首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
胞外ATP在男性生殖道中的作用   总被引:2,自引:0,他引:2  
Zhou WL  Zuo WL  Ruan YC  Wang Z  DU JY  Xiong Y  Chan HC 《生理学报》2007,59(4):487-494
胞外ATP除了能广泛作为神经递质外,还被认为是一种旁分泌或自分泌因子。ATP从男性生殖道中的精子或上皮细胞中释放,在调节各种生殖生理功能中起多种作用。本文综述了ATP调节附睾上皮细胞阴离子分泌的信号通路,阐述了ATP对依赖上皮细胞的输精管平滑肌收缩的调节机制,讨论了ATP在男性生殖道中的功能和作用。  相似文献   

2.
Guo HM  Luo YL  Zhou WL 《生理科学进展》2010,41(3):189-192
ATP不但是各种细胞的能量来源,而且更是一种自分泌或旁分泌的胞外信使,参与细胞一系列的生物学效应。ATP从呼吸道上皮细胞中释放,在调节呼吸道表面液体量的平衡、黏膜纤毛清除能力和呼吸道防御功能方面起重要作用,并参与呼吸道疾病及炎症的发生。本文对ATP从呼吸道上皮释放的途径,ATP调节呼吸道上皮离子转运的机制,ATP对呼吸道平滑肌的双重调节作用,以及ATP参与呼吸道疾病和炎症的发生机制等方面予以综述。  相似文献   

3.
Ionotropic purinergic receptors (P2X) are expressed in endothelial and smooth muscle cells of blood vessels. ATP acting on smooth muscle P2X receptors is able to induce vasoconstriction in different kind of vessels. However, to our knowledge, there are no reports that directly show the activity of these purinergic receptors in native human vascular smooth muscle cells. In this work, we describe for the first time an ATP-induced current in freshly isolated human umbilical artery (HUA) smooth muscle cells. The current was measured by patch-clamp technique in whole-cell condition on cells clamped at -50 mV. At 100 μM of ATP the current showed a rapid activation and desensitization, and was carried by both Na(+) and Ca(2+). The current was completely blocked by suramin (300 μM) and partially blocked by 100 μM of Zn(2+) without affecting the kinetic of desensitization. All these properties suggest that the ATP-induced ionic currents are mediated through P2X(1)-like receptors. Moreover, we show that ATP transiently increased cytosolic Ca(2+) in "in situ" smooth muscle cells of intact HUA segments and that this response is dependent of extracellular and intracellular Ca(2+). These data expand the knowledge of purinergic receptors properties in vascular smooth muscle cells and the probable role of ATP as a paracrine modulator of contractile tone in a human artery which is fundamental for feto-placental blood flow.  相似文献   

4.
Dou Y  Wu HJ  Li HQ  Qin S  Wang YE  Li J  Lou HF  Chen Z  Li XM  Luo QM  Duan S 《Cell research》2012,22(6):1022-1033
Microglia are highly motile cells that act as the main form of active immune defense in the central nervous system. Attracted by factors released from damaged cells, microglia are recruited towards the damaged or infected site, where they are involved in degenerative and regenerative responses and phagocytotic clearance of cell debris. ATP release from damaged neural tissues has been suggested to mediate the rapid extension of microglial process towards the site of injury. However, the mechanisms of the long-range migration of microglia remain to be clarified. Here, we found that lysosomes in microglia contain abundant ATP and exhibit Ca(2+)-dependent exocytosis in response to various stimuli. By establishing an efficient in vitro chemotaxis assay, we demonstrated that endogenously-released ATP from microglia triggered by local microinjection of ATPγS is critical for the long-range chemotaxis of microglia, a response that was significantly inhibited in microglia treated with an agent inducing lysosome osmodialysis or in cells derived from mice deficient in Rab 27a (ashen mice), a small GTPase required for the trafficking and exocytosis of secretory lysosomes. These results suggest that microglia respond to extracellular ATP by releasing ATP themselves through lysosomal exocytosis, thereby providing a positive feedback mechanism to generate a long-range extracellular signal for attracting distant microglia to migrate towards and accumulate at the site of injury.  相似文献   

