首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of convulsions, induced by flurothyl, on RNA synthesis in purified unfractionated nuclei and the cytoplasm of rat cerebral cortex was studied by using a double-label technique involving injection of [3H]- and [14C]-orotate intracisternally. 2. Intact RNA was extracted in 80% yield by an enzymic method by using a proteinase in the presence of sodium dodecyl sulphate followed by deoxyribonuclease. Electrophoresis on 1.5% polyacrylamide-0.5% agarose gels revealed the presence of giant nuclear RNA of size up to approx. 300X 10(6) daltons and mRNA of maximal mol.wt. 9 X 10(6)-16 X 10(6). 3. Nuclear RNA synthesis was decreased to 27% in the first 15 min after convulsions but rapidly increased, so that at 1 1/2 h it was 124% of the control, and at 6 h 147%. 4. Labelling of cytoplasmic RNA was decreased to 15% at 15 min after convulsions but had not recovered to control values by 6 h. 5. Analysis of radioactive gel patterns and the 3H/14C ratio at six time-points (15 min-6h) showed that the major effect was inhibition of the processing of heterogeneous nuclear RNA resulting in a sharp decline in the export of newly synthesized RNA from the nucleus. 6. Cytoplasmic RNA patterns indicated that specific messengers were synthesized at different times during the recovery of the cell after convulsions.  相似文献   

2.
Insulin produces seizures in healthy and diabetic animals. Amongst suggested mechanisms, the role of neuromodulators and neurotransmitters is not clear. The present study explores the mechanisms involved in insulin-induced convulsions. Convulsions were induced in Swiss male albino mice with graded doses of insulin. Blood sugar levels were measured prior to and after the first convulsion. Drugs like 5-HTP (5-HT precursor), pCPA (5-HT depletor), ondansetron (5-HT3 antagonist), ketanserin (5-HT, antagonist), ketamine (NMDA antagonist), 1-dopa (dopamine precursor) and reserpine (amine depletor) were studied for interaction with convulsive behaviour induced by insulin. Insulin in 2 IU/kg dose did not produce convulsions while 4 and 8 IU/kg doses produced convulsions in 50% and 100% of animals respectively. 5-HTP, ondansetron, ketanserin, ketamine and l-dopa significantly protected/inhibited animals from convulsions at all studied doses of insulin. On the contrary, pCPA and reserpine potentiated insulin induced convulsions. Insulin caused mortality in 40 and 100% animals with 4 and 8 IU/kg doses respectively. pCPA and reserpine treatments caused mortality at all doses of insulin, while other drugs did not influence insulin induced mortality. Blood sugar levels were reduced in all groups irrespective of the presence or absence of convulsions. A definitive link of serotonergic, dopaminergic and excitatory amino acid pathways in mediating insulin-induced hypoglycemic convulsions is suggested.  相似文献   

3.
Tofizopam, an anxiolytic 3,4-benzodiazepine, increases the affinity of benzodiazepine receptors for 1,4-benzodiazepines. In this study we investigated whether this increased affinity of the receptors alters the sensitivity of mice to tremor and to convulsions. Convulsions induced by harmane were not affected by tofizopam (50-300 mg/kg), but diazepam (15 mg/kg) increased the ED50 of harmane from 9.9 to 25.1 mg/kg. Tofizopam did not alter the threshold for electroshock-induced convulsions, while a dose of 10 mg/kg diazepam protected mice from convulsions. Low doses of tofizopam (12.5-25 mg/kg) sensitized mice to the tremorogenic effect of harmaline. Diazepam inhibited tremor: the ED50 of harmaline increased by 153% after 50 mg/kg of diazepam. In contrast to 1,4-benzodiazepines, tofizopam has no anticonvulsive effect. It sensitises mice to the tremor induced by harmaline. In combination with diazepam, however, tofizopam enhanced the anticonvulsive and antitremorogenic actions of this 1,4-benzodiazepine by 12-65%. This effect probably results from a tofizopam-induced increase in the occupation of benzodiazepine receptors.  相似文献   

