首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
When solutions of [14C]glycollate, glycine, serine, glycerate,or glucose were supplied to segments of wheat leaves throughtheir cut bases in the light, most of the 14C was incorporatedinto sucrose in air but in CO2-free air less sucrose was made.The synthesis of sucrose was decreased because metabolism ofserine was partly blocked. Sucrose synthesis from glucose andglycerate in CO2-free air was decreased but to a smaller extent;relatively more CO2 was evolved and serine accumulated. Theeffects of DCMU and light of different wavelengths on metabolismby leaves of L-[U-14C]serine confirmed that simultaneous photosyntheticassimilation of carbon was necessary for the conversion of serineto sucrose. Of various products of photosynthesis fed exogenouslyto the leaves -keto acids were the most effective in promotingphotosynthesis of sucrose and release of 14CO2 from 14C-labelledserine. This suggests that in CO2-free air the metabolism ofserine may be limited by a shortage of -keto acid acceptorsfor the amino group. In CO2-free air added glucose stimulatedproduction of CO2 and sucrose from D-[U-14C]- glycerate andno competitive effects were evident even though glucose is convertedrapidly to sucrose under these conditions. In addition to asupply of keto acid, photosynthesis may also provide substratesthat can be degraded and provide energy in the cytoplasm forthe conversion of glycerate to sugar and phosphates and sucrose.  相似文献   

2.
Attached leaves of sunflower (Helianthus annuus L. var. Mennonite)with water potentials of –5 to –18 ? 105 Pa, wereexposed for different times to 300 vpm CO2 containing 14CO2and 21 or 1.5% O2. 14C accumulated linearly with time in bothO2 concentrations and at all stresses. 3-Phosphoglyceric acidwas saturated with 14C after 10 min in unstressed plants atboth O2 concentrations but with increasing stress the rate ofaccumulation and the specific activity decreased. With decreasingleaf water potential there was accumulation of radioactivityin the glycolate pathway intermediates glycine and serine. Otheramino acids contained a slightly larger proportion of assimilatedcarbon as water potential decreased. The specific activitiesof all compounds were smaller with stress. In contrast to theamino acids less radioactivity accumulated in sugars, organicacids, and sugar phosphates and their specific activities decreasedwith stress. The radioactive labelling patterns and specificactivity measurements are interpreted as showing increased carbonflux in the glycolate pathway and inhibition of the metabolismof serine to sucrose. These changes are related to previousresults showing that with stress photo respiration increasesas a proportion of photosynthesis. Lowering the O2 concentrationto 1.5% decreased the accumulation of radioactivity in glycineand stopped photorespiration. It increased the amount of radioactivityin serine and sucrose but did not greatly change specific activities.Oxygen effects were independent of water stress. Glycolate pathwaymetabolism is discussed in relation to photorespiration andthe effects of water stress.  相似文献   

3.
Wheat plants were grown in a controlled environment with daytemperatures of 18 ?C and with 500 µ Einsteins m–28–1 of photosynthetically active radiation for 16 h. Beforeanthesis and 2 to 3 weeks after, rates of net photosynthesiswere measured for leaves in 2 or 21% O2 containing 350 vpm CO2at 13, 18, 23, and 28 ?C and with 500 µEinsteins m–2s–1 of photosynthetically active radiation. Also, underthe same conditions of light intensity and temperature, therates of efflux of CO2 into CO2-free air were measured and,for mature flag leaves 3 to 4 weeks after anthesis, gross andnet photosynthesis from air containing 320 vpm 14CO2 of specificactivity 39?7 nCi µmol–1. When the O2 concentration was decreased from 21 to 2% (v/v)the rate of net photosynthesis increased by 32 per cent at thelowest temperature and 54 per cent at the highest temperature.Efflux of CO2 into CO2-free air ranged from 38 per cent of netphotosynthesis at 13 ?C to 86 per cent at 28 ?C. Gross photosynthesis,measured by the 14C assimilated during 40 s, was greater thannet photosynthesis by some 10 per cent at 13 ?C and 17 per centat 28 ?C. These data indicate that photorespiration was relativelygreater at higher temperatures.  相似文献   

