首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stomatal biology: new techniques, new challenges   总被引:6,自引:1,他引:6  
  相似文献   

2.
3.
4.
Nature Reviews Molecular Cell Biology celebrated its 10-year anniversary during this past year with a series of specially commissioned articles. To complement this, here we have asked researchers from across the field for their insights into how molecular cell biology research has evolved during this past decade, the key concepts that have emerged and the most promising interfaces that have developed. Their comments highlight the broad impact that particular advances have had, some of the basic understanding that we still require, and the collaborative approaches that will be essential for driving the field forward.  相似文献   

5.
S-Nitrosylated proteins form when a cysteine thiol reacts with nitric oxide (NO) in the presence of an electron acceptor to form an S-NO bond. Under physiological conditions, this posttranslational modification affects the function a wide array of cell proteins, ranging from ion channels to nuclear regulatory proteins. Recent evidence suggests that 1) S-nitrosylated proteins can be synthesized by exposure of specific redox-active motifs to NO, through transnitrosation/transfer reactions, or through metalloprotein-catalyzed reactions; 2) S-nitrosothiols can be sequestered in membranes, lipophilic protein folds, or in vesicles to preserve their activity; and 3) S-nitrosothiols can be degraded by a number of enzymes systems. These recent insights regarding the bioactivities, molecular signaling pathways, and metabolism of endogenous S-nitrosothiols have suggested several new therapies for disease ranging from cystic fibrosis to pulmonary hypertension.  相似文献   

6.
7.
The highly regulated structural components of the plant cell form the basis of its function. It is becoming increasingly recognized that cellular components are ordered into regulatory units ranging from the multienzyme complexes that allow metabolic channeling during primary metabolism to the "transducon" complexes of signal transduction elements that allow for the highly efficient transfer of information within the cell. Against this structural background the highly dynamic processes regulating cell function are played out. Recent technological advances in three areas have driven our understanding of the complexities of the structural and functional dynamics of the plant cell. First, microscope and digital camera technology has seen not only improvements in the resolution of the optics and sensitivity of detectors, but also the development of novel microscopy applications such as confocal and multiphoton microscopy. These technologies are allowing cell biologists to image the dynamics of living cells with unparalleled three-dimensional resolution. The second advance has been in the availability of increasingly powerful and affordable computers. The computer control/analysis required for many of the new microscopy techniques was simply unavailable until recently. Third, there have been dramatic advances in the available probes to use with these new microscopy approaches. Thus the plant cell biologist now has available a vast array of fluorescent probes that will report cell parameters as diverse as the pH of the cytosol, the oxygen level in a tissue, or the dynamics of the cytoskeleton. The combination of these new approaches has led to an increasingly detailed picture of how plant cells regulate their activities.  相似文献   

8.
9.
10.
Creating new fluorescent probes for cell biology   总被引:1,自引:0,他引:1  
Fluorescent probes are one of the cornerstones of real-time imaging of live cells and a powerful tool for cell biologists. They provide high sensitivity and great versatility while minimally perturbing the cell under investigation. Genetically-encoded reporter constructs that are derived from fluorescent proteins are leading a revolution in the real-time visualization and tracking of various cellular events. Recent advances include the continued development of 'passive' markers for the measurement of biomolecule expression and localization in live cells, and 'active' indicators for monitoring more complex cellular processes such as small-molecule-messenger dynamics, enzyme activation and protein-protein interactions.  相似文献   

11.
Synthetic biology: challenges ahead   总被引:3,自引:0,他引:3  
This expanding scientific discipline is proving extremely popularand is attracting engineering and system design experts to thefield of Biology. As Bioinformatics and Computational Biology will be essentialcomponents of new technical and scientific developments, itis vital to follow the discussion generated by the recent ESFExploratory Workshop (October 13–16, 2005, Constructingand de-constructing Life, Magalia, Spain) and the 2005 reportof the NEST High-Level Expert Group on Synthetic Biology: ApplyingEngineering to Biology http://www.eurosfaire.prd.fr/nest/documents/pdf/NEST_syntheticbiology_b5_eur21796_en.pdf) Synthetic Biology stands at the meeting-point of two cultures.The first, represented by those interested in ‘deconstructing  相似文献   

