首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
"Monospecific" antisera to the "fragile" hemaglutinnis of H0N1 (PR8) and H1N1 (FM1) influenza viruses detected an asymmetrical cross-reaction between these two strains that could not be explained by a common neuraminidase.  相似文献   

2.
To determine the role of the pandemic influenza A/H1N1 2009 (A/H1N1 2009pdm) in acute respiratory tract infections (ARTIs) and its impact on the epidemic of seasonal influenza viruses and other common respiratory viruses, nasal and throat swabs taken from 7,776 patients with suspected viral ARTIs from 2006 through 2010 in Beijing, China were screened by real-time PCR for influenza virus typing and subtyping and by multiplex or single PCR tests for other common respiratory viruses. We observed a distinctive dual peak pattern of influenza epidemic during the A/H1N1 2009pdm in Beijing, China, which was formed by the A/H1N1 2009pdm, and a subsequent influenza B epidemic in year 2009/2010. Our analysis also shows a small peak formed by a seasonal H3N2 epidemic prior to the A/H1N1 2009pdm peak. Parallel detection of multiple respiratory viruses shows that the epidemic of common respiratory viruses, except human rhinovirus, was delayed during the pandemic of the A/H1N1 2009pdm. The H1N1 2009pdm mainly caused upper respiratory tract infections in the sampled patients; patients infected with H1N1 2009pdm had a higher percentage of cough than those infected with seasonal influenza or other respiratory viruses. Our findings indicate that A/H1N1 2009pdm and other respiratory viruses except human rhinovirus could interfere with each other during their transmission between human beings. Understanding the mechanisms and effects of such interference is needed for effective control of future influenza epidemics.  相似文献   

3.
H9N2 subtype avian influenza virus(AIV) is an influenza A virus that is widely spread throughout Asia, where it jeopardizes the poultry industry and provides genetic material for emerging human pathogens. To better understand the epidemicity and genetics of H9 subtype AIVs, we conducted active surveillance in live poultry markets(LPMs) in Hubei Province from 2013 to 2017. A total of 4798 samples were collected from apparent healthy poultry and environment. Realtime RT-PCR revealed that the positivity rate of influenza A was 26.6%(1275/4798), of which the H9 subtype accounted for 50.3%(641/1275) of the positive samples. Of the 132 H9N2 viral strains isolated, 48 representative strains were subjected to evolutionary analysis and genotyping. Phylogenetic analysis revealed that all H9N2 viral genes had 91.1%–100% nucleotide homology, clustered with genotype 57, and had high homology with human H9N2 viruses isolated from2013 to 2017 in China. Using a nucleotide divergence cutoff of 95%, we identified ten distinct H9N2 genotypes that continued to change over time. Molecular analysis demonstrated that six H9N2 isolates had additional potential glycosylation sites at position 218 in the hemagglutinin protein, and all isolates had I155 T and Q226 L mutations. Moreover, 44 strains had A558 V mutations in the PB2 protein and four had E627 V mutations, along with H9N2 human infection strains A/Beijing/1/2016 and A/Beijing/1/2017. These results emphasize that the H9N2 influenza virus in Hubei continues to mutate and undergo mammalian adaptation changes, indicating the necessity of strengthening the surveillance of the AIV H9N2 subtype in LPMs.  相似文献   

4.

Background

Annual seasonal influenza outbreaks are associated with high morbidity and mortality.

Objective

To index and document evolutionary changes among influenza A H1N1 and H3N2 viruses isolated from Thailand during 2006–2009, using complete genome sequences.

Methods

Nasopharyngeal aspirates were collected from patients diagnosed with respiratory illness in Thailand during 2006–2009. All samples were screened for Influenza A virus. A total of 13 H1N1 and 21 H3N2 were confirmed and whole genome sequenced for the evolutionary analysis using standard phylogenetic approaches.