4.
Glycine as a substrate for photorespiration   总被引:1,自引:0,他引:1  
Substrates for photorespiration were examined by feeding 14Clabeled compounds to tobacco and corn leaf segments and by measuring14CO2 evolution in light and darkness. CO2 release in the darkwas rapid, but in light CO2 release was slow due to refixationby photosynthesis. Carboxyl labeled glycine was more rapidlydecarboxylated than were glyoxylate, glycolate or serine. Hydroxypyridinemethanesulfonate, an inhibitor of glycolate oxidase, blocked CO2 releasefrom glycolate but not from glycine. Isonicotynyl hydrazideblocked CO2 release from both glycine and glycolate. DCMU blockedphotosynthetic refixation of the released CO2, consequentlythe rates of CO2 release in light and dark were about equal.It was concluded that CO2 release during photo-respiration camefrom the conversion of 2 molecules of glycine to one serineand one CO2. 14CO2 release from glycine-l-14C in the dark or with DCMU inlight can be used as an assay for photorespiration ability. CO2 release from glycine and glycolate by corn leaf segmentsin the dark proceeded at the rate of that in normal tobaccoleaf. This result, together with other work on O2 exchange andenzymatic analysis, indicates that corn and other plants docarry on photorespiration, but it is not manifested by CO2 releasein light. A yellow tobacco mutant, Consolation 402, had high rates ofphotorespiration by the 14CO2 assay, nearly half (or more) asmany peroxisomes as chloroplasts, and high rates of CO2 releasefrom glycine-l-14C or glycolate-l-14C. A common tobacco, BrightYellow, had lower rates of photorespiration, fewer visible peroxisomes,and slower decarboxylation of glycine and glycolate. The amount of 14CO2 release from glycine-l-14C or glycolate-l-14Cincreased only slightly when the temperature was raised from25 to 35°C. 1Parts of this work were abstracted at the Annual Meeting (April,1969) of Japanese Society of Plant Physiologists, Kanazawa 2Department of Biochemistry, Michigan State University, EastLansing, Michigan, U.S.A. (Received September 3, 1969; )  相似文献   

5.
Segments of wheat leaves were supplied in the light with 14C-labelledserine or glucose in atmospheres containing different concentrationsof O2 and zero or 350 parts/106 CO2. Some O2 was necessary forsucrose synthesis from either serine or glucose but sucrosesynthesis from glucose depended on reactions with a high affinityfor O2 whereas sucrose synthesis from serine depended both onreactions with high and low affinities for O2. In the presenceof CO2 sucrose synthesis from serine was decreased when theO2 concentration was increased from 20 to 80% by volume andCO2 was liberated; sucrose synthesis from glucose was almostunaffected by the same change in conditions. Also, in an atmospherecontaining 80% O2 and 350 parts/106 CO2, radioactivity from[14C]serine, was incorporated into glycine. This was not truefor glucose feeding. Hence glucose provides a substrate forsucrose synthesis but not for photorespiration whereas serineis used for both processes in the presence of CO2; in the absenceof CO2 glucose provides substrate for both sucrose synthesisand photorespiration and serine metabolism to sucrose is restricted.  相似文献   

6.
Chemical inhibition of the glycolate pathway in soybean leaf cells   总被引:19,自引:15,他引:4       下载免费PDF全文
Isolated soybean (Glycine max [L.] Merr.) leaf cells were treated with three inhibitors of the glycolate pathway in order to evaluate the potential of such inhibitors for increasing photosynthetic efficiency. Preincubation of cells under acid conditions in α-hydroxypyridinemethanesulfonic acid increased 14CO2 incorporation into glycolate, but severely inhibited photosynthesis. Isonicotinic acid hydrazide (INH) increased the incorporation of 14CO2 into glycine and reduced label in serine, glycerate, and starch. Butyl 2-hydroxy-3-butynoate (BHB) completely and irreversibly inhibited glycolate oxidase and increased the accumulation of 14C into glycolate. Concomitant with glycolate accumulation was the reduction of label in serine, glycerate, and starch, and the elimination of label in glycine. The inhibitors INH and BHB did not eliminate serine synthesis, suggesting that some serine is synthesized by an alternate pathway. The per cent incorporation of 14CO2 into glycolate by BHB-treated cells or glycine by INH-treated cells was determined by the O2/CO2 ratio present during assay. Photosynthesis rate was not affected by INH or BHB in the absence of O2, but these compounds increased the O2 inhibition of photosynthesis. This finding suggests that the function of the photorespiratory pathway is to recycle glycolate carbon back into the Calvin cycle, so if glycolate metabolism is inhibited, Calvin cycle intermediates become depleted and photosynthesis is decreased. Thus, chemicals which inhibit glycolate metabolism do not reduce photorespiration and increase photosynthetic efficiency, but rather exacerbate the problem of photorespiration.  相似文献   

