首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cellular signaling by TNF-alpha is mediated through activation of mitogen activated protein (MAP) kinases. In particular, p38 MAP kinase is activated in mononuclear phagocytes and may be important in sustaining TNF-alpha activity. Here, we compared the activation and mutual regulation of p38 MAP kinase and TNF-alpha by MTB in human alveolar macrophages (AM) and blood monocytes (MN). AM and autologous MN were prepared, and stimulated by MTB at 1:1 (bacteria/cell). MAP kinase activation was assessed by immunoprecipitation and kinase activity. TNF-alpha mRNA was assessed by real-time RT-PCR, and TNF-alpha immunoreactivity was assessed by ELISA. MTB-induced p38MAP kinase rapidly in AM as compared to MN, and inhibition of p38 MAP kinase by SB203580 reduced both TNF-alpha mRNA and protein. Activation of ERK (1/2) by MTB followed similar kinetics in both AM and MN. TNF-alpha produced by MTB sustained p38 MAP kinase activation in MN only. These data suggest that interaction of resident pulmonary macrophages and the more immature MN with MTB differ with regard to both p38 MAP kinase activation and TNF-alpha expression.  相似文献   

2.
The p38 group of kinases belongs to the mitogen-activated protein (MAP) kinase superfamily with structural and functional characteristics distinguishable from those of the ERK, JNK (SAPK), and BMK (ERK5) kinases. Although there is a high degree of similarity among members of the p38 group in terms of structure and activation, each member appears to have a unique function. Here we show that activation of p38gamma (also known as ERK6 or SAPK3), but not the other p38 isoforms, is required for gamma-irradiation-induced G(2) arrest. Activation of the MKK6-p38gamma cascade is sufficient to induce G(2) arrest in cells, and expression of dominant negative alleles of MKK6 or p38gamma allows cells to escape the DNA damage-induce G(2) delay. Activation of p38gamma is dependent on ATM and leads to activation of Cds1 (also known as Chk2). These data suggest a model in which activation of ATM by gamma irradiation leads to the activation of MKK6, p38gamma, and Cds1 and that activation of both MKK6 and p38gamma is essential for the proper regulation of the G(2) checkpoint in mammalian cells.  相似文献   

3.
4.
5.
6.
7.
Previous studies demonstrated that in vitro the protein kinase TAO2 activates MAP/ERK kinases (MEKs) 3, 4, and 6 toward their substrates p38 MAP kinase and c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK). In this study, we examined the ability of TAO2 to activate stress-sensitive MAP kinase pathways in cells and the relationship between activation of TAO2 and potential downstream pathways. Over-expression of TAO2 activated endogenous JNK/SAPK and p38 but not ERK1/2. Cotransfection experiments suggested that TAO2 selectively activates MEK3 and MEK6 but not MEKs 1, 4, or 7. Coimmunoprecipitation demonstrated that endogenous TAO2 specifically associates with MEK3 and MEK6 providing one mechanism for preferential recognition of MEKs upstream of p38. Sorbitol, and to a lesser extent, sodium chloride, Taxol, and nocodazole increased TAO2 activity toward itself and kinase-dead MEKs 3 and 6. Activation of endogenous TAO2 during differentiation of C2C12 myoblasts paralleled activation of p38 but not JNK/SAPK, consistent with the idea that TAO2 is a physiological regulator of p38 under certain circumstances.  相似文献   

8.
Cloning and characterization of two novel zebrafish P2X receptor subunits   总被引:6,自引:0,他引:6  
Activation of Kupffer cells by lipopolysaccharide (LPS) after ethanol feeding results in overproduction of TNF-alpha, leading to liver injury. Since dilinoleoylphosphatidylcholine (DLPC) protects against liver injury and has antioxidant properties, we investigated whether it alters LPS signaling leading to decreased TNF-alpha production. Kupffer cells were isolated from rats fed alcohol-containing or isocaloric control diets for 3 weeks. With ethanol, cytochrome P4502E1 was upregulated. When stimulated with LPS in culture, Kupffer cells released more TNF-alpha compared to control rats; DLPC diminished the increase. It also reduced ERK1/2 and p38 phosphorylation as well as NF-kappaB activation with decreased nuclear p65 and increased cytosolic IkappaB-alpha expression. ERK1/2 and NF-kappaB activation were abolished by the ERK1/2 inhibitor PD098059. The p38 inhibitor SB203580 abolished p38 activation without affecting NF-kappaB. Both inhibitors reduced TNF-alpha generation. Thus, DLPC diminishes LPS-dependent TNF-alpha generation by inhibiting p38 and ERK1/2 activation; the latter leads to decreased NF-kappaB activation.  相似文献   