Results

Phylogenetic analysis of HA revealed a clear diversification of seasonal from vaccine strain lineages. H3N2 seasonal clusters were closely related to the WHO recommended vaccine strains in each season. Most H1N1 isolates could be differentiated into 3 lineages. The A/Brisbane/59/2007 lineage, a vaccine strain for H1N1 since 2008, is closely related with the H1N1 subtypes circulating in 2009. HA sequences were conserved at the receptor-binding site. Amino acid variations in the antigenic site resulted in a possible N-linked glycosylation motif. Recent H3N2 isolates had higher genetic variations compared to H1N1 isolates. Most substitutions in the NP protein were clustered in the T-cell recognition domains.

Conclusion

In this study we performed evolutionary genetic analysis of influenza A viruses in Thailand between 2006–2009. Although the current vaccine strain is efficient for controlling the circulating outbreak subtypes, surveillance is necessary to provide unambiguous information on emergent viruses. In summary, the findings of this study contribute the understanding of evolution in influenza A viruses in humans and is useful for routine surveillance and vaccine strain selection.  相似文献   

5.
To study genetic evolution of Moroccan influenza A(H1N1)pdm09 virus strains, we conducted a molecular characterization of the hemagglutinin gene subunit 1 (HA1) of 36 influenza A(H1N1)pdm09 virus strains. The stains were collected from patients in Rabat and Casablanca during two influenza seasons 2009–2010 and 2010–2011. Nucleotide and amino acid sequences of 14 influenza A(H1N1)pdm09 virus strains from 2009 to 2010 were ~97 and 99 %, respectively, similar to the reference strain A/California/07/2009 (H1N1). Phylogenetic analysis of 22 influenza A(H1N1)pdm09 virus strains from 2010 to 2011 revealed a co-circulation of three well-described different genetic groups. Most important, none of the identified groups showed significant changes at the antigenic site of the virus HA1 subunit which may alter the efficacy of California/07/2009 (H1N1) vaccine.  相似文献   

6.

Background

Data on the burden of the 2009 influenza pandemic in Asia are limited. Influenza A(H1N1)pdm09 was first reported in Thailand in May 2009. We assessed incidence and epidemiology of influenza-associated hospitalizations during 2009–2010.

Methods

We conducted active, population-based surveillance for hospitalized cases of acute lower respiratory infection (ALRI) in all 20 hospitals in two rural provinces. ALRI patients were sampled 1∶2 for participation in an etiology study in which nasopharyngeal swabs were collected for influenza virus testing by PCR.

Results

Of 7,207 patients tested, 902 (12.5%) were influenza-positive, including 190 (7.8%) of 2,436 children aged <5 years; 86% were influenza A virus (46% A(H1N1)pdm09, 30% H3N2, 6.5% H1N1, 3.5% not subtyped) and 13% were influenza B virus. Cases of influenza A(H1N1)pdm09 first peaked in August 2009 when 17% of tested patients were positive. Subsequent peaks during 2009 and 2010 represented a mix of influenza A(H1N1)pdm09, H3N2, and influenza B viruses. The estimated annual incidence of hospitalized influenza cases was 136 per 100,000, highest in ages <5 years (477 per 100,000) and >75 years (407 per 100,000). The incidence of influenza A(H1N1)pdm09 was 62 per 100,000 (214 per 100,000 in children <5 years). Eleven influenza-infected patients required mechanical ventilation, and four patients died, all adults with influenza A(H1N1)pdm09 (1) or H3N2 (3).

Conclusions

Influenza-associated hospitalization rates in Thailand during 2009–10 were substantial and exceeded rates described in western countries. Influenza A(H1N1)pdm09 predominated, but H3N2 also caused notable morbidity. Expanded influenza vaccination coverage could have considerable public health impact, especially in young children.  相似文献   

7.
8.