4.
A new mutant, the Wakayama epileptic rat (WER), exhibiting both spontaneous absence-like behavior and tonic-clonic convulsions, was identified in a colony of Wistar rats. To determine clear seizure characteristics of this mutant strain, we analyzed the mode of inheritance of the convulsion and observed patterns of electroencephalogram (EEG) during the seizures. F1 progeny were produced between the founder male and normal females of the same colony. Animals were monitored through the inbreeding course to analyze genetic control of epileptic behavior. EEGs were recorded using affected animals in the F3-4 and post F13 generations. After the F2 generation, affected rats spontaneously exhibited both absence-like immobile behavior and tonic-clonic convulsions. The absence-like seizures were characterized by motor arrest and head droop. The tonic-clonic convulsions began with neck and forelimb clonus, wild jumping/running, and opisthotonic posturing, and evolved to tonic, then clonic convulsions. Most convulsion onsets occurred between 25-70 days of age. Mating experiments revealed that 0%(0/18) of the animals in F1, 10%(3/26) in F2, 17%(1/6) in backcross progeny and 86% (100/116) in progeny of crosses between epileptic rats showed tonic-clonic convulsions. Ictal cortical EEGs were characterized by 4-6 (5.1 +/- 0.4, mean +/- SD) Hz spike-and-wave complexes in the absence-like seizures and by low-voltage fast waves in the tonic-clonic convulsions. This new mutant rat spontaneously exhibited both absence-like and tonic-clonic seizures. The tonic-clonic seizure was inherited as an autosomal recessive trait with 86% incidence. Thus, the new mutant rat may become a useful model for studying human inherited epilepsies.  相似文献   

5.
Abstract: Calcium transport was assessed within synaptic terminals isolated from cerebral cortices of rats which experienced one maximal electroshock (ES) convulsion daily. No significant change in calcium content [(Ca1)] of synaptosomes was present after 2 consecutive days of maximal convulsions. After 4 and 6 days of maximal seizures, (Ca1) rose 20% and 37%, respectively. 15Ca2+ influx within synaptosomes in vitro increased after 6 days of ES convulsions (1.94 ± 0.4 μmol/g protein/min in ES convulsions versus 1.54 ± .03 μmol/g protein/min in controls). The higher rate of 45Ca2+ influx in convulsed animals was accounted for by elevated internal sodium [(Na1)] values. Maximal 45Ca2+ efflux decreased after ES convulsions (0.48 μmol/g protei/min in ES convulsions versus 0.8 μmol/g protei/min in controls). The slower rate of 45Ca2+ efflux after convulsions was also accounted for by elevated (Na1). Our results suggest that (Ca1) increased within synapses after in vivo ES convulsions secondary to a primary ionic event, namely, elevated (Na1).  相似文献   

6.
The effect of bicuculline-induced convulsive seizures on lipid metabolism has been studied in four brain areas (cerebellum, cerebral cortex, hippocampus, and brainstem) using [2-3H]glycerol and [1,2-14C]ethanolamine as radioactive lipid precursors administered simultaneously with bicuculline. Twelve minutes after the administration, the uptake of radioactivity depended both on brain area and treatment, being generally higher in convulsing rats. The uptake of glycerol was influenced to a larger extent than that of ethanolamine and increased during convulsions, but its incorporation into lipids did not. In contrast, the amount of ethanolamine incorporated into lipids increased during bicuculline-induced seizures. The difference in behavior of glycerol and of ethanolamine is also indicated by the decrease of the 3H/14C ratio of phosphatidyl-ethanolamine in various brain areas during convulsions. It is, therefore, evident that the metabolism of the two precursors is affected differently by seizures.  相似文献   

7.
The effects of the administration of monosialoganglioside (GM1) on methylmalonic acid (MMA)-induced convulsions, production of thiobarbituric acid reactive substances (TBARS) and on the striatal content of ascorbic acid and total non-protein thiol (SH) groups were evaluated in adult male rats. Animals received two intraperitoneal injections of GM1 (50 mg/kg) or saline (0.85% NaCl) spaced 24h apart. Thirty minutes after the second GM1 or saline injection, L-MMA (6 micromol) or NaCl (9 micromol) was injected into the right striatum and the animals were observed for the appearance of convulsions for 15 min. The animals were sacrificed and their striatal content of ascorbic acid, SH groups and TBARS was measured. The effect of GM1 on MMA-induced TBARS production in striatal homogenates was also evaluated in vitro.MMA injection caused convulsions (Sal-MMA: 9.8+/-1.4 episodes, which lasted 271+/-48 s) and increased the striatal content of TBARS (Sal-MMA: 149.0+/-11.5 nmol MDA/g tissue), but did not alter total striatal SH or ascorbic acid contents. GM1 pretreatment decreased MMA-induced convulsions (GM1-MMA: 6.3+/-2.0 episodes, which lasted 115.1+/-42.2s) and TBARS increase (GM1-MMA: 102.4+/-19.5 nmol MDA/g tissue). GM1 pretreatment increased ascorbic acid content of the striata (saline-pretreated: 1514+/-75.9; GM1-pretreated: 1878.6+/-102.8 microg ascorbic acid/mg tissue). MMA increased TBARS production in vitro, and GM1 had no effect on such MMA-induced effect.This study provides evidence that GM1 increases striatal ascorbic acid content and decreases MMA-induced neurotoxicity assessed by behavioral and neurochemical parameters.  相似文献   