12.
The use of methods for global and quantitative analysis of cells is providing new systems-level insights into signal transduction processes. Recent studies reveal important information about the rates of signal transmission and propagation, help establish some general regulatory characteristics of multi-tiered signaling cascades, and illuminate the combinatorial nature of signaling specificity in cell differentiation.  相似文献   

13.
The essence of a living cell is adaptation to a changing environment, and a central goal of modern cell biology is to understand adaptive change under normal and pathological conditions. Because the number of components is large, and processes and conditions are many, visual tools are useful in providing an overview of relations that would otherwise be far more difficult to assimilate. Historically, representations were static pictures, with genes and proteins represented as nodes, and known or inferred correlations between them (links) represented by various kinds of lines. The modern challenge is to capture functional hierarchies and adaptation to environmental change, and to discover pathways and processes embedded in known data, but not currently recognizable. Among the tools being developed to meet this challenge is VisANT (freely available at http://visant.bu.edu) which integrates, mines and displays hierarchical information. Challenges to integrating modeling (discrete or continuous) and simulation capabilities into such visual mining software are briefly discussed.  相似文献   

14.
15.
During development, epithelial cells in some tissues acquire a polarity orthogonal to their apical–basal axis. This polarity, referred to as planar cell polarity (PCP), or tissue polarity, is essential for the normal physiological function of many epithelia. Early studies of PCP focused on insect epithelia (Lawrence, 1966 [1]), and the earliest genetic analyses were carried out in Drosophila (Held et al., 1986; Gubb and Garcia-Bellido, 1982 [2,3]). Indeed, most of our mechanistic understanding of PCP derives from the ongoing use of Drosophila as a model system. However, a range of medically important developmental defects and physiological processes are under the control of PCP mechanisms that appear to be at least partially conserved, driving considerable interest in studying PCP both in Drosophila and in vertebrate model systems. Here, I present a model of the PCP signaling mechanism based on studies in Drosophila. I highlight two areas in which our understanding is deficient, and which lead to current confusion in the literature. Future studies that shed light on these areas will substantially enhance our understanding of the fascinating yet challenging problem of understanding the mechanisms that generate PCP.  相似文献   

16.
Systems biology: its practice and challenges   总被引:14,自引:0,他引:14  
Aderem A 《Cell》2005,121(4):511-513
  相似文献   

17.
Signaling pathways lie at the heart of cellular responses to environmental cues. The ability to reconstruct specific signaling modules ex vivo allows us to study their inherent properties in an isolated environment, which in turn enables us to elucidate fundamental design principles for such motifs. This synthetic biology approach for analyzing natural, well-defined signaling modules will help to bridge the gap between studies on isolated biochemical reactions-which can provide great mechanistic detail but do not capture the complexity of endogenous signaling pathways-and those on entire networks of protein interactions-which offer a systems-level view of signal transduction but obscure the mechanisms that underlie signal transmission and processing. Additionally, minimal signaling modules can be tractably engineered to predictably alter cellular responses, opening up possibilities for creating biotechnologically and biomedically useful cellular devices.  相似文献   

18.
19.
20.
Climate change research is increasingly focusing on the dynamics among species, ecosystems and climates. Better data about the historical behaviours of these dynamics are urgently needed. Such data are already available from ecology, archaeology, palaeontology and geology, but their integration into climate change research is hampered by differences in their temporal and geographical scales. One productive way to unite data across scales is the study of functional morphological traits, which can form a common denominator for studying interactions between species and climate across taxa, across ecosystems, across space and through time-an approach we call 'ecometrics'. The sampling methods that have become established in palaeontology to standardize over different scales can be synthesized with tools from community ecology and climate change biology to improve our understanding of the dynamics among species, ecosystems, climates and earth systems over time. Developing these approaches into an integrative climate change biology will help enrich our understanding of the changes our modern world is undergoing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号