Background

Vaccination campaigns against A/H1N1 2009 pandemic influenza virus (A/H1N1p) began in autumn 2009 in Europe, after the declaration of the pandemic at a global level. This study aimed to estimate the proportion of individuals vaccinated against A/H1N1p in Norway who were already infected (asymptomatically or symptomatically) by A/H1N1p before vaccination, using a mathematical model.

Methods

A dynamic, mechanistic, mathematical model of A/H1N1p transmission was developed for the Norwegian population. The model parameters were estimated by calibrating the model-projected number of symptomatic A/H1N1p cases to the number of laboratory-confirmed A/H1N1p cases reported to the surveillance system, accounting for potential under-reporting. It was assumed in the base case that the likelihood of vaccination was independent of infection/disease state. A sensitivity analysis explored the effects of four scenarios in which current or previous symptomatic A/H1N1p infection would influence the likelihood of being vaccinated.

Results

The number of model-projected symptomatic A/H1N1p cases by week during the epidemic, accounting for under-reporting and timing, closely matched that of the laboratory-confirmed A/H1N1p cases reported to the surveillance system. The model-projected incidence of symptomatic A/H1N1p infection was 27% overall, 55% in people <10 years old and 41% in people 10–20 years old. The model-projected percentage of individuals vaccinated against A/H1N1p who were already infected with A/H1N1p before being vaccinated was 56% overall, 62% in people <10 years old and 66% in people 10–20 years old. The results were sensitive to assumptions about the independence of vaccination and infection; however, even when current or previous symptomatic A/H1N1p infection was assumed to reduce the likelihood of vaccination, the estimated percentage of individuals who were infected before vaccination remained at least 32% in all age groups.

Conclusion

This analysis suggests that over half the people vaccinated against A/H1N1p in Norway during the 2009 pandemic may already have been infected by A/H1N1p before being vaccinated.  相似文献   

9.

Background

In March 2009, pandemic influenza A(H1N1) (A(H1N1)pdm) emerged in Mexico and the United States. In Japan, since the first outbreak of A(H1N1)pdm in Osaka and Hyogo Prefectures occurred in the middle of May 2009, the virus had spread over 16 of 47 prefectures as of June 4, 2009.

Methods/Principal Findings

We analyzed all-segment concatenated genome sequences of 75 isolates of A(H1N1)pdm viruses in Japan, and compared them with 163 full-genome sequences in the world. Two analyzing methods, distance-based and Bayesian coalescent MCMC inferences were adopted to elucidate an evolutionary relationship of the viruses in the world and Japan. Regardless of the method, the viruses in the world were classified into four distinct clusters with a few exceptions. Cluster 1 was originated earlier than cluster 2, while cluster 2 was more widely spread around the world. The other two clusters (clusters 1.2 and 1.3) were suggested to be distinct reassortants with different types of segment assortments. The viruses in Japan seemed to be a multiple origin, which were derived from approximately 28 transported cases. Twelve cases were associated with monophyletic groups consisting of Japanese viruses, which were referred to as micro-clade. While most of the micro-clades belonged to the cluster 2, the clade of the first cases of infection in Japan originated from cluster 1.2. Micro-clades of Osaka/Kobe and the Fukuoka cases, both of which were school-wide outbreaks, were eradicated. Time of most recent common ancestor (tMRCA) for each micro-clade demonstrated that some distinct viruses were transmitted in Japan between late May and early June, 2009, and appeared to spread nation-wide throughout summer.