7.
Exposure to atmospheric conditions which promote photorespirationstrongly inhibits photosynthesis in a mutant of Arabidopsislacking mitochondrial serine transhydroxymethylase activity,and glycine accumulates as a stable end-product of photorespiratorycarbon and nitrogen flow. By providing exogenous serine andammonia to leaves of the mutant, wild-type photosynthesis ratescan be temporarily maintained in the absence of photorespiratoryCO2 evolution. In these circumstances, the rate of glycine accumulationprovides a direct measure of photorespiratory flux which isnot complicated by the efflux and refixation of photorespiredCO2, the dilution of radioactive label by endogenous metabolicpools, or non-specific effects of metabolic inhibitors. At thestandard atmospheric concentration of CO2, the rate of glycineaccumulation in the mutant was proportional to the oxygen concentration,amounting to 53% of the rate of gross CO2-fixation at 21% O2.At normal levels of O2, glycine accumulation was maximal atabout 475 µl CO21–1 and was reduced at higher orlower CO2 concentrations, being almost abolished at 3000µ1CO21–1. These observations are discussed in the contextof a model of photorespiration based on the properties of ribulose1, 5-bisphosphate carboxylase/oxygenase, and in relation tothe results of previous attempts to measure photorespiration.Preliminary evidence from 14CO2-labelling experiments whichsuggests a non-photorespiratory pathway of serine synthesisis also presented. Key words: Arabidopsis mutant, Photorespiration, Serine transhydroxymethylase  相似文献   

8.
The rates of net photosynthesis by closed canopies of tomatoplants were measured at three CO2 concentrations and three humiditiesover a range of natural light flux densities. The data havebeen analysed using a model of canopy photosynthesis which allowsfor variation in leaf area index and other leaf and canopy characteristics.The model also deals explicitly with the effects of CO2 concentration,leaf conductance, and photorespiration on the leaf photochemicalefficiency, . The leaves were found to have a photochemicalefficiency in the absence of photorespiration, m, of 12?6 ?10–9 kg (CO2) J–1. At a CO2 concentration of 0?73 ? 10–3 kg m–3 (400vpm) the leaf photochemical efficiency, , and canopy light utilizationefficiency, c, were 18 per cent greater at a vapour pressuredeficit of 0?5 kPa than at 1?0 kPa. At a CO2 concentration of2?2 ? 10–3 kg m–3 (1200 vpm) they were only 5 percent greater.  相似文献   

9.
14CO2 assimilation was studied with diploid, tetraploid, hexaploidspecies of the genera Triticum and their wild relatives Aegilops.Attached mature leaves of 3–4 weekold plants were allowedto undergo photosynthesis under air at ambient temperature.The pattern of distribution of 14C was notably similar in Triticumand Aegilops species whatever the level of ploidy. Sucrose wasthe sink for photosynthetic carbon. 14C for sucrose synthesis was supplied either through the glycolatepathway by glycolate, the product of the photorespiration orby the Calvin cycle intermediates exported into the cytoplasm.Depending on the species, the glycolate pathway provided 40to 75%of the sucrose 14C. The higher labeling of sucrose was associated with the greaterparticipation of the glycolate pathway in the wild diploid (DD)A. squarrosa and in the cultivated hexaploid (AABBDD) T. aestivum.The results suggest that the expression of the male D genomeis dominant over the female AB genome in T. aestivum. In T. aestivum under ambient conditions lowering (low temperature)or hindering (1% O2 ) photorespiration, sucrose labeling decreased,but serine and glycine labeling was favoured. We propose thatin wheat leaves, the role of photorespiration is to drain artof the carbon exported from the chloroplast as glycolate, towardssucrose synthesis. (Received March 16, 1979; )  相似文献   

