyroglobulin molecule.  相似文献   

6.
In most highly structured native proteins, as well as in thyroglobulin, the reactivity in vitro of the various tyrosyl residues toward iodine is widely different. The present work demonstrates that of nearly 70 tyrosyl residues present in rat thyroglobulin, there is one, residue number 5 from the NH2-terminal end, which has in vivo the highest affinity toward iodine, being the first one to be iodinated. In fact, when 6-(n-propyl)-2-thiouracil (PTU)-treated, iodine-deficient animals were injected with 125I and killed shortly after, we isolated from thyroid glands poorly iodinated thyroglobulin (about 1 iodine atom/thyroglobulin molecule), nearly 90% of the radioactivity of which was found as monoiodotyrosine. Although CNBr cleavage of this protein gave several fragments after gel electrophoresis only one of these, with apparent mass 27,000 Da, contained 125I. This fragment was isolated and fully characterized. Twelve cycles of automated Edman degradation were performed; the sequence found, i.e. N-I-F-E-X-Q-V-X-A-Q-X-L, indicated that the 27,000-Da fragment is the NH2 terminus of thyroglobulin. This portion of the polypeptide chain contains several tyrosyl residues which may well all be potentially involved in the early iodination of the protein. The observation that the removal of seven amino acids from the NH2 terminus is accompanied (at the fifth step) by the total disappearance of radioactivity in the resulting shortened peptide suggested that the fifth residue was the only one iodinated under these conditions. A second, more quantitative experiment was performed on thyroglobulin obtained from 6-(n-propyl)-2-thiouracil-treated animals whose death was postponed 24 h after the injection of 125I. In this case the radioactivity was found not only in a single CNBr fragment (27,000 Da) but also in other discrete species of lower molecular mass. The mixture of these peptides was subjected to seven steps of manual Edman degradation. Fragments before and after partial degradation were run in parallel on a polyacrylamide gel and the distribution of 125I compared. Besides some change in the background, the two profiles were identical except for the absence of the 27,000-Da species. This proves that all the 125I present in the 27,000-Da species was localized at the fifth residue, the same site at which the hormone molecule is preferentially synthesized under normal conditions. This result is not unexpected and is in accord with the known properties of thyroglobulin which has a polypeptide chain designed for efficient synthesis of the hormone even at low levels of iodination.  相似文献   

7.
A 19-residue, thyroxine (T4)-containing peptide, Tryp-T4, has been isolated from the tryptic digest of a low molecular weight, iodine-enriched fragment derived from 19S bovine thyroglobulin. This tryptic peptide represents the only site of significant iodination in the parent polypeptide fragment. The amino acid sequence of the tryptic peptide has been determined and is NH2-Asn-Ile-Phe-Glu-T4-Gln-Val-Asp-Ala-Gln-Pro-Leu-Arg-Pro-Cys-Glu-Leu-Gln- Arg-COOH. The carboxyl-terminal sequence of this peptide shows a high probability of a beta-turn. These findings establish the involvement of at least a single unique sequence within thyroglobulin in thyroxine biosynthesis and the general nature of a hormonogenic site within this protein. This sequence contains at least 30% of the thyroxine present in 19 S bovine thyroglobulin.  相似文献   

8.
H Hayashi  Y Ohmiya  S Suzuki 《FEBS letters》1991,292(1-2):168-170
Bullfrog thyroglobulin was digested with lysyl endopeptidase, known to be highly specific to cut the C-terminal side of lysine residue in protein, after reduction and carboxymethylation. We isolated one peptide which lacked the C-terminal lysine, and which corresponds to 103-129 of bovine thyroglobulin sequence. Tyrosine 130 in the mammalian thyroglobulin molecule is known to be an iodination site. These findings suggest that tyrosine 130 in frog thyroglobulin is a thyroid hormone generating site.  相似文献   

