首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The traditional genetic procedure for random or site-specific mutagenesis in Escherichia coli K-12 involves mutagenesis, isolation of mutants, and transduction of the mutation into a clean genetic background. The transduction step reduces the likelihood of complications due to secondary mutations. Though well established, this protocol is not tenable for many pathogenic E. coli strains, such as uropathogenic strain CFT073, because it is resistant to known K-12 transducing bacteriophages, such as P1. CFT073 mutants generated via a technique such as lambda Red mutagenesis may contain unknown secondary mutations. Here we describe the isolation and characterization of transducing bacteriophages for CFT073. Seventy-seven phage isolates were acquired from effluent water samples collected from a wastewater treatment plant in Madison, WI. The phages were differentiated by a host sensitivity-typing scheme with a panel of E. coli strains from the ECOR collection and clinical uropathogenic isolates. We found 49 unique phage isolates. These were then examined for their ability to transduce antibiotic resistance gene insertions at multiple loci between different mutant strains of CFT073. We identified 4 different phages capable of CFT073 generalized transduction. These phages also plaque on the model uropathogenic E. coli strains 536, UTI89, and NU14. The highest-efficiency transducing phage, ΦEB49, was further characterized by DNA sequence analysis, revealing a double-stranded genome 47,180 bp in length and showing similarity to other sequenced phages. When combined with a technique like lambda Red mutagenesis, the newly characterized transducing phages provide a significant development in the genetic tools available for the study of uropathogenic E. coli.  相似文献   

2.
Nitrosoguanidine (NG) mutagenesis of Staphylococcus aureus resulted in the isolation of eight mutants exhibiting 3 to 28 times greater sensitivity to ultraviolet (UV) radiation. These mutants were further characterized by their ability to repair UV-irradiated bacteriophage, to act as recipients in the transduction of antibiotic resistance, and their sensitivity to NG. Based on the available data, six of these mutants are reduced in their ability to perform host-cell reactivation. One of the remaining two mutants may be deficient in post-replication repair.  相似文献   

3.
We isolated and characterized four Bacillus subtilis competence-deficient mutants. The mutants were obtained by nitrosoguanidine mutagenesis and by screening for mutants unable to be transformed both on solid and in liquid medium. Most of the mutants obtained in this way were tested for their sensitivity to the DNA-damaging agents methyl methanesulfonate, mitomycin C, and UV light. Among the mutants which did not show an increased sensitivity to these agents, four were chosen for further characterization. Data were obtained which indicate that the mutants are reduced in chromosomal and plasmid transformation and in transfection, whereas they are not altered in transduction and in protoplast transformation. Transformation experiments carried out by mixing a culture of a mutant with a culture of a wild-type strain gave some complementation for competence with one of the strains. The mutants were also characterized for their capacity to bind, take up, and break down transforming DNA; furthermore, the four competence mutations were mapped, and the results indicate that they belong to four different genes.  相似文献   

4.
Saccharomyces cerevisiae Ste5 is a scaffold protein that recruits many pheromone signaling molecules to sequester the pheromone pathway from other homologous mitogen-activated protein kinase pathways. G1 cell cycle arrest and mating are two different physiological consequences of pheromone signal transduction and Ste5 is required for both processes. However, the roles of Ste5 in G1 arrest and mating are not fully understood. To understand the roles of Ste5 better, we isolated 150 G1 cell cycle arrest defective STE5 mutants by chemical mutagenesis of the gene. Here, we found that two G1 cell cycle arrest defective STE5 mutants (ste5M(D248V) and ste5(delta-776)) retained mating capacity. When overproduced in a wild-type strain, several ste5 mutants also showed different dominant phenotypes for G1 arrest and mating. Isolation and characterization of the mutants suggested separable roles of Ste5 in G1 arrest and mating of S. cerevisiae. In addition, the roles of Asp-248 and Tyr-421, which are important for pheromone signal transduction were further characterized by site-directed mutagenesis studies.  相似文献   

5.
We have previously reported about a new Saccharomyces cerevisiae mutation, hsm2-1, that results in increase of both spontaneous and UV-induced mutation frequencies but does not alter UV-sensitivity. Now HSM2 gene has been genetically and physically mapped and identified as a gene previously characterized as HMO1, a yeast homologue of human high mobility group genes HMG1/2. We found that hsm2 mutant is slightly deficient in plasmid-borne mismatch repair. We tested UV-induced mutagenesis in double mutants carrying hsm2-1 mutation and a mutation in a gene of principal damaged DNA repair pathways (rad2 and rev3) or in a mismatch repair gene (pms1 and recently characterized in our laboratory hsm3). The frequency of UV-induced mutations in hsm2 rev3 was not altered in comparison with single rev3 mutant. In contrast, the interaction of hsm2-1 with rad2 and pms1 was characterized by an increased frequency of UV-induced mutations in comparison with single rad2 and pms1 mutants. The UV-induced mutation frequency in double hsm2 hsm3 mutant was lower than in the single hsm2 and hsm3 mutants. The role of the HSM2 gene product in control of mutagenesis is discussed.  相似文献   