10.
Time-courses of 14CO2-fixation and of enzyme activities involvedin photorespiration and photosynthesis were determined duringthe life span of cotyledons from sunflower seedlings (Helianthusannuus L.). Glycolate formation in vivo was estimated from theresults of combined labelling and inhibitor experiments. NADPH-glyceraldehyde-3-phosphatedehydrogenase, NADPH-glyoxylate reductase and chlorophyll werewell correlated with the time-course of 14CO2-fixation (photosynthesis).There was, however, a considerable discrepancy between the developmentalsequence of photosynthesis and that of both ribulose-l,5-bisphosphatecarboxylase and glycolate oxidase. Furthermore, time-coursesof glycolate oxidase activity in vitro and of glycolate formationin vivo differed significantly. Therefore, the use of glycolateoxidase as a marker for the activity of photorespiration ingreening sunflower cotyledons may be questionable. Results from14CO2-labelling experiments with cotyledons treated with theglycolate oxidase inhibitor 2-hydroxy butynoic acid suggestthat glycolate formation relative to CO2-fixation is reducedin senescent cotyledons. Key words: Development, glycolate oxidase, photorespiration, ribulose-l,5-bisphosphate carboxylase, oxygenase  相似文献   

11.
Isotopic trapping of the carbon flowing through the glycolatepathway by exogenous glycolate, glycine and L-serine was investigatedduring 14CO2 photosynthesis at different CO2 concentrationsin tomato leaves. L-Serine markedly trapped the carbon flowingfrom 14CO2. The amounts of 14C incorporated into serine decreasedat a high CO2 concentration, but increased with an increasein the CO2 concentration in the presence of exogenous serineduring 10-min photosynthesis in 14CO2. When 14CO2 was fed for5 to 40 sec at 1300 ppm CO2 to tomato leaves which had beengiven L-serine, an increase in the accumulation of 14C-serinebegan after 20 sec, and the 14C-serine molecules formed at 20and 40 sec were labeled uniformly. In the presence of exogenousserine during 10-min photosynthesis in 1300 ppm CO2, isonicotinicacid hydrazide increased the incorporation of 14CO2 into glycinewith a corresponding decrease in the accumulation of 14C-serine,but it did not inhibit serine accumulation completely; an evidencefor that some serine was formed by a pathway other than theglycolate pathway. The effect of the CO2 concentration on theglycolate pathway is discussed in terms of serine synthesisin the presence of exogenous serine. (Received June 1, 1981; Accepted September 30, 1981)  相似文献   

12.
Tomato plants were grown in solution culture in a controlledenvironment at 20 ?C with a 12 h photoperiod of 400 µmolquanta m–2 s–1 PAR with either normal ambient CO2,approximately 340 vpm, or with 1000 vpm CO2. The short- andlong-term effects of CO2 enrichment on photosynthesis were determinedtogether with the levels of ribulose-1, 5-bisphosphate carboxylase(RuBPco) E.C. 4.1.1.39 [EC] protein and activity throughout leafdevelopment of the unshaded 5th leaf above the cotyledons. Thehigh CO2 concentration during growth did not appreciably affectthe rate of leaf expansion or final leaf area but did increasethe fresh weight per unit area of leaf. With short-term CO2enrichment, i.e. only during the photosynthesis measurements,the light-saturated photosynthetic rate (Pmax) of young leavesdid not increase while those reaching full expansion more thandoubled their net rate of CO2 fixation. However, with longerterm CO2 enrichment, i.e. growing the crop in high CO2, theplants did not maintain this photosynthetic gain. While theCO2 concentration during growth did not affect the peak in Pmaxmeasured in 300 vpm CO2 or Pmax in 1000 vpm CO2, RuBPco proteinor its activity, the subsequent ontogenetic decline in theseparameters was greatly accelerated by the high CO2 treatment.Compared with plants grown in normal ambient CO2 the high CO2grown leaves, when almost fully expanded, contained only approximatelyhalf as much RuBPco protein and Pmax in 300 vpm CO2 and Pmaxin1000 vpm CO2 were similarly reduced. The loss of RuBPco proteinmay be a major factor associated with the accelerated fall inPmax since it was close to that predicted from the amount andkinetics of RuBPco assuming RuBP saturation. In the oldest leavesexamined grown in high CO2 additional factors may be limitingphotosynthesis since RuBPco kinetics marginally overestimatedPmax in 300 vpm CO2 and the initial slope of photosynthesisin response to intercellular CO2 was also less than expectedfrom the extractable RuBPco. Key words: Lycopersicon esculentum (Mill.) cv. Findon Cross, CO2 enrichment, acclimation to high CO2, photosynthesis, RuBPco protein and activity  相似文献   