9.
Hormone-containing peptides from normal and goiter human thyroglobulins   总被引:1,自引:0,他引:1  
A series of low iodine human thyroglobulin samples derived from colloid-rich goiter tissue was examined by HPLC mapping of tryptic digests and compared to normal human thyroglobulin. These samples ranged in iodine content from 2 to 8 gram-atoms of iodine (g.a. I) per mole and were not further iodinated in vitro. Peptides containing the principal hormonogenic sequence were detected using the long wavelength absorbance of the iodotyrosine derivatives at 325 nm. Two such peptides were isolated and sequenced. Their thyroxine content was confirmed by radioimmunoassay. The number of 325-nm-absorbing peaks was significantly lower in the normally iodinated human thyroglobulin than that observed the thyroglobulins of cattle and dog. This suggests a more restricted iodination in the human protein. Sodium dodecyl sulfate gel patterns of the reduced and alkylated proteins showed significant molecular size heterogeneity in all of the samples. Polypeptide fragments ranged in molecular size from approximately 330 to 45 kDa in the goiter derived material and from approximately 330 to 15 kDa in the normal human material. This difference between the proteins is consistent with earlier observations that peptides less than 45 kDa appear concomitantly with hormone formation. These data confirm that the human thyroglobulin molecule is capable of forming at least limited amounts of thyroid hormone at iodine levels as low as 4 g.a. I per mole. The hormone detected in this study was located at residue 5 near the amino terminus of the thyroglobulin molecule.  相似文献   

10.
A polypeptide of 224 amino acids from the C terminus of rat thyroglobulin fused to Staphylococcal protein A (TgC 224), containing 3 tyrosines which have been shown to be hormonogenic in vivo (Tyr-2555, -2569 and -2748), forms thyroid hormones with relatively high efficiency upon in vitro enzymatic iodination using, most likely, the hormonogenic Tyr-2555 and Tyr-2569. Acetylcholinesterase, which has sequence and structural homology with the C terminus of the thyroglobulin molecule and bovine serum albumin, used as control proteins, formed thyroid hormones with lower efficiency. These results validate our experimental approach to define the structural requirements for thyroid hormone formation using thyroglobulin fragments.  相似文献   

11.
Reduced and S-alkylated thyroglobulin (Tgb) from different species were shown by SDS-PAGE to contain small peptides (from 45-9 kDa) rich in thyroxine. Several hypotheses were proposed to explain their origin. The polypeptide composition of iodine-poor (Tgb A) and normally iodinated (Tgb B) human Tgb prepared by two different procedures (one minimizing and the other favoring post-mortem proteolysis) was compared in the native state and after in vitro iodination. Results show that one of the hormonogenic sites of human Tgb is part of a domain of the molecule most susceptible to proteolysis, especially when it is very iodinated.  相似文献   

12.
From the cyanogen bromide (CNBr) treatment of porcine thyroglobulin a peptide of mol. wt. 15 000, CNBr-b1, was purified by gel filtration and ion-exchange chromatography. CNBr-b1 contained 50% of the thyroxine (T4) content of the protein. After digestion with trypsin and protease from Staphylococcus aureus V-8, thyroxine-containing peptides were purified and analyzed by microsequence analysis using the colored Edman's reagent dimethylaminoazobenzeneisothiocyanate . Two different sequences harboring T4 were identified: sequence 1, His-Asp-Asp-Asp-T4-Ala-Thr-(Glx,Gly)-Leu-Tyr-Phe-Ser-Ser-Arg, which contains 1 mol T4/mol peptide and sequence 2, Asp-(Tyr/MIT/DIT/T4)-Phe-Ile-Leu-X-Pro-Val-, which is a mixture of the same peptide at different levels of iodination and coupling. These sequences are likely to be representative of distinct hormonogenic sites, the former giving evidence of early iodinated tyrosine residues where preferential coupling into hormonal residues occurs especially at low iodine levels and the latter representing less reactive site(s) operative at higher iodine levels.  相似文献   