5.
The carotid body (CB) is a chemosensory organ that detects changes in chemical composition of arterial blood and maintains homeostasis via reflex control of ventilation. Thus, in response to a fall in arterial PO(2) (hypoxia), CB chemoreceptors (type I cells) depolarize, and release neurotransmitters onto afferent sensory nerve endings. Recent studies implicate ATP as a key excitatory neurotransmitter released during CB chemoexcitation, but direct evidence is lacking. Here we use the luciferin-luciferase bioluminescence assay to detect ATP, released from rat chemoreceptors in CB cultures, fresh tissue slices, and whole CB. Hypoxia evoked an increase in extracellular ATP, that was inhibited by L-type Ca(2+)channel blockers and reduced by the nucleoside hydrolase, apyrase. Additionally, iberiotoxin (IbTX; 100 nM), a blocker of O(2)-sensitive Ca(2+)-dependent K(+) (BK) channels, stimulated ATP release and largely occluded the effect of hypoxia. These data strongly support a neurotransmitter role for ATP in carotid body function.  相似文献   

6.
P2 receptors in cardiovascular regulation and disease   总被引:2,自引:0,他引:2  
The role of ATP as an extracellular signalling molecule is now well established and evidence is accumulating that ATP and other nucleotides (ADP, UTP and UDP) play important roles in cardiovascular physiology and pathophysiology, acting via P2X (ion channel) and P2Y (G protein-coupled) receptors. In this article we consider the dual role of ATP in regulation of vascular tone, released as a cotransmitter from sympathetic nerves or released in the vascular lumen in response to changes in blood flow and hypoxia. Further, purinergic long-term trophic and inflammatory signalling is described in cell proliferation, differentiation, migration and death in angiogenesis, vascular remodelling, restenosis and atherosclerosis. The effects on haemostasis and cardiac regulation is reviewed. The involvement of ATP in vascular diseases such as thrombosis, hypertension and diabetes will also be discussed, as well as various heart conditions. The purinergic system may be of similar importance as the sympathetic and renin-angiotensin-aldosterone systems in cardiovascular regulation and pathophysiology. The extracellular nucleotides and their cardiovascular P2 receptors are now entering the phase of clinical development. An erratum to this article can be found at  相似文献   

7.
The effect of hypoxia on the release of adenosine was studied in vitro in the rat whole carotid body (CB) and compared with the effect of hypoxia (2%, 5% and 10% O(2)) on adenosine concentrations in superior cervical ganglia (SCG) and carotid arteries. Moderate hypoxia (10% O(2)) increased adenosine concentrations released from the CBs by 44%, but was not a strong enough stimulus to evoke adenosine release from SCG and arterial tissue. The extracellular pathways of adenosine production in rat CBs in normoxia and hypoxia were also investigated. S-(p-nitrobenzyl)-6-thioinosine (NBTI) and dipyridamole were used as pharmacological tools to inhibit adenosine equilibrative transporters (ENT) and alpha,beta-methylene ADP (AOPCP) to inhibit ecto-5'-nucleotidase. Approximately 40% of extracellular adenosine in the CB came from the extracellular catabolism of ATP, under both normoxic and hypoxic conditions. Low pO(2) triggers adenosine efflux through activation of NBTI-sensitive ENT. This effect was only apparent in hypoxia and when adenosine extracellular concentrations were reduced by the blockade of ecto-5'-nucleotidase. We concluded that CB chemoreceptor sensitivity could be related to its low threshold for the release of adenosine in response to hypoxia here quantified for the first time.  相似文献   