6.
We have physically and genetically characterized 20 symbiotic and 20 auxotrophic mutants of Rhizobium meliloti, the nitrogen-fixing symbiont of alfalfa (Medicago sativa), isolated by transposon Tn5 mutagenesis. A "suicide plasmid" mutagenesis procedure was used to generate TN-5-induced mutants, and both auxotrophic and symbiotic mutants were found at a frequency of 0.3% among strains containing random TN5 insertions. Two classes of symbiotic mutants were isolated: 4 of the 20 formed no nodules at all (Nod-), and 16 formed nodules which failed to fix nitrogen (Fix-). We used a combination of physical and genetic criteria to determine that in most cases the auxotrophic and symbiotic phenotypes could be correlated with the insertion of a single Tn5 elements. Once the Tn5 element was inserted into the R. meliloti genome, the frequency of its transposition to a new site was approximately 10-8 and the frequency of precise excision was less than 10-9. In approximately 25% of the mutant strains, phage Mu DNA sequences, which originated from the suicide plasmid used to generate the Tn5 transpositions, were also found in the R. meliloti genome contiguous with Tn5. These later strains exhibited anomalous conjugation properties, and therefore we could not correlate the symbiotic phenotype with a Tn5 insertion. In general, we found that both physical and genetic tests were required to fully characterize transposon-induced mutations.  相似文献   

7.
Chlamydomonas has two photobehavioral responses, phototaxis and photoshock. Rhodopsin is the photoreceptor for these responses and the signal transduction process involves transmembrane Ca2+ fluxes. This causes transient changes in flagellar beating, ultimately resulting in phototaxis or photoshock. To identify components that make up this signal transduction pathway, we generated nonphototactic strains by insertional mutagenesis. Seven new phototaxis genes were identified (ptx2-ptx8); alleles of six of these are tagged by the transforming DNA and therefore should be easily cloned. To order the mutants in the pathway, we characterized them electrophysiologically, behaviorally, and structurally, ptx5, ptx6, and ptx7 have normal light-induced photoreceptor currents (PRC) and flagellar currents (FC) but their pattern of swimming does not change in the normal manner when the intraflagellar Ca2+ concentration is decreased, suggesting that they have defects in the ability of their axonemes to respond to changes in Ca2+ concentration. ptx2 and ptx8 lack the FC but have normal PRCs, suggesting that they are defective in the flagellar Ca2+ channel or some factor that regulates it. ptx4 mutants have multiple eye-spots. ptx3 mutants are defective in a component essential for phototaxis but bypassed during photoshock; this component appears to be located downstream of the PRC but upstream of the axoneme.  相似文献   

8.
The properties of Escherichia coli K-12 mutans HFETn5, HFETn9 and LFETn9 have been studied. The majority of mutations were shown to have pleiotropic effect. Some of them increase cell sensitivity to UV light and mitomycin C and affect efficiency of homologous recombination in transduction and conjugation. The level of spontaneous mutagenesis is increased in a number of mutants. None of the mutations isolated affect frequency of transposition of Tn5 from bacteriophage lambda::Tn5 into the chromosome. Based on analysis of properties of hfeTn5-09 and hfeTn9 mutations and on the date of preliminary mapping of hfeTn5-09 mutation, these mutations were considered to be novel. It is shown that the processes of precise excision of Tn5 and Tn9 transposons may be accomplished by at least two pathways, one of them being dependent on recA gene functions.  相似文献   

9.
Several Escherichia coli K-12 mutants blocked in the synthesis of ornithine decarboxylase (OD) were isolated after transduction for serA+ in a strain (MA197) blocked in agmatine ureohydrolase (AUH) with a mutagenized phage lysate of P1. The new double-polyamine mutants were characterized by an unconditional polyamine dependence; either putrescine or spermidine was required for normal growth. The mutational block was varified by the demonstration of a virtual absence of OD activity in cellular extracts. The mutation, designated speC, was mapped by P1 transduction in several strains and was shown to have a cotransduction frequency of 17.2% with serA. Map order was established as serA speB speC metK. A derivative of one of the OD mutants having wild-type levels of AUH and blocked in OD was utilized along with an OD AUH mutant and an OD+ AUH strain to explore the phenomenon of "pathway selection" using growth rate as a parameter. Polyamine pool studies were carried out simultaneously. The results presented here support the hypothesis of pathway selection, implying a preferential utilization of exogenous arginine rather than endogenously produced arginine in polyamine biosynthesis.  相似文献   