13.
With the aim of obtaining information on the process of iodination of thyroglobulin, the properties and subcellular distribution of thyroglobulin labeled with radioiodine, 3H-tyrosine, or 3H-galactose were studied. The following results were obtained for 17-19S thyroglobulin isolated from rat thyroid lobes labeled in vitro. (a) The effect of sodium dodecyl sulfate (SDS) concentration (0.1-2.0 mM) on the dissociability of the proteins into 12S subunits showed that 3H-labeled, 131I-labeled, and preformed thyroglobulin behaved very differently; their dissociability decreased in that order. In addition, 0.3 mM SDS is most suitable for discriminating among these species. (b) The amount of 0.3 mM SDS-resistant 131I-thyroglobulin increased with the time of incubation of the lobes or with the amount of iodine atoms incorporated by chemical iodination. (c) Digestion of 3H-tyrosine-labeled thyroglobulin showed that 3H-monoiodotyrosine and 3H-diiodotyrosine were present after incubation of the lobes for 180 min. (d) The dissociability of 3H-galactose-labeled 17-19S thyroglobulin was higher than that of 131I-labeled protein, but its elution pattern on DEAE-cellulose chromatography resembled that of the latter. (e) 131I-Thyroglobulin was scarcely found in the incubation medium, although a considerable amount of 19S thyroglobulin was released into the medium during the incubation. As for the lobes, a significant amount of 131I-radioactivity as well as 3H-radioactivity was found in cytoplasmic particulates, especially in fractions containing apical vesicles and rough microsomes. On the other hand, the following results were obtained for 17-19S thyroglobulin isolated from rats injected with 125I. (a) Dissociability of the protein by 0.3 mM SDS and analysis of 125I-iodoamino acids of pronase digest showed that the iodination process was essentially similar to the case of in vitro incorporation, but was faster. (b) The effect of cyclohiximide treatment showed that the relative reduction of 0.3 mM SDS dissociable species was probably due to a shortage of newly synthesized proteins. All the results obtained in the present experiments are compatible with the view that iodine atoms are incorporated selectively into newly synthesized, less iodinated thyroglobulin, and that the iodination occurs intracellularly, at least to a certain degree, after carbohydrate attachment, probably in the apical vesicles. The possibility that iodination also occurs to some extent in the endoplasmic reticulum and in the colloid lumen of thyroglobulin-stimulated thyroids is discussed.  相似文献   

14.
Free diiosotyrosine exerts two opposite effects on the reactions catalyzed by thyroid peroxidase, thyroglobulin iodination and thyroid hormone formation. 1. Inhibition of thyroglobulin iodination catalyzed by thyroid peroxidase was observed when free diiodotyrosine concentration was higher than 5 muM. This inhibition was competitive, suggesting that free diiodotyrosine interacts with the substrate site(s) of thyroid peroxidase. Free diiodotyrosine also competively inhibited iodide peroxidation to I2. 2. Free diiodotyrosine, when incubated with thyroid peroxidase in the absence of iodide was recovered unmodified; in the presence of iodide an exchange reaction was observed between the iodine atoms present in the diiodotyrosine molecule and iodide present in the medium. Using 14C-labelled diiodotyrosine, 14C-labelled non-iodinated products were also observed, showing that deiodination occurred as a minor degradation pathway. However, no monoiodo[14C]tyrosine or E114C]tyrosine were observed. Exchange reaction between free diiototyrosine and iodide is therefore direct and does not imply deiodination-iodination intermediary steps. Thyroglobulin inhibits diiodotyrosine-iodide exchange and vice versa, again suggesting competition for both reactions. These results support, by a different experimental approach, the two-site model for peroxidase previously described by us in this journal. 3. Free diiodotyrosine when present at a very low concentration, 0.05 muM, exerts a stimulatory effect on throid hormones synthesis. The relationship between diiodotyrosine concentration and thyroid hormone synthesis give an S-shaped curve, suggesting that free diiodotyrosine acts as a regulatory ligand for thyroid peroxidase. Evidence is also presented that free diiodotyrosine is not incorporated into thyroid hormones. Therefore, thyroid peroxidase catalyzes only intra-molecular coupling between iodotyrosine hormonogenic residues. 4. Finally, although no direct proof exists that these free diiodotyrosine effects upon thyroglobulin iodination and thyroid hormone synthesis are physiologically significant, such a possibility deserves further investigation.  相似文献   