8.
Extracellular nucleotides such as ATP and UTP are released in response to mechanical stimulation in different cell systems. It is becoming increasingly evident that ATP release plays a role in autocrine and paracrine stimulation of osteoblasts. Mechanical stimulation, as shear stress, membrane stretch or hypo-osmotic swelling, as well as oscillatory fluid flow, stimulates ATP release from different osteoblastic cell lines. Human osteoblast-like initial transfectant (HOBIT) cells release ATP in response to mechanical stimulation. In the present study, we show that HOBIT cells are activated by nanomolar levels of extracellular ATP, concentrations that can be detected under resting conditions and increase following hypotonic shock. Cell activation by hypotonic medium induced intracellular Ca2+ oscillations, and Egr-1 synthesis and DNA-binding activity. Quinacrine staining of living, resting cells revealed a granular fluorescence, typical of ATP-storing vesicles. Monensin prevented quinacrine staining and considerably inhibited hypotonic-induced ATP release. Finally, elevated levels of cytosolic Ca2+ activated massive ATP release and a dose-dependent loss of quinacrine granules. The contribution of a vesicular mechanism for ATP release is proposed to sustain paracrine osteoblast activation.  相似文献   

9.
Dental pulp cells release adenosine triphosphate (ATP) in response to intrapulpal pressure and the amount released depends on the magnitude of the pressure. ATP regulates the differentiation of stem cells into adipocytes and osteoblasts. However, it is unknown whether extracellular ATP influences the stemness and osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHEDs). Therefore, this study investigated the effects of extracellular ATP at a low (0.1 μM) and high (10 μM) concentration on the stemness and osteogenic differentiation of SHEDs. Cells were cultured in either growth medium or osteogenic medium with or without 0.1–10 μM ATP. In growth medium, both concentrations of ATP increased the mRNA expression of pluripotent and osteogenic markers. In contrast, in osteogenic medium, 0.1 μM ATP enhanced in vitro mineralization, whereas 10 μM ATP inhibited this process. In addition, 10 μM ATP stimulated the mRNA expression and activity of ectonucleotide pyrophosphatase/phosphodiesterase (ENPP), an enzyme that regulates the phosphate/pyrophosphate ratio. Thus, depending on the growth condition and its concentration, ATP stimulated stemness and in vitro mineralization or inhibited mineralization. In growth medium, both ATP concentrations stimulated pluripotent and osteogenic marker gene expression. However, in osteogenic medium, a biphasic effect was found on in vitro mineralization; the low concentration stimulated, whereas the high concentration inhibited, mineralization. We propose that ATP released due to mechanical stress modulates the stemness and differentiation of SHEDs. J. Cell. Biochem. 119: 488–498, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

10.
Adenosine 5′‐triphosphate (ATP) has been regarded as an intracellular energy currency molecule for many years. In recent decades, it has been determined that ATP is released into the extracellular milieu by animal, plant and microbial cells. In animal cells, this extracellular ATP (eATP) functions as a signalling compound to mediate many cellular processes through its interaction with membrane‐associated receptor proteins. It has also been reported that eATP is a signalling molecule required for the regulation of plant growth, development and responses to environmental stimuli. Recently, the first plant receptor for eATP was identified in Arabidopsis thaliana. Interestingly, some studies have shown that eATP is of particular importance in the control of plant cell death. In this review article, we summarize and discuss the theoretical and experimental advances that have been made with regard to the roles and mechanisms of eATP in plant cell death. We also make an attempt to address some speculative aspects to help develop and expand future research in this area.  相似文献   

11.
The macroscopic volume-regulated anion current (VRAC) is regulated by both intracellular and extracellular ATP, which has important implications in signaling and regulation of cellular excitability. The outwardly rectifying Cl(-) channel (ORCC) is a major contributor to the VRAC. This study investigated the effects of intracellular and extracellular ATP on the ORCCs expressed in the human cardiovascular system. With inside-out single-channel patch-clamp techniques, ORCCs were recorded from myocytes isolated from human atrium and septal ventricle and from primary cells originating from human coronary artery endothelium and human coronary artery smooth muscle. ORCCs from all of these tissues had similar biophysical properties, i.e., they were outwardly rectifying in symmetrical Cl(-) solutions, exhibited a slope conductance of approximately 90-100 pS at positive potentials and approximately 22 pS at negative potentials, and had a high open probability that was independent of voltage or time. The presence of ATP at the cytosolic face of the membrane increased the number of patches that contained functional ORCC but had no effect on gating. In contrast, "extracellular" ATP (in pipette solution) had no effect on the proportion of patches in which ORCC was detected but strongly reduced the open probability by increasing the closed dwell time. The potency order for nucleotides to affect gating was ATPgammaS > ATP = UTP > ADP > AMP, which suggests that a negatively charged phosphate group is involved in ORCC block. Our findings are consistent with a role of ORCC in the human cardiovasculature (atrium, ventricle, and coronary arteries). Regulation of ORCC by extracellular ATP suggests that this channel may have an important role in maintaining electrical activity and membrane potential under conditions in which extracellular ATP levels are elevated, such as with ATP release from nerve endings or during pathophysiological conditions.  相似文献   