13.
Effect of the age of tobacco leaves on photosynthesis and photorespiration   总被引:1,自引:0,他引:1  
Relationships among the activities of enzymes related to photosynthesisand photorespiration, and 14CO2 photosynthetic products wereinvestigated with individual tobacco leaves attached to thestalk from the bottom to the top. P-glycolate phosphatase ofthe chloroplasts and glycolate oxidase of the peroxisomes hadtheir maximum activities in the 25th leaf from the dicotyledons.Maximum photorespiration was similarly distributed. The highestratio of serine-14C to glycine-14C in the photosynthesates andmaximum glycolate formation were also observed in the 25th leaf.Glutamateglyoxylate aminotransferase, serine hydroxymethyltransferaseand glycine decarboxylase were more active in the upper leaves.RuDP carboxylase had nearly constant activity in all leaves,except for the youngest in which activity decreased. MaximumCO2 photosynthesis and enzyme activity for the C4 dicarboxylicacid cycle occurred in the upper, youngest leaf. Distributionof photosynthetic CO2 fixation among the leaves did not coincidewith RuDP carboxylase activity. The photosynthetic capacityappeared to be better related to the distribution pattern forenzymes of the C4 dicarboxylic acid pathway, i.e. PEP carboxylase,pyruvate Pi dikinase and 3-PGA phosphatase in the upper leaves.The results suggest that the C4 dicarboxylic acid pathway participates,to some extent, in photosynthesis in young leaves of tobacco,a dicotyledonous plant. 1This work was reported at the Annual Meeting (1970) of theJapanese Plant Physiologists in Kobe. 2The Central Research Institute, Japan Monopoly Corporation1-28-3, Nishishinagawa, Shinagawaku, Tokyo, 141 Japan. (Received November 2, 1972; )  相似文献   

14.
Photosynthesis decreased with decreasing leaf water potentialas a consequence of stomatal closure and possibly non-stimataleffects of severe stress. Assimilation ceased at c. 16x 105Pa. Photo-respiration, in 21% O2, was small in relation to assimilationin unstressed leaves and decreased as leaf water potential fellbut it was much larger in proportion to photosynthesis at severestress. Decreasing the O2 content to 1.5% increased photosynthesisslightly and decreased photo-respiration but did not changethe stress at which assimilation stoped. Dark respiration wasinsensitive to both O2 and stress. Less 14C accumulated in stressedleaves but in 21% O2 a greater proportion of it was in aminoacids, particularly glycine and serine. 1.5% O2 decreased the14C in glycine to 10% and in serine to 50% of their levels in21% O2. In both O2 concentrations the proportion of 14C in serineincreased only at the most severe stress. Gas exchange measurementsand changes in the 14C flux to glycine are interpreted as theresult of glycolate pathway metabolism increasing as a proportionof assimilation in stressed leaves in high O2. The small absoluterate of photorespiration in high O2 and at low leaf water potentialmay be due to slow rates of glycine decarbodylation as wellas efficient fixation of any CO2 produced. Serine is synthesizedby an O2-sensitive pathway and an O2-insensitive pathway, whichis most active at severe stress. Synthesis of alanine competeswith that of glycine and serine for a common precursor suppliedby the photo-synthetic carbon reduction cycle. The relativespecific radioactivities of aspartate and alanine suggest thatthey are derived from a common precursor pool, probably pyruvatefrom 3-PGA. The amounts of 3-PGA, aspartate, malate, alanine,and sucrose decreased with increasing water stress as a consequenceof slower assimilation and pool filling. Other amino acids,glycine, serine, glutamate, and proline, accumulated at lowwater potential possibly due to increased synthesis and slowerrates of consumption. Changes in pool sizes, carbon fludes,and specific activities of metabolites are related to the mechanismof C4 photosynthesis and current concepts of glycolate pathwaymetabolism.  相似文献   