8.
Microdialysis was done on 300-400 g, awake, male rats with microdialysis probes inserted through guide cannulas into the striatum (Bregma co-ordinates A 0.5, L 2.9, D -4.0 for guide cannulas implanted 5 days previously). Rats were exposed to hyperbaric oxygen (HBO; 6 atm absolute, 5 atm gauge pressure of oxygen with carbon dioxide absorbed by soda lime). Artificial cerebrospinal fluid (CSF) containing 5 mM sodium salicylate was perfused at 1 microl/min and collected over sequential 10 min intervals with rats breathing air, then HBO, and after decompression. Times to convulsions and duration and severity of convulsions were observed and recorded. CSF samples were analyzed for 2,3- and 2,5-dihydroxybenzoic acid (DHBA), reaction products of hydroxyl radicals with salicylate, by HPLC and compared to authentic standards. Recovery of DHBAs was 48% from fluid surrounding microdialysis probes, based on in vitro tests. The average time to the first convulsion was 21 min and rats convulsed an average of 4 times during 40 min in HBO. There were no significant differences in hydroxyl radical production by this protocol during any of the 10 min collection periods in air or HBO (average in pmoles for 10 microl of all samples: 2,3-DHBA = 7.0 +/- 2.5 and 2,5-DHBA = 11.3 +/- 4.1). The failure to detect an increase in hydroxyl radicals in HBO prior to or during convulsions appears valid since each rat served as its own control.  相似文献   

9.
While convulsions associated with fever represent a serious problem in pediatric medicine, conventional animal models of febrile convulsions suffer numerous technical limitations. A microwave-hyperthermia model that eliminates these problems was tested. Microwave energy was used to increase the core temperature of 13- and 17-day-old rats, resulting in convulsions similar to febrile convulsions in human infants. Rats were irradiated for 10 min in circularly polarized waveguides at 918 MHz, CW (average SAR = 9.4 W/kg at 13 days and 18.0 W/kg at 17 days as determined by twin-well calorimetry). Day 17 irradiated rats were less susceptible to convulsions than were day 13 irradiated rats, indicating an age-dependent decline in susceptibility. Contrary to findings of earlier models using infrared or hot-oven heating, convulsions induced with microwave hyperthermia impaired neither brain growth nor subsequent performance during behavioral testing. Simultaneous measurement of brain and rectal temperatures during microwave irradiation revealed differential heating rates that favor thermal homeostasis in brain tissue.  相似文献   

10.
The organization of sleep during and after frequentative convulsions, consisting of 2, 3, or 5 comparatively rare seizures (following one another with a 90-minute interval) or of 3, 5 or 9 comparatively frequent seizures (following one another with a 45-minute interval) of generalized tonic-clonic character in Krushinskii-Molodkina strain rats with inherited predisposition to audiogenic convulsions, was studied. In frequentative convulsions with rare seizures, between separate seizures, passive wakefulness (75.2 +/- 4.6% time) prevailed under low (24.8 +/- 4.3%) slow-wave sleep and full absence of fast-wave sleep. In rats under frequentative convulsions with frequent seizures, in interictal period, only passive wakefulness was observed under reduction of slow-wave sleep and fast-wave sleep, i.e. total sleep deprivation. Minimal latensy of first episodes of the slow-wave sleep after frequentative convulsions was 59.9 +/- 10.8, and of fast-wave sleep: 158.2 +/- 13.4 min. First episodes of slow-wave sleep and fast-wave sleep had normal structure, though they were lesser and shorter than in control experiments. In spite of long-lasting (up to 7 hrs) absence of slow-wave sleep during seizure and prolonged (8.5 hrs) reduction of fast-wave sleep with no subsequent compensatory increase, these conditions occurred in the wakefulness-sleep cycle during 12-hour reconstruction after convulsions. The reconstruction period after frequentative convulsions was characterized by increase in general share of wakefulness and reduction of total slow-wave and fast-wave sleep as compared with control data. Paroxysmal status seems to disorganize work of the brain somnogenic structures. The function of systems responsible for slow-wave sleep are affected to a lesser extent, but disorganization of the system responsible for fast-wave sleep is more significant and associated with mechanisms of starting the phase of sleep in the first place.  相似文献   