12.
The stress status of the apoptotic cell can promote phenotypic changes that have important consequences on the immunogenicity of the dying cell. Autophagy is one of the biological processes activated in response to a stressful condition. It is an important mediator of intercellular communications, both by regulating the unconventional secretion of molecules, including interleukin 1β, and by regulating the extracellular release of ATP from early stage apoptotic cells. Additionally, autophagic components can be released in a caspase‐dependent manner by serum‐starved human endothelial cells that have engaged apoptotic and autophagic processes. The nature and the components of the extracellular vesicles released by dying autophagic cells are not known. In this study, we have identified extracellular membrane vesicles that are released by human endothelial cells undergoing apoptosis and autophagy, and characterized their biochemical, ultrastructural, morphological properties as well as their proteome. These extracellular vesicles differ from classical apoptotic bodies because they do not contain nucleus components and are released independently of Rho‐associated, coiled‐coil containing protein kinase 1 activation. Instead, they are enriched with autophagosomes and mitochondria and convey various danger signals, including ATP, suggesting that they could be involved in the modulation of innate immunity.  相似文献   

13.
ATP released from airway epithelial cells promotes purinergic receptor-regulated mucociliary clearance activities necessary for innate lung defense. Cell swelling-induced membrane stretch/strain is a common stimulus that promotes airway epithelial ATP release, but the mechanisms transducing cell swelling into ATP release are incompletely understood. Using knockdown and knockout approaches, we tested the hypothesis that pannexin 1 mediates ATP release from hypotonically swollen airway epithelia and investigated mechanisms regulating this activity. Well differentiated primary cultures of human bronchial epithelial cells subjected to hypotonic challenge exhibited enhanced ATP release, which was paralleled by the uptake of the pannexin probe propidium iodide. Both responses were reduced by pannexin 1 inhibitors and by knocking down pannexin 1. Importantly, hypotonicity-evoked ATP release from freshly excised tracheas and dye uptake in primary tracheal epithelial cells were impaired in pannexin 1 knockout mice. Hypotonicity-promoted ATP release and dye uptake in primary well differentiated human bronchial epithelial cells was accompanied by RhoA activation and myosin light chain phosphorylation and was reduced by the RhoA dominant negative mutant RhoA(T19N) and Rho and myosin light chain kinase inhibitors. ATP release and Rho activation were reduced by highly selective inhibitors of transient receptor potential vanilloid 4 (TRPV4). Lastly, knocking down TRPV4 impaired hypotonicity-evoked airway epithelial ATP release. Our data suggest that TRPV4 and Rho transduce cell membrane stretch/strain into pannexin 1-mediated ATP release in airway epithelia.  相似文献   

14.
1. Nicotinic acetylcholine receptors (nAChR)4 from BC3H1 cells (which express a skeletal muscle-type receptor) and from Torpedo californica electric organ were expressed in Xenopus laevis oocytes and studied with a voltage-clamp technique. 2. We found that bath application of ATP in the micromolar to millimolar range increased the ACh-elicited current in both muscle and electrocyte receptors. The effect of ATP increased with successive applications. This "use-dependent" increase in potentiation was Ca2+ dependent, while the potentiation itself was not. 3. Four other nucleotides were tested on muscle nAChR: ADP, AMP, adenosine, and GTP. Of these, only ADP was a potentiator, but its effect was not use dependent. Neither ATP nor ADP affected the resting potential of the oocyte membrane. 4. ADP potentiated the response to suberyldicholine and nicotine, as well as ACh. 5. Finally, ADP reversed the phencyclidine-induced block of ACh currents in oocytes expressing muscle nAChR.  相似文献   