Conclusions

Our results suggest that many viruses were transmitted from abroad in late May 2009 irrespective of preventive actions against the pandemic influenza, and that the influenza A(H1N1)pdm had become a pandemic stage in June 2009 in Japan.  相似文献   

10.
11.
This study aimed to determine the role of influenza-like illness (ILI) surveillance conducted on Leyte Island, the Philippines, including involvement of other respiratory viruses, from 2010 to 2013. ILI surveillance was conducted from January 2010 to March 2013 with 3 sentinel sites located in Tacloban city, Palo and Tanauan of Leyte Island. ILI was defined as fever ≥38°C or feverish feeling and either cough or running nose in a patient of any age. Influenza virus and other 5 respiratory viruses were searched. A total of 5,550 ILI cases visited the 3 sites and specimens were collected from 2,031 (36.6%) cases. Among the cases sampled, 1,637 (75.6%) were children aged <5 years. 874 (43.0%) cases were positive for at least one of the respiratory viruses tested. Influenza virus and respiratory syncytial virus (RSV) were predominantly detected (both were 25.7%) followed by human rhinovirus (HRV) (17.5%). The age distributions were significantly different between those who were positive for influenza, HRV, and RSV. ILI cases were reported throughout the year and influenza virus was co-detected with those viruses on approximately half of the weeks of study period (RSV in 60.5% and HRV 47.4%). In terms of clinical manifestations, only the rates of headache and sore throat were significantly higher in influenza positive cases than cases positive to other viruses. In conclusion, syndromic ILI surveillance in this area is difficult to detect the start of influenza epidemic without laboratory confirmation which requires huge resources. Age was an important factor that affected positive rates of influenza and other respiratory viruses. Involvement of older age children may be useful to detect influenza more effectively.  相似文献   

12.
Ng  HoiMan  Zhang  Teng  Wang  Guoliang  Kan  SiMeng  Ma  Guoyi  Li  Zhe  Chen  Chang  Wang  Dandan  Wong  MengIn  Wong  ChioHang  Ni  Jinliang  Zhang  Xiaohua Douglas 《中国病毒学》2021,36(5):1144-1153
Virologica Sinica - Influenza is one of the major respiratory diseases in humans. Macau is a tourist city with high density of population and special population mobility. The study on the...  相似文献   

13.
14.

Background

Influenza viral shedding studies provide fundamental information for preventive strategies and modelling exercises. We conducted a prospective household study to investigate viral shedding in seasonal and pandemic influenza between 2007 and 2011 in Berlin and Munich, Germany.

Methods

Study physicians recruited index patients and their household members. Serial nasal specimens were obtained from all household members over at least eight days and tested quantitatively by qRT-PCR for the influenza virus (sub)type of the index patient. A subset of samples was also tested by viral culture. Symptoms were recorded daily.

Results

We recruited 122 index patients and 320 household contacts, of which 67 became secondary household cases. Among all 189 influenza cases, 12 were infected with seasonal/prepandemic influenza A(H1N1), 19 with A(H3N2), 60 with influenza B, and 98 with A(H1N1)pdm09. Nine (14%) of 65 non-vaccinated secondary cases were asymptomatic/subclinical (0 (0%) of 21 children, 9 (21%) of 44 adults; p = 0.03). Viral load among patients with influenza-like illness (ILI) peaked on illness days 1, 2 or 3 for all (sub)types and declined steadily until days 7–9. Clinical symptom scores roughly paralleled viral shedding dynamics. On the first day prior to symptom onset 30% (12/40) of specimens were positive. Viral load in 6 asymptomatic/subclinical patients was similar to that in ILI-patients. Duration of infectiousness as measured by viral culture lasted approximately until illness days 4–6. Viral load did not seem to be influenced by antiviral therapy, age or vaccination status.

Conclusion

Asymptomatic/subclinical infections occur infrequently, but may be associated with substantial amounts of viral shedding. Presymptomatic shedding may arise in one third of cases, and shedding characteristics appear to be independent of (seasonal or pandemic) (sub)type, age, antiviral therapy or vaccination; however the power to find moderate differences was limited.  相似文献   

15.
16.
17.

Background

The majority of emerging infectious diseases are zoonotic (transmissible between animals and humans) in origin, and therefore integrated surveillance of disease events in humans and animals has been recommended to support effective global response to disease emergence. While in the past decade there has been extensive global surveillance for highly pathogenic avian influenza (HPAI) infection in both animals and humans, there have been few attempts to compare these data streams and evaluate the utility of such integration.