9.
Coupling of M(2) and M(3) muscarinic receptors to activation of mitogen-activated protein (MAP) kinases and phosphorylation of caldesmon was studied in canine colonic smooth muscle strips in which M(3) receptors were selectively inactivated by N, N-dimethyl-4-piperidinyl diphenylacetate (4-DAMP) mustard (40 nM). ACh elicited activation of extracellular signal-regulated kinase (ERK) 1, ERK2, and p38 MAP kinases in control muscles and increased phosphorylation of caldesmon (Ser(789)), a putative downstream target of MAP kinases. Alkylation of M(3) receptors with 4-DAMP had only a modest inhibitory effect on ERK activation, p38 MAP kinase activation, and caldesmon phosphorylation. Subsequent treatment with 1 microM AF-DX 116 completely prevented activation of ERK and p38 MAP kinase and prevented caldesmon phosphorylation. Caldesmon phosphorylation was blocked by the MAP kinase/ERK kinase inhibitor PD-98509 but not by the p38 MAP kinase inhibitor SB-203580. These results indicate that colonic smooth muscle M(2) receptors are coupled to ERK and p38 MAP kinases. Activation of ERK, but not p38 MAP kinases, results in phosphorylation of caldesmon in vivo, which is a novel function for M(2) receptor activation in smooth muscle.  相似文献   

10.
The objective of this study was to elucidate the role of the cellular proteasome on endotoxin-mediated activation of the macrophage. To study this role, THP-1 cells were stimulated with lipopolysaccharide (LPS) with selective cells being pretreated with the proteasome inhibitor, lactacystin or MG-132. LPS stimulation led to the phosphorylation and degradation of IRAK, followed by activation of JNK/SAPK, ERK 1/2, and p38. Subsequently, LPS induced the degradation of IkappaB, and the nuclear activation of NF-kappaB and AP-1. Activation of these pathways was associated with the production of IL-6, IL-8, IL-10, and TNF-alpha. Proteasome inhibition with either lactacystin or MG-132 attenuated LPS-induced IRAK degradation, and enhanced activation of JNK/SAPK, ERK 1/2, and p38. Proteasome inhibition, also, led to increased LPS-induced AP-1 activation, and attenuated LPS-induced IkappaB degradation resulting in abolished NF-kappaB activation. Proteasome inhibition led to significant modulation of LPS-induced cytokine production; increased IL-10, no change in IL-6, and decreased IL-8, and TNF-alpha. Thus, this study demonstrates that cellular proteasome is critical to regulation of LPS-induced signaling within the macrophage, and inhibition of the proteasome results in a conversion to an anti-inflammatory phenotype.  相似文献   

11.
The aim of this study was to determine whether Helicobacter pylori activates mitogen-activated protein (MAP) kinases in gastric epithelial cells. Infection of AGS cells with an H. pylori cag+ strain rapidly (5 min) induced a dose-dependent activation of extracellular signal-regulated kinases (ERK), p38, and c-Jun N-terminal kinase (JNK) MAP kinases, as determined by Western blot analysis and in vitro kinase assay. Compared with cag+ strains, cag- clinical isolates were less potent in inducing MAP kinase, particularly JNK and p38, activation. Isogenic inactivation of the picB region of the cag pathogenicity island resulted in a similar loss of JNK and p38 MAP kinase activation. The specific MAP kinase inhibitors, PD98059 (25 microM; MAP kinase kinase (MEK-1) inhibitor) and SB203580 (10 microM; p38 inhibitor), reduced H. pylori-induced IL-8 production in AGS cells by 78 and 82%, respectively (p < 0.01 for each). Both inhibitors together completely blocked IL-8 production (p < 0.001). However, the MAP kinase inhibitors did not prevent H. pylori-induced IkappaBalpha degradation or NF-kappaB activation. Thus, H. pylori rapidly activates ERK, p38, and JNK MAP kinases in gastric epithelial cells; cag+ isolates are more potent than cag- strains in inducing MAP kinase phosphorylation and gene products of the cag pathogenicity island are required for maximal MAP kinase activation. p38 and MEK-1 activity are required for H. pylori-induced IL-8 production, but do not appear to be essential for H. pylori-induced NF-kappaB activation. Since MAP kinases regulate cell proliferation, differentiation, programmed death, stress, and inflammatory responses, activation of gastric epithelial cell MAP kinases by H. pylori cag+ strains may be instrumental in inducing gastroduodenal inflammation, ulceration, and neoplasia.  相似文献   