15.
Adenosine is a powerful modulator of neuronal function in the mammalian central nervous system. During a variety of insults to the brain, adenosine is released in large quantities and exerts a neuroprotective influence largely via the A1 receptor, which inhibits glutamate release and neuronal activity. Using novel enzyme-based adenosine sensors, which allow high spatial and temporal resolution recordings of adenosine release in real time, we have investigated the release of adenosine during hypoxia/ischemia in the in vitro hippocampus. Our data reveal that during the early stages of hypoxia adenosine is likely released per se and not as a precursor such as cAMP or an adenine nucleotide. In addition, repeated hypoxia results in reduced production of extracellular adenosine and this may underlie the increased vulnerability of the mammalian brain to repetitive or secondary hypoxia/ischemia.  相似文献   

16.
Extracellular nucleotides and nucleosides promote a vast range of physiological responses, via activation of cell surface purinergic receptors. Virtually all tissues and cell types exhibit regulated release of ATP, which, in many cases, is accompanied by the release of uridine nucleotides. Given the relevance of extracellular nucleotide/nucleoside-evoked responses, understanding how ATP and other nucleotides are released from cells is an important physiological question. By facilitating the entry of cytosolic nucleotides into the secretory pathway, recently identified vesicular nucleotide and nucleotide-sugar transporters contribute to the exocytotic release of ATP and UDP-sugars not only from endocrine/exocrine tissues, but also from cell types in which secretory granules have not been biochemically characterized. In addition, plasma membrane connexin hemichannels, pannexin channels, and less-well molecularly defined ATP conducting anion channels have been shown to contribute to the release of ATP (and UTP) under a variety of conditions.  相似文献   

17.
Bioluminescence detection of ATP release mechanisms in epithelia   总被引:19,自引:0,他引:19  
Autocrine and paracrine release of and extracellular signalingby ATP is a ubiquitous cell biological and physiological process. Despite this knowledge, the mechanisms and physiological roles ofcellular ATP release are unknown. We tested the hypothesis thatepithelia release ATP under basal and stimulated conditions by using anewly designed and highly sensitive assay for bioluminescence detectionof ATP released from polarized epithelial monolayers. Thisbioluminescence assay measures ATP released from cystic fibrosis (CF)and non-CF human epithelial monolayers in a reduced serum mediumthrough catalysis of the luciferase-luciferin reaction, yielding aphoton of light collected by a luminometer. This novel assay measuresATP released into the apical or basolateral medium surroundingepithelia. Of relevance to CF, CF epithelia fail to release ATP acrossthe apical membrane under basal conditions. Moreover, hypotonicity isan extracellular signal that stimulates ATP release into bothcompartments of non-CF epithelia in a reversible manner; the responseto hypotonicity is also lost in CF epithelia. The bioluminescencedetection assay for ATP released from epithelia and other cells will beuseful in the study of extracellular nucleotide signaling inphysiological and pathophysiological paradigms. Taken together, theseresults suggest that extracellular ATP may be a constant regulator ofepithelial cell function under basal conditions and an autocrineregulator of cell volume under hypotonic conditions, two functions thatmay be lost in CF and contribute to CF pathophysiology.

  相似文献   

18.
A unifying theme common to the action of many cationic peptides that display lethal activities against microbial pathogens is their specific action at microbial membranes that results in selective loss of ions and small nucleotides—chiefly ATP. One model cationic peptide that induces non-lytic release of ATP from the fungal pathogen Candida albicans is salivary histatin 5 (Hst 5). The major characteristic of Hst 5-induced ATP release is that it occurs rapidly while cells are still metabolically active and have polarized membranes, thus precluding cell lysis as the means of release of ATP. Other cationic peptides that induce selective release of ATP from target microbes are lactoferricin, human neutrophil defensins, bactenecin, and cathelicidin peptides. The role of released extracellular ATP induced by cationic peptides is not known, but localized increases in extracellular ATP concentration may serve to potentiate cell killing, facilitate further peptide uptake, or function as an additional signal to activate the host innate immune system at the site of infection.  相似文献   