15.
Lehnherr, B., Mächler, F. and Nösberger, J. 1985.Influence of temperature on the ratio of ribulose bisphosphatecarboxylase to oxygenase activities and on the ratio of photosynthesisto photorespiration of leaves.—J. exp. Bot. 36: 1117–1125. Rates of net and gross photosynthesis of intact white cloverleaves were measured by infrared gas analysis and by short termuptake of 14CO2 respectively. Ribulose bisphosphate carboxylaseoxygenase (RuBPCO) was purified from young leaves and kineticproperties investigated in combined and separate assays. Theratio of carboxylase to oxygenase activities was compared withthe ratio of photosynthesis to photorespiration at various temperaturesand CO2 concentrations. The ratio of photosynthesis to photorespiration at 30 Pa p(CO2)was consistent with the ratio of carboxylase activity to oxygenaseactivity when each was measured above 20 °C. However, theratio of photosynthesis to photorespiration increased with decreasingtemperature, whereas the ratio of carboxylase to oxygenase activitywas independent of temperature. This resulted in a disagreementbetween the measurements on the purified enzyme and intact leafat low temperature. No disagreement between enzyme and leafat low temperature occurred, when the ratio of photosynthesisto photorespiration was determined at increased CO2 concentrations. The results suggest an effect of low temperature and low CO2concentration on the ratio of photosynthesis to photorespirationindependent of the enzyme. Key words: Ribulose bisphosphate carboxylase oxygenase, photorespiration, temperature  相似文献   

16.
The rates of photosynthetic 14CO2 fixation by Chlorella vulgarisllh, grown under high CO2, were determined between 4 to 37°Cwith air containing from 300 to 13,000 ppm 14CO2. When the CO2level was increased, both the rate of photosynthesis and theoptimum temperature for maximum photosynthesis increased. Themaximum photosynthetic rate was reached at 12°C with 300ppm l4CO2. Among the photosynthetic products fromed at 300 ppm 14CO2, glycolatedecreased greatly when the temperature was raised from 20 to30°C. At 3,000 ppm 14CO2 an insignificant amount of glycolatewas formed at all temperatures, whereas 14C-incorporation intothe insoluble fraction, sucrose, and the lipid fraction wassignificantly higher than at 300 ppm 14CO2. The 14C in sucrosewas greatly increased and the radioactivity in the insolublefraction decreased when the temperature was raised from 28 to36°C. (Received April 8, 1980; )  相似文献   

17.
Net photosynthetic rates per unit ground area for plant standsof Solanum melongena L. var. esculentum (aubergine) and Amaranthuscaudatus L. var. edulis (grain amaranth) were measured over10 min intervals in an airtight, glass, controlled-environmentcabinet for a range of light flux densities provided by thediurnal variation in daylight. Light response curves for photosynthesisof stands, grown at ambient CO2 concentration, were definedat 400, 800 and 1200 vpm CO2. Light compensation points for these stands were around 20-30J m-2 s-1 and decreased slightly at higher CO2 concentrations.For aubergine, a C3 species, the short-term effects of CO2 enrichmentwere to increase the initial slope as well as the asymptoteof the light response curve, reducing light saturation at moderateto high light flux densities; but for amaranthus, a C4 species,saturation was less apparent and CO2 enrichment scarcely increasedphotosynthesis except at light flux densities above 150 J m-2s-1. The canopies intercepted 93-98% of incident light. The efficiencyof utilization of intercepted light in photosynthesis (µgCO2 J-1) increased from zero at the light compensation pointto a maximum at an optimum light flux density of about 100 Jm-2 s-1 (the optimum rose a little with CO2 enrichment) anddecreased slightly with further increase in light. Maximum utilizationefficiencies at 400 vpm CO2 were 8-9 µg CO2 J-1. Enrichmentto 1200 vpm did not affect the peak utilization efficiency ofthe C4 amaranthus, but increased that aubergine to 12·2µg CO2 J-1 (equivalent to some 14% when using the heatof combustion of plant dry matter to convert to the dimensionlessform). This is among the highest recorded efficiencies of lightutilization for stands, and relates to the exceptionally favourableenvironment, with optimal control of CO2 concentration, humidity,temperature, water supply and mineral nutrition.Copyright 1993,1999 Academic Press Amaranthus caudatus L. var. edulis, Solanum melongena L. var. esculentum, canopy photosynthesis, CO2 enrichment, light interception, light utilization, photosynthetic efficiency  相似文献   