11.
The concentrations of ovarian steroids (estradiol--E2, progesterone--P4 and testosterone--T) and thyroid hormones (thyroxine--T4 and triiodothyronine--T3) were determined in blood plasma of the domestic hen during sexual maturation and the initial period of egg lay. Blood samples were collected from Hy-Line pullets at 3 day intervals from days 87 to 144 day of life, i.e. 42 days before and 14 days after the onset of egg lay (OEL). Ovarian and thyroid hormones were measured by RIA methods. During sexual maturation an increase in ovarian steroids in the blood plasma was observed. The maximum E2 and P4 levels were recorded on day 6 and day 3 prior to OEL, respectively. In the case of plasma T level, an increase from 42 to 18 days before OEL followed by a decrease and a renewed increase from day 9 till OEL was observed. The relatively unchanged plasma level of T4 until day 9 before OEL decreased significantly just before the first oviposition while the T3 level gradually decreased between day 42 and day 9 before OEL, and then increased and again decreased from day 3 before till day 3 after OEL. During sexual maturation the following statistically significant coefficients of correlation between ovarian steroids and T3 were found: E2 vs. T3-->r = -0.551 and P4 vs. T3-->r = -0.373. There was no significant correlation between T and T3 or between the examined steroids and T4. The data obtained indicate that during sexual maturation of the domestic hen there is a negative relationship between the ovary and the thyroid gland.  相似文献   

12.
We examine whether muscle oxygen consumption (VO2) increases gradually during repeated submaximal isometric contractions. Six subjects made two-legged isometric quadriceps contractions at 30% maximal voluntary contraction for 6 s with 4 s of rest between until exhaustion (58 +/- 8 min). Blood samples were taken from the femoral vein and artery, and blood velocity was recorded by ultrasound-Doppler technique in the femoral artery. Blood flow was calculated from velocity and artery diameter values. Leg VO2 increased sixfold within the 1st min of exercise. A further doubling of the VO2 was seen during the remainder of the exercise, reaching 307 +/- 22 ml/min at exhaustion. This latter increase was due to a 54% increase in blood flow and a 34% increase in oxygen extraction. After 20 min of recovery VO2 was still 75% higher than preexercise values. The results show a twofold increase in energy demand of the working muscle during repeated constant-force isometric contractions. The increased energy cost of contraction is probably localized at the cellular level, and it parallels fatigue determined as decreased force-generating capacity.  相似文献   

13.
BRAIN ENERGETICS IN OXYGEN-INDUCED CONVULSIONS   总被引:1,自引:0,他引:1  
Mice were exposed to 6 ATA of 100% oxygen. The effect of high oxygen pressure (OHP), disulphiram and both disulphiram and oxygen as a function of the length of oxygen exposure on cerebral cortical ATP, phosphocreatine, lactate, pyruvate and glucose was determined. Neither OHP nor disulphiram altered ATP prior to the onset of convulsions. The combination of OHP and disulphiram appeared to elevate cerebral ATP, particularly during the early exposure period. OHP had no effect on phosphocreatine, however, disulphiram, both alone and in combination with OHP increased cerebral cortical phosphocreatine. ATP and phosphocreatine were unchanged in mice sacrificed either at the onset or 9 s after the onset of oxygen convulsions. Lactate and pyruvate increased as the length of time the mice were exposed to OHP increased although neither lactate nor pyruvate levels differed significantly from control levels at either the onset or 9 s after the onset of convulsions. Disulphiram by itself lowered cerebral lactate, and prevented the increase in lactate and pyruvate in mice exposed to OHP. OHP and disulphiram increased cerebral glucose with the combination of both OHP and disulphiram appearing to have an additive effect. Glucose also remained elevated at the onset or 9 s after the onset of oxygen convulsions.  相似文献   