19.
Renal epithelial cells release ATP constitutively under basal conditions and release higher quantities of purine nucleotide in response to stimuli. ATP filtered at the glomerulus, secreted by epithelial cells along the nephron, and released serosally by macula densa cells for feedback signaling to afferent arterioles within the glomerulus has important physiological signaling roles within kidneys. In autosomal recessive polycystic kidney disease (ARPKD) mice and humans, collecting duct epithelial cells lack an apical central cilium or express dysfunctional proteins within that monocilium. Collecting duct principal cells derived from an Oak Ridge polycystic kidney (orpk ( Tg737 ) ) mouse model of ARPKD lack a well-formed apical central cilium, thought to be a sensory organelle. We compared these cells grown as polarized cell monolayers on permeable supports to the same cells where the apical monocilium was genetically rescued with the wild-type Tg737 gene that encodes Polaris, a protein essential to cilia formation. Constitutive ATP release under basal conditions was low and not different in mutant versus rescued monolayers. However, genetically rescued principal cell monolayers released ATP three- to fivefold more robustly in response to ionomycin. Principal cell monolayers with fully formed apical monocilia responded three- to fivefold greater to hypotonicity than mutant monolayers lacking monocilia. In support of the idea that monocilia are sensory organelles, intentionally harsh pipetting of medium directly onto the center of the monolayer induced ATP release in genetically rescued monolayers that possessed apical monocilia. Mechanical stimulation was much less effective, however, on mutant orpk collecting duct principal cell monolayers that lacked apical central monocilia. Our data also show that an increase in cytosolic free Ca(2+) primes the ATP pool that is released in response to mechanical stimuli. It also appears that hypotonic cell swelling and mechanical pipetting stimuli trigger release of a common ATP pool. Cilium-competent monolayers responded to flow with an increase in cell Ca(2+) derived from both extracellular and intracellular stores. This flow-induced Ca(2+) signal was less robust in cilium-deficient monolayers. Flow-induced Ca(2+) signals in both preparations were attenuated by extracellular gadolinium and by extracellular apyrase, an ATPase/ADPase. Taken together, these data suggest that apical monocilia are sensory organelles and that their presence in the apical membrane facilitates the formation of a mature ATP secretion apparatus responsive to chemical, osmotic, and mechanical stimuli. The cilium and autocrine ATP signaling appear to work in concert to control cell Ca(2+). Loss of a cilium-dedicated autocrine purinergic signaling system may be a critical underlying etiology for ARPKD and may lead to disinhibition and/or upregulation of multiple sodium (Na(+)) absorptive mechanisms and a resultant severe hypertensive phenotype in ARPKD and, possibly, other diseases.  相似文献   

20.
ATP released from cells is known to activate plasma membrane P2X (ionotropic) or P2Y (metabotropic) receptors. In skeletal muscle cells, depolarizing stimuli induce both a fast calcium signal associated with contraction and a slow signal that regulates gene expression. Here we show that nucleotides released to the extracellular medium by electrical stimulation are partly involved in the fast component and are largely responsible for the slow signals. In rat skeletal myotubes, a tetanic stimulus (45 Hz, 400 1-ms pulses) rapidly increased extracellular levels of ATP, ADP, and AMP after 15 s to 3 min. Exogenous ATP induced an increase in intracellular free Ca2+ concentration, with an EC50 value of 7.8 ± 3.1 μm. Exogenous ADP, UTP, and UDP also promoted calcium transients. Both fast and slow calcium signals evoked by tetanic stimulation were inhibited by either 100 μm suramin or 2 units/ml apyrase. Apyrase also reduced fast and slow calcium signals evoked by tetanus (45 Hz, 400 0.3-ms pulses) in isolated mouse adult skeletal fibers. A likely candidate for the ATP release pathway is the pannexin-1 hemichannel; its blockers inhibited both calcium transients and ATP release. The dihydropyridine receptor co-precipitated with both the P2Y2 receptor and pannexin-1. As reported previously for electrical stimulation, 500 μm ATP significantly increased mRNA expression for both c-fos and interleukin 6. Our results suggest that nucleotides released during skeletal muscle activity through pannexin-1 hemichannels act through P2X and P2Y receptors to modulate both Ca2+ homeostasis and muscle physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号