15.
Follicular 19 S thyroglobulin (molecular weight 660,000) from rat, human, and bovine thyroid tissues contains approximately 10-12 mol of phosphate/mol of protein. These phosphate residues can be radiolabeled when rat thyroid hemilobes, FRTL-5 rat thyroid cells, or bovine thyroid slices are incubated in vitro with [32P]phosphate. Thus labeled, the [32P]phosphate residues comigrate with unlabeled 19 S follicular thyroglobulin on sucrose gradients and gel filtration columns; are specifically immunoprecipitated by an antibody preparation to rat or bovine thyroglobulin as appropriate; and co-migrate with authentic 19 S thyroglobulin when subjected to analytic or preparative gel electrophoresis. Tunicamycin prevents approximately 50% of the phosphate from being incorporated into FRTL-5 cell thyroglobulin. Approximately one-half of the phosphate in FRTL-5 cell or bovine thyroglobulin can also be released by enzymatic deglycosylation and can be located in Pronase-digested peptides which contain mannose, are endo-beta-N-acetylglucosaminidase H but not neuraminidase-sensitive, and release a dually labeled oligosaccharide containing mannose and phosphate after endo-beta-N-acetylglucosaminidase H digestion. The remainder of the phosphate is in alkali-sensitive phosphoserine residues (3-4/mol of protein) and phosphotyrosine residues (approximately 2/mol of protein). This is evidenced by electrophoresis of acid hydrolysates of 32P-labeled thyroglobulin and by reactivity with antibodies directed against phosphotyrosine residues. The phosphoserine and phosphotyrosine residues do not appear to be randomly located through the thyroglobulin molecule since approximately 75-85% of the phosphotyrosine and phosphoserine residues were recovered in a approximately 15-kDa tryptic peptide or a approximately 24-kDa cyanogen bromide peptide, each almost devoid of carbohydrate. 31P nuclear magnetic resonance studies of bovine thyroglobulin confirm the presence and heterogeneity of the phosphate residues on thyroglobulin preparations.  相似文献   

16.
A series of human autoantibodies against thyroglobulin (Tg) which exhibit different specificities for iodothyronines were studied. The ability of a thyroxine (T4)-containing peptide (T4P) isolated from human thyroglobulin (Tg) to displace [125I]T3 from human T3-specific autoantisera was 11-50 times greater than that of T4 alone. These antisera therefore strongly recognize amino acids adjacent to T4 in the Tg structure. This was confirmed when a Tg preparation (Tg[0.05]) containing an average of only 0.05 of a T4 residue/molecule and much less T3 had good cross-reactivities with these antisera. Cross-reactivities of other Tg preparations with different T4 contents increased only slowly with increase of T4 content up to a mean of 6.6 residues/molecule and were not proportional to T3 content. In contrast, cross-reactivities with a human T4-specific autoantiserum were strongly dependent on T4 content. Tg[0.05] was 500 times less reactive than T4P and 615 times less than T4. Cross-reactivities rose rapidly as the T4 content of Tg preparations increased from a mean of 0.05 to approx. 1-2 residues/molecule. Thyroxine is therefore a dominant feature of the antigenic site for this antiserum. There was little further increase in cross-reactivities for those Tg preparations containing up to an average of 6.6 residues T4 per molecule, confirming previous conclusions that all T4-containing sites are not immunologically identical and that autoantibodies exhibit a preference for particular sites on Tg. Similar conclusions were reached for a non-specific iodothyronine-binding antiserum. These results indicate that iodothyronine specificity in human autoantisera is not necessarily determined by the iodothyronine present in the immunogenic area, but by the precise site selected by the immune response. T4- or non-specific antibodies have thyroxine as a dominant feature of the antigenic site. T3- specific antibodies have the thyroxine residue as a peripheral feature of the binding site, and it is not necessary to postulate that T3 was part of the immunogen or is required in the epitope. These antisera may have value in mapping the hormonogenic regions in Tg from human and other species.  相似文献   