14.
To test whether nitric oxide (NO) participates in cyclosporine A (CsA)-induced neurotoxicity including convulsions, we examined the effect of an NO synthase inhibitor on convulsions induced by combined treatment with CsA and bicuculline in mice and the effect of CsA on NO production in the dorsal hippocampus using an in vivo microdialysis method in rats. CsA (200 mg/kg, i.p.) significantly increased the intensity of convulsions induced by an intracerebroventricular injection of bicuculline (25 pmol) in mice. This facilitation was blocked by N omega -nitro-L-arginine methyl ester (L-NAME), an NO synthase inhibitor, but not by N omega -nitro-D-arginine methyl ester (D-NAME), an inactive form of L-NAME (10 mg/kg, i.p.). CsA (20-50 mg/kg, i.p.) dose-dependently increased NO 2 - levels in dialysates obtained with microdialysis in the rat dorsal hippocampus. This enhanced NO 2 - formation was blocked by L-NAME but not by D-NAME (50 mg/kg, i.p.). These findings suggest that CsA stimulates NO production and induces convulsions as a result of an interaction between NO and the gamma-aminobutyric acid (GABA) system in the hippocampus.  相似文献   

15.
The primary purpose of this study was to determine whether gastric emptying limits the rate of muscle glycogen storage during the initial 4 h after exercise when a carbohydrate supplement is provided. A secondary purpose was to determine whether liquid (L) and solid (S) carbohydrate (CHO) feedings result in different rates of muscle glycogen storage after exercise. Eight subjects cycled for 2 h on three separate occasions to deplete their muscle glycogen stores. After each exercise bout they received 3 g CHO/kg body wt in L (50% glucose polymer) or S (rice/banana cake) form or by intravenous infusion (I; 20% sterile glucose). The L and S supplements were divided into two equal doses and administered immediately after and 120 min after exercise, whereas the I supplement was administered continuously during the first 235 min of the 240-min recovery period. Blood samples were drawn from an antecubital vein before exercise, during exercise, and throughout recovery. Muscle biopsies were taken from the vastus lateralis immediately after and 120 and 240 min after exercise. Blood glucose and insulin declined during exercise and increased significantly above preexercise levels during recovery in all treatments. The increase in blood glucose during the I treatment, however, was three times greater than during the L or S treatments. The average insulin response of the L treatment (61.7 +/- 4.9 microU/ml) was significantly greater than that of the S treatment (47.5 +/- 4.2 microU/ml) but not that of the I (55.3 +/- 4.5 microU/ml) treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Intracerebroventricular injection of the octadecaneuropeptide ODN in mouse, at doses of 12.5-1000 ng, reduced the percentage of convulsing animals and increased the latency of convulsions elicited by pentylenetetrazol (50 mg/kg, intraperitoneal [i.p.]). ODN also reduced the percentage of mortality induced by pentylenetetrazol (100 mg/kg, i.p.). The COOH-terminal octapeptide fragment of ODN was approximately equally effective but acted more rapidly than ODN to reverse the convulsant effect of pentylenetetrazol. ODN (100 ng, intracerebroventricular [i.c.v.]) increased the convulsion latency and reduced the percentage of animals that convulsed after the administration of the inverse agonist of benzodiazepine receptors DMCM (13 mg/kg, i.p.), whereas the benzodiazepine receptor antagonist flumazenil (1 mg/kg, subcutaneously) abrogated the protective effect of ODN (100 ng, i.c.v.) on pentylenetetrazol-induced convulsions. ODN (100 ng, i.c.v.) also reduced the percentage of DBA/2J mice displaying audiogenic convulsions. In contrast, ODN did not reduce the percentage of mice displaying tonic or clonic convulsions when electrical interauricular stimulations were applied. It is concluded that ODN, or more likely a proteolytic fragment derived from ODN, reduces pentylenetetrazol-induced convulsions through activation of central-type benzodiazepine receptors.  相似文献   