Methodology

We compared reports of bird outbreaks of HPAI H5N1 in Egypt for 2006–2011 compiled by the World Organisation for Animal Health (OIE) and the UN Food and Agriculture Organization (FAO) EMPRESi reporting system with confirmed human H5N1 cases reported to the World Health Organization (WHO) for Egypt during the same time period.

Principal Findings

Both human cases and bird outbreaks showed a cyclic pattern for the country as a whole, and there was a statistically significant temporal correlation between the data streams. At the governorate level, the first outbreak in birds in a season usually but not always preceded the first human case, and the time lag between events varied widely, suggesting regional differences in zoonotic risk and/or surveillance effectiveness. In a multivariate risk model, lower temperature, lower urbanization, higher poultry density, and the recent occurrence of a bird outbreak were associated with increased risk of a human case of HPAI in the same governorate, although the positive predictive value of a bird outbreak was low.

Conclusions

Integrating data streams of surveillance for human and animal cases of zoonotic disease holds promise for better prediction of disease risk and identification of environmental and regional factors that can affect risk. Such efforts can also point out gaps in human and animal surveillance systems and generate hypotheses regarding disease transmission.  相似文献   

18.
Li  Xiaowen  Chan  Karen Kie Yan  Xu  Bo  Lu  Ming  Xu  Bing 《中国病毒学》2020,35(1):14-20
Annual influenza B virus epidemics and outbreaks cause severe influenza diseases in humans and pose a threat to public health. China is an important epidemic area of influenza B viruses. However, the spatial, temporal transmission pathways and the demography history of influenza B viruses in China remain unknown. We collected the haemagglutinin gene sequences sampled of influenza B virus in China between 1973 and 2018. A Bayesian Markov chain Monte Carlo phylogeographic discrete approach was used to infer the spatial and temporal phylodynamics of influenza B virus. The Bayesian phylogeographic analysis of influenza B viruses showed that the North subtropical and South subtropical zones are the origins of the Victoria and Yamagata lineage viruses, respectively. Furthermore, the South temperate and North subtropical zones acted as transition nodes in the Victoria lineage virus dispersion network and that the North subtropical and Mid subtropical zones acted as transition nodes in the Yamagata lineage virus dispersion network. Our findings contribute to the knowledge regarding the spatial and temporal patterns of influenza B virus outbreaks in China.  相似文献   

19.
20.

Background

The influenza A (H1N1) pandemic swept across the globe from April 2009 to August 2010 affecting millions. Many WHO Member States relied on antiviral drugs, specifically neuraminidase inhibitors (NAIs) oseltamivir and zanamivir, to treat influenza patients in critical condition. Such drugs have been found to be effective in reducing severity and duration of influenza illness, and likely reduced morbidity during the pandemic. However, it is less clear whether NAIs used during the pandemic reduced H1N1 mortality.

Methods

Country-level data on supply of oseltamivir and zanamivir were used to predict H1N1 mortality (per 100,000 people) from July 2009 to August 2010 in forty-two WHO Member States. Poisson regression was used to model the association between NAI supply and H1N1 mortality, with adjustment for economic, demographic, and health-related confounders.

Results

After adjustment for potential confounders, each 10% increase in kilograms of oseltamivir, per 100,000 people, was associated with a 1.6% reduction in H1N1 mortality over the pandemic period (relative rate (RR) = 0.84 per log increase in oseltamivir supply). While the supply of zanamivir was considerably less than that of oseltamivir in each Member State, each 10% increase in kilogram of active zanamivir, per 100,000, was associated with a 0.3% reduction in H1N1 mortality (RR = 0.97 per log increase).

Conclusion

While there are limitations to the ecologic nature of these data, this analysis offers evidence of a protective relationship between antiviral drug supply and influenza mortality and supports a role for influenza antiviral use in future pandemics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号