17.
Thyroid peroxidase (TPO), the major enzyme in the thyroid hormone synthesis, multifunctionally catalyzes (1) iodide oxidation, (2) iodination of the precursor protein, and (3) a coupling reaction of iodotyrosyl residues. The present study was carried out to examine the mercurial effects on the iodination, the second step of TPO. Purified porcine thyroglobulin or bovine serum albumin as acceptor protein was iodinated with [125I]NaI and H2O2 by purified porcine TPO. Iodinated protein was separated by acid precipitation on membrane filter or paper chromatography. Both CH3HgCl and HgCl2 dose-dependently inhibited the iodination, but HgCl2 was more potent to inhibit the iodination than CH3HgCl. These mercurial effects on the second step resemble the effects on the third step which were already reported; but are in marked contrast to the effects on the first step, where TPO was inhibited by HgCl2 but never by CH3HgCl.  相似文献   

18.
At moderate iodination levels (20 iodine at atoms/molecule), human thyroglobulin (hTgb) produces after reduction a thyroxinyl-peptide of 26 kDa which represents the N-terminal part of the protein. At higher iodination levels, the 26-kDa peptide is accompanied by another T4-containing peptide of 18 kDa. A precursor-product relationship between the 26- and 18-kDa fragments was demonstrated by the study of the tryptic fragments of both hormonopeptides. In addition, comparison with the protein sequence deduced from the nucleotide sequence of the 5'-end of hTgb mRNA demonstrated that the N-terminal region of Htgb from which are issued the 26-kDa peptide and its 18-kDa derivative is especially sensitive to proteolysis. This character is possibly related with a facilitated release of thyroid hormones in vivo.  相似文献   

19.
The formation of dehydroalanine in thyroglobulin is the result of the side chain elimination of an iodophenyl group during the thyroid hormone formation from two iodotyrosyl residues. This amino acid is easily converted to labeled alanine (upon reduction with [3H] borohydride) or changed to labeled aspartic acid (upon addition of Na14CN and subsequent acid hydrolysis). The cleavage of the protein by CNBr produced many stainable electrophoretic bands, but the autoradiography indicated the presence of a much smaller number of radioactive species. Although three major species raised attention, because they could be all jointly labeled and were present in all preparations, only a species of 15,900 Da was fully studied. It was isolated and its sequence partially determined by Edman degradation. It was established that this species corresponded to the thyroglobulin fragment between methionines 2,432 and 2,578. This peptide contains two hormonogenic sites (positions 2,555 and 2,569) which are either tyrosyl residues or hormone residues arising from them, and five additional tyrosines all potentially involved as donor sites in the hormonogenesis. Upon treatment with N-chlorosuccinimide, the fragment was split into three smaller peptides of about 2,900, 8,500, and 4,600 Da containing 1, 2, and 2 tyrosyl residues, respectively. Only the 8,500-Da subfragment contained [3H]Ala. This finding strongly suggests that at least some of the tyrosines involved as donor sites in thyroid hormonogenesis are within this peptide and possibly map at positions 2,469 and/or 2,522. Moreover, at minimum levels of iodination, when thyroglobulin contains the lowest number of hormone molecules, dehydroalanine is mostly found in the 15,900-Da peptide.  相似文献   

20.
Normally iodinated thyroglobulin (Tg) contains low molecular weight hormone-rich peptides associated to the bulk of the molecule by disulfide bridges. It is shown, with the assistance of in vitro iodination experiments using different iodine concentrations and various incubation times, that the proteolytic cleavage giving rise to the 26 K hormonopeptide in human Tg is part of a coupling reaction rather than iodination. This cleavage may be a preliminary event related to a facilitation in the release of thyroid hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号