17.
Intracerebroventricular injection of the octadecaneuropeptide ODN in mouse, at doses of 12.5-1000 ng, reduced the percentage of convulsing animals and increased the latency of convulsions elicited by pentylenetetrazol (50 mg/kg, intraperitoneal [i.p.]). ODN also reduced the percentage of mortality induced by pentylenetetrazol (100 mg/kg, i.p.). The COOH-terminal octapeptide fragment of ODN was approximately equally effective but acted more rapidly than ODN to reverse the convulsant effect of pentylenetetrazol. ODN (100 ng, intracerebroventricular [i.c.v.]) increased the convulsion latency and reduced the percentage of animals that convulsed after the administration of the inverse agonist of benzodiazepine receptors DMCM (13 mg/kg, i.p.), whereas the benzodiazepine receptor antagonist flumazenil (1 mg/kg, subcutaneously) abrogated the protective effect of ODN (100 ng, i.c.v.) on pentylenetetrazol-induced convulsions. ODN (100 ng, i.c.v.) also reduced the percentage of DBA/2J mice displaying audiogenic convulsions. In contrast, ODN did not reduce the percentage of mice displaying tonic or clonic convulsions when electrical interauricular stimulations were applied. It is concluded that ODN, or more likely a proteolytic fragment derived from ODN, reduces pentylenetetrazol-induced convulsions through activation of central-type benzodiazepine receptors.  相似文献   

18.
The time course of changes in blood and brain catecholamines, catechol O-methyltransferase (COMT), ammonia, and amino acids leading to convulsion by high pressure oxygen breathing (OHP) in rats has been investigated. Brain catecholamines were suppressed by OHP. They changed in phase with brain COMT concentration and consequently were not due to the action of this degrading enzyme. Convulsive actions seem not to be influenced by brain catecholamine concentration. Blood adrenaline concentrations are, however, significantly elevated both prior to and during convulsions. In both brain and blood, ammonia concentration increases, glutamate decreases, and glutamine-aspargine increases. It is proposed that the efficacy of the glutamate-glutamine ammonia buffering system in blood and brain is important in the prevention of the onset of convulsions but that when brain gamma-aminobutyric acid is depressed to critical levels, convulsions result.  相似文献   

19.
Abstract: We have studied the effect of isonicotinic acid hydrazide (INH), a convulsant agent, on the extracellular levels of amino acids in the hippocampus, and the effect of sodium valproate (VPA) administration in INH-treated rats. INH (250 mg/kg) caused a rapid and sustained decrease in basal levels of GABA, and during this period convulsions of increasing severity were observed. Basal levels of glutamine, taurine, aspartate, and glutamate were unchanged by INH. When VPA was coadministered with INH, basal GABA levels were increased and no convulsions were observed. When transmitter release was evoked using 100 m M K+, the increase in dialysate GABA observed in INH-treated animals was less than that seen in controls and convulsions increased in frequency. K+-evoked release of glutamate and aspartate tended to be higher following INH treatment, and in the case of aspartate, this increase was significant. VPA reversed the changes in evoked release of glutamate and aspartate, and release of GABA was considerably greater than that seen in control or INH-treated rats. No drug effect on evoked changes in taurine or glutamine level was seen. These are the first data to show decreased extracellular GABA in conjunction with convulsions in freely moving animals in vivo.  相似文献   

20.
Many reports have suggested that gamma-aminobutyric acid (GABA) may play a role in organophosphate-induced convulsions. The balance between GABA and acetylcholine (ACh) in the brain also has been suggested by some investigators to be related to brain excitability. We examined these questions by studying the levels of GABA and ACh and the ratios of GABA to ACh in rat striata and cerebella (two major motor control areas in the CNS) after the administration of soman, an organophosphate acetylcholinesterase inhibitor also known as nerve gas. Male Sprague-Dawley rats weighing 250-300 g were injected subcutaneously with three different doses of soman: a subconvulsive dose of 40 micrograms/kg (approximately 30% of the ED50 for convulsions in rats), a convulsive dose of 120 micrograms/kg (approximately one ED50 for convulsions), and a higher convulsive dose of 150 micrograms/kg (approximately 120% of the ED50 for convulsions). The incidence and severity of convulsions were monitored in individual rats until they were sacrificed by focused microwave irradiation of the head at the following time points after soman administration: 4 min, a time prior to the onset of convulsions; 10 min, the time of onset of convulsions; 1 h, the time of peak convulsive activity; and 6 h, a time at which rats were recovering from convulsions. Results showed that in rat striata and cerebella, neither changes in levels of GABA and ACh nor changes in ratios of GABA to ACh were related to soman-induced convulsions, i.e., none of the changes in either levels or ratios of these two neurotransmitters were related to the initiation of, maintenance of, or recovery from soman-induced convulsions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号