10.
11.
A collection of 16 isogenic recombination-deficient strains of Bacillus subtilis isolated on the basis of sensitivity to methyl methane sulfonate (MMS) or mitomycin C (MC) were characterized phenotypically. All were found to be somewhat sensitive to ultraviolet irradiation, MC, and MMS. The mutants were all blocked in "late" steps in the transformation process and were provisionally grouped into four categories on the basis of the various properties examined. Class I mutants were deficient in transformation and heterologous transduction with phage PBS1 but were transducible with homologous donors at nearly the wild-type frequency. They were blocked in donor-recipient complex (DRC) formation but formed essentially normal amounts of double-strand fragments (DSF) and single-strand fragments (SSF). The class IIa strain was deficient in transformation and PBS1 transduction, and formed DRC which was normal by all available physical and biological criteria. Class IIb mutants were deficient in transformation and PBS1 transduction, and failed to form DRC. They did produce DSF and SSF. Class III mutants were deficient in transformation, were normal in PBS1 transduction, and formed DRC which was physically indistinguishable from that of the Rec(+) parent although with slightly lowered donor-type transforming activity. Class IV strains were deficient in PBS1 transduction but were transformed at nearly the wild-type efficiency. None of the mutant strains was deficient in the adenosine triphosphate-dependent deoxyribonuclease.  相似文献   

12.
UV-induced mutation in bacteriophage T4.   总被引:2,自引:0,他引:2       下载免费PDF全文
Two late gene am mutants of bacteriophage T4 that can be induced to revert by UV were crossed to a temperature-sensitive ligase mutant. In the double mutants, UV-induced reversion was eliminated at a semirestrictive temperature. When the single am mutants were irradiated and then allowed a single passage in a permissive host, the UV-induced reversion frequency was increased by 15- to 25-fold. This increased mutagenesis was also abolished by the presence of the ligase allele. When the UV-irradiated single am mutants multiply infected a permissive host, allowing multiplicity reactivation to occur, the induced reversion frequency was reduced similarly to the reduction in lethality. The mutagenesis that remained was again abolished by the presence of the ligase allele. It is concluded that UV induces mutations in phage T4 through the action of a pathway that includes polynucleotide ligase. The increase in mutation frequency after growth in a permissive host implies that mutagenesis can occur at more than one stage of the infection rather than only in an early stage before expression of the mutant genome. The process of multiplicity reactivation appears to be error-free since it overcomes lethal lesions without inducing new mutations.  相似文献   

13.
C Stocking  C L?liger  M Kawai  S Suciu  N Gough  W Ostertag 《Cell》1988,53(6):869-879
The factor-dependent myeloid precursor cell line D35 mutates spontaneously at a frequency greater than 2.4 x 10(-7) to growth factor autonomy. This frequency could be increased at least 20-fold by retrovirus insertional mutagenesis. The isolation and characterization of factor-independent mutants allowed the identification of genes involved in growth autonomy. Mutants could be subdivided into two sets: those that secreted a stimulating factor (10/11) and those that did not (1/11). In one case, the factor released was distinct from previously characterized growth factors. In most mutants (6/9), the activation of a growth factor gene was associated with rearrangement that could be attributed to the insertion of a transposable-like element either 5' or 3' of the factor coding region in all cases examined, excluding oncogene involvement. All factor-independent mutants were tumorigenic, consistent with the hypothesis that growth-factor independence initiated by aberrant growth factor gene activation is an important and early step in tumorigenesis.  相似文献   

14.
The application of Arabidopsis genetics to research into the responses of plants to light has enabled rapid recent advances in this field. The plant photoreceptor phytochrome mediates well-defined responses that can be exploited to provide elegant and specific genetic screens. By this means, not only have mutants affecting the phytochromes themselves been isolated, but also mutants affecting the transduction of phytochrome signals. The genes involved in these processes have now begun to be characterized by using this genetic approach to isolate signal transduction components. Most of the components characterized so far are capable of being translocated to the cell nucleus, and they may help to define a new system of regulation of gene expression. This review summarises the ongoing contribution made by genetics to our understanding of light perception and signal transduction by the phytochrome system.  相似文献   

15.
以4-碱基限制性内切酶部分酶切集胞藻PCC6803基因文库总质粒DNA,并插入卡那霉素抗性基因标记,构建了二级随机插入诱变文库。以该诱变文库总DNA转化集胞藻PCC6803,得到大量有抗性标记基因随机插入的转化子,利用这一方法获得了不能进行光激活异养生长的突变株,并克隆了抗性标记基因插入部位DNA片段,在持续光照但加DCMU抑制光合作用的情况下,这些突变株仍然能够利用葡萄糖异养生长,推测突变基因与短时光信号的感应有关。  相似文献   