12.
13.
14.
Mitogen-activated protein (MAP) kinases have been suggested as potential mediators for interleukin 1beta (IL-1beta)-induced gene activation. This study investigated the role of the MAP kinases p38 and ERK2 in IL-1beta-mediated expression of the chemokine MCP-1 by human mesangial cells. Phosphorylation of p38 kinase, which is necessary for activation, increased significantly after IL-1beta treatment. p38 kinase immunoprecipitated from IL-1beta-treated cells phosphorylated target substrates to a greater extent than p38 kinase from controls. SB 203580, a selective p38 kinase inhibitor, was used to examine the role of p38 kinase in MCP-1 expression. SB 203580 decreased IL-1beta-induced MCP-1 mRNA and protein levels, but did not affect MCP-1 mRNA stability. Because NF-kappaB is necessary for MCP-1 gene expression, the effect of p38 kinase inhibition on IL-1beta induction of NF-kappaB was measured. SB 203580 (up to 25 microM) had no effect on IL-1beta-induced NF-kappaB nuclear translocation or DNA binding activity. Our previous work showed that IL-1beta also activates the MAP kinase ERK2 in human mesangial cells. PD 098059, a selective inhibitor of the ERK activating kinase MEK1, had no effect on IL-1beta-induced MCP-1 mRNA or protein levels, or on IL-1beta activation of NF-kappaB. These data indicate that p38 kinase is necessary for the induction of MCP-1 expression by IL-1beta, but is not involved at the level of cytoplasmic activation of NF-kappaB. In contrast, ERK2 does not mediate IL-1beta induced MCP-1 gene expression.  相似文献   

15.
16.
17.
The mitogen-activated protein (MAP) kinases are a family of serine/threonine kinases that are regulated by distinct extracellular stimuli. The currently known members include extracellular signal-regulated protein kinase 1 (ERK1), ERK2, the c-Jun N-terminal kinase/stress-activated protein kinases (JNK/SAPKs), and p38 MAP kinases. We find that overexpression of the Ste20-related enzymes p21-activated kinase 1 (PAK1) and PAK2 in 293 cells is sufficient to activate JNK/SAPK and to a lesser extent p38 MAP kinase but not ERK2. Rat MAP/ERK kinase kinase 1 can stimulate the activity of each of these MAP kinases. Although neither activated Rac nor the PAKs stimulate ERK2 activity, overexpression of either dominant negative Rac2 or the N-terminal regulatory domain of PAK1 inhibits Ras-mediated activation of ERK2, suggesting a permissive role for Rac in the control of the ERK pathway. Furthermore, constitutively active Rac2, Cdc42hs, and RhoA synergize with an activated form of Raf to increase ERK2 activity. These findings reveal a previously unrecognized connection between Rho family small G proteins and the ERK pathway.  相似文献   

18.
The abundance and activity of three subgroups of mitogen-activated protein (MAP) kinases, the extracellular signal regulated kinase 1 (ERK1), stress-activated protein kinase 1/ Jun N-terminal kinase (SAPK1), and stress-activated protein kinase 2/ p38 (SAPK2), were measured in gill epithelium of the euryhaline teleost Fundulus heteroclitus exposed for 1 h to 4 weeks to hyper- and hyposmotic stress. The abundance of ERK1, SAPK1 and SAPK2 was analyzed by standard Western immunodetection. MAP kinase activity is a function of phosphorylation and was measured using phospho-specific and MAP kinase subgroup-specific antibodies. The abundance of the 63 kDa fish isoform of SAPK2 increases significantly during hyper- but not hyposmotic stress while ERK1 and SAPK1 protein levels remain unchanged during both types of osmotic stress. In contrast to this small effect of osmotic stress on MAP kinase abundance, the activity of all MAP kinases decreases significantly in response to hyperosmotic stress and increases significantly during hyposmotic stress. These results demonstrate for the first time that the activity of all major MAP kinases is osmoregulated in gill epithelium of euryhaline fish. Based on these results we conclude that MAP kinases are important components of salinity adaptation and participate in osmosensory signaling pathways in gill epithelium of euryhaline fishes.  相似文献   

19.
Activation of extracellular-regulated kinases 1/2 (ERK) is involved in lipopolysaccharide (LPS)-induced cellular responses such as the increased production of proinflammatory cytokines. However, mitogen-activated protein kinases (MAPKs) such as p38 are also activated by LPS and have been postulated to be important in the control of these end points. Therefore, establishing the relative contribution of MAPKs in each cell type is important, as is elucidating the molecular mechanisms by which these MAPKs are activated in LPS-induced signaling cascades. We demonstrated in DC2.4 dendritic cells that ERK regulates tyrosine phosphorylation of phosphatidyl-inositol-3-kinase (PI3-K) and the production of TNF-alpha. We also demonstrated that Raf1 is phosphorylated and involved in the production of TNF-alpha and tyrosine phosphorylation of PI3-K via ERK. Raf1 also regulates the activation of NF-kappaB. We propose that Raf1 plays a pivotal role in LPS-induced activation of the dendritic cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号