18.
1. The effects of "carbonyl" reagents on the photosyntheticin-corporation of 14CO2 into the assimilation products of tobaccoand spinach leaves were studied. The presence of "carbonyl"reagents causes an increase in the ratio of 14CO2 incorporatedin glycine and a decrease in serine. The incorporation of 14Cfrom glycolate-1-14C and glycolaldehyde-2-14C into glycine andserine was also affected by "carbonyl" reagents, as in the caseof 14CO2-experiment. 2. The feeding experiments of glycine-1-14C and serine-1-14Cin the presence and in the absence of "carbonyl" reagents revealedthat these reagents inhibit the conversion of glycine to serine. 3. The results obtained above, together with the effects ofthiols on 14CO2 incorporation presented in this paper, supportthe assumption that glycine and serine are formed via glycolateand glyoxylate during photosynthesis in green plants. 4. Comparison of 14C incorporation in malate from 14CO2, glycolate-1-14C,glycine-1-14C and serine-1-14C in the presence and in the absenceof "carbonyl" reagents suggested the occurrence of the pathwayof the malate formation via glycolate and glyoxylate, not passingthrough glycine and serine, during photosynthesis. 1 A part of this paper was presented at the Symposium on "Nitrogenand Plant" by the Japanese Society of Plant Physiologists, inOctober, 1963 2 Present address: Radiation Center of Osaka Prefecture, Sakai,Osaka  相似文献   

19.
When 14CO2 was fed to flag leaf laminae at 20 d post-anthesis,the transport organs between the leaf and the grains containedappreciable 14C in glutamine, glutamate, serine, alanine, threonineand glycine. Smaller amounts of 14C were present in gamma-aminobutyricacid (GABA), aspartate and cysteine. Other amino acids whichwere labelled in the source leaf were not labelled in the transportorgans. The export of labelled glutamine, serine, glycine andthreonine from the source leaf was favoured in comparison tothe other amino acids mentioned. Threonine accumulated, andwas subsequently metabolised, in the rachis. [14C]GABA alsoaccumulated in the rachis. In the grains, the relative amountof soluble [14C]alanine increased with chase time. This wasprobably due to de novo synthesis and reflected the specialrole of alanine in grain nitrogen metabolism. Wheat, Triticum aestivum, 14CO2, amino acids, transport, carbon metabolism  相似文献   

20.
The effects of elevated carbon dioxide (CO2 and ozone (O3) onsoybean (Glycine max (L.) Merr.] photosynthesis and photorespiration-relatedparameters were determined periodically during the growing seasonby measurements of gas exchange, photorespiratory enzyme activitiesand amino acid levels. Plants were treated in open-top fieldchambers from emergence to harvest maturity with seasonal meanconcentrations of either 364 or 726 µmol mol–1 CO2in combination with either 19 or 73 nmol mol–1 O3 (12h daily averages). On average at growth CO2 concentrations,net photosynthesis (A) increased 56% and photorespiration decreased36% in terminal mainstem leaves with CO2 enrichment. Net photosynthesisand photorespiration were suppressed 30% and 41%, respectively,by elevated O3 during late reproductive growth in the ambientCO2 treatment, but not in the elevated CO2 treatment. The ratioof photorespiration to A at growth CO2 was decreased 61% byelevated CO2 There was no statistically significant effect ofelevated O3 on the ratio of photorespiration to A. Activitiesof glycolate oxidase, hydroxypyruvate reductase and catalasewere decreased 10–25% by elevated CO2 and by 46–66%by elevated O3 at late reproductive growth. The treatments hadno significant effect on total amino acid or glycine levels,although serine concentration was lower in the elevated CO2and O3 treatments at several sampling dates. The inhibitoryeffects of elevated O3 on photorespiration-related parameterswere generally commensurate with the O3-induced decline in A.The results suggest that elevated CO2 could promote productivityboth through increased photoassimilation and suppressed photorespiration. Key words: Photorespiration, CO2-enrichment, ozone, climate change, air pollution  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号