16.
Abstract Pyoverdine, the yellow-green fluorescent pigment produced by Pseudomonas aeruginosa , is a highly efficient siderophore. Pyoverdine-deficient ( pvd ) mutants of P. aeruginosa PAO isolated after mutagenesis were non-fluorescent and unable to grow in the presence of 2.8 mM ethylenediamine-di-( o -hydroxyphenylacetate) (EDDHA). Addition of purified pyoverdine to media containing EDDHA restored growth of pvd mutants. 6 pvd mutations were mapped between catA and mtu -9002 (at 65–70 min on the chromosome map) by R68.45-mediated conjugation. 2 slightly leaky pvd mutations were localised between argC and strA (at 35 min) by transduction. Thus, we have identified at least 2 genes or gene clusters required for pyoverdine production in P. aeruginosa .  相似文献   

17.
Mutations have been introduced into the Escherichia coli lac Y gene by oligonucleotide-directed mutagenesis such that the lactose carrier contains either tyrosine or phenylalanine in place of histidine 322. These mutants did not carry out active accumulation of lactose, melibiose, or methyl-beta-D-galactopyranoside, but facilitated diffusion was still catalyzed. Galactoside-dependent H+ transport, measured with the pH electrode, was retained in both mutants. We conclude that although histidine 322 is important for energy transduction, neither an electronegative atom nor a dissociable proton is essential for proton cotransport with lactose or melibiose.  相似文献   

18.
In this paper, we aimed to improve the carbohydrate productivity of Spirulina platensis by generating mutants with increased carbohydrate content and growth rate. ARTP was used as a new mutagenesis tool to generate a mutant library of S. platensis with diverse phenotypes. Protocol for rapid mutation of S. platensis by 60 s treatment with helium driven ARTP and high throughput screening method of the mutants using the 96-well microplate and microplate reader was established. A mutant library of 62 mutants was then constructed and ideal mutants were selected out. The characteristics of the mutants after the mutagenesis inclined to be stable after around 9th subculture, where the total mutation frequency and positive mutation frequency in terms of specific growth rate reached 45% and 25%, respectively. The mutants in mutant library showed diverse phenotypes in terms of cell growth rate, carbohydrate content and flocculation intensity. The positive mutation frequency in terms of cellular carbohydrate content with the increase by more than 20% percent than the wild strain was 32.3%. Compared with the wild strain, the representative mutants 3-A10 and 3-B2 showed 40.3% and 78.0% increase in carbohydrate content, respectively, while the mutant 4-B3 showed 10.5% increase in specific growth rate. The carbohydrate contents of the representative mutants were stable during different subcultures, indicating high genetic stability. ARTP was demonstrated to be an effective and non-GMO mutagenesis tool to generate the mutant library for multicellular microalgae.  相似文献   

19.
Several bacterial species carry in their genomes a so-called "mutagenesis" gene cluster encoding ImuB which is similar to Y-family DNA polymerases, and DnaE2 related to the catalytic subunit DnaE of Pol III. Y-family DNA polymerases are known to be involved in stationary-phase mutagenesis and DnaE2 homologues characterized so far have expressed a mutator phenotype. In this study, we raised a question about the involvement of ImuB and DnaE2 in stationary-phase mutagenesis. Here, we show that Pseudomonas putida ImuB and DnaE2 have antagonistic effects on stationary-phase mutagenesis. ImuB facilitated accumulation of stationary-phase mutants up to two-fold. In contrast to that, DnaE2 had no significant effect on emergence of 1-bp deletion mutants and moreover, it acted as an anti-mutator in accumulation of base substitution mutants in starving bacteria. Similar antagonistic effects of DnaE2 and ImuB on mutagenesis appeared also in UV-mutagenesis study. This data distinguishes the DnaE2 of P. putida from its homologues studied in other organisms.  相似文献   

20.
The roles of conserved amino acid residues (Val329-Ala330- Asn331-Glu332), constituting an extra sugar-binding space (ESBS) of Thermus maltogenic amylase (ThMA), were investigated by combinatorial saturation mutagenesis. Various ThMA mutants were firstly screened on the basis of starch hydrolyzing activity and their enzymatic properties were characterized in detail. Most of the ThMA variants showed remarkable decreases in their hydrolyzing activity, but their specificity against various substrates could be altered by mutagenesis. Unexpectedly, mutant H-16 (Gly- Leu-Val-Tyr) showed almost identical hydrolyzing and transglycosylation activities to wild type, whereas K-33 (Ser-Gly-Asp-Glu) showed an extremely low transglycosylation activity. Interestingly, K-33 produced glucose, maltose, and acarviosine from acarbose, whereas ThMA hydrolyzed acarbose to only glucose and acarviosine-glucose, which proposes that the substrate specificity, or hydrolysis or transglycosylation activity of ThMA can be modulated by combinatorial mutations near the ESBS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号