首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activity of tyrosine hydroxylase is regulated by feedback inhibition and inactivation by catecholamines, and activation by protein phosphorylation. In this article, reaction mechanisms for the conversion of tyrosine hydroxylase to an inactive/stable form by catecholamines, and activation of tyrosine hydroxylase by phosphorylation at Ser-40 are discussed. Inactivation may be induced by sub-stoichiometric amounts of catecholamines, and activation by phosphorylation of Ser-40 may require phosphorylation of three or all four subunits of a tyrosine hydroxylase molecule. Cooperative phosphorylation at Ser-40 in the subunits is also discussed.  相似文献   

2.
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in norepinephrine synthesis, and its expression and activity are regulated by many factors in sympathetic neurons. Cytokines that act through gp130, such as ciliary neurotrophic factor (CNTF) decrease norepinephrine production in sympathetic neurons by suppressing TH mRNA and stimulating degradation of TH protein, leading to the loss of enzyme. Their effect on the activity of TH is unclear, but recent in vivo observations suggest that cytokines may stimulate TH activity. We investigated this issue by quantifying TH protein levels and activity in cultured sympathetic neurons. We also examined the state of TH phosphorylation on serine 31 and 40, sites known to affect TH activity and degradation. We found that CNTF, acting through gp130, stimulated the rate of l-3,4-dihydroxyphenylalanine production while at the same time decreasing TH enzyme levels, thereby increasing the specific activity of the enzyme. We also found that phosphorylation of TH on Ser31 was increased, and phosphorylation on Ser40 was decreased, after four days of CNTF exposure. Our data are consistent with previous findings that Ser31 phosphorylation stimulates TH activity, whereas Ser40 phosphorylation can target TH for proteasomal degradation.  相似文献   

3.
4.
It was concluded that cytochrome oxidase was a strange enzyme for three reasons. (1) The thermodynamic flux-force relationship of this enzyme was inverse in some conditions: flux decreased when force increased. (2) The flux-force relationship was not unique and depended on the way in which the thermodynamic span of cytochrome oxidase was changed. (3) The regulation of cytochrome oxidase was different in the same conditions when different external parameters (energy demand, oxygen concentration) were changed.It was also shown that the flux control coefficient of cytochrome oxidase, small at saturating oxygen concentration, increases when oxygen pressure diminishes, approaching unity at very low oxygen concentrations. (Mol Cell Biochem 174: 137–141, 1997)  相似文献   

5.
The activity of tryptophan hydroxylase, the key enzyme of serotonin biosynthesis, was determined in the brain of silver foxes and wild rats selected, according to domestic or aggressive behavior, in respect to man. Significant increase of enzyme activity in midbrain of both domesticated rats and domesticated foxes was found, in comparison with that of aggressive animals. It was suggested that genetic mechanisms of the selection according to aggressive behavior, involve the changes of genes responsible for the synthesis of serotonin, the brain neurotransmitter which inhibits this type of behavior.  相似文献   

6.
L T Murthy 《Life sciences》1975,17(12):1777-1783
Inhibitors of phenylalanine hydroxylase and tyrosine hydroxylase were used in the assay of phenylalanine hydroxylase in liver and kidney of rats and mice. Parachlorophenylalanine (PCPA), methyl tyrosine methyl ester and dimethyl tyrosine methyl ester showed 5–15% inhibition while α-methyl tyrosine seemed to inhibit phenylalanine hydroxylase to the extent of 95–98% at concentrations of 5 × 10 −5M –1 × 10 −4M. After a phenylketonuric diet (0.12% PCPA + 3% excess phenylalanine), the liver showed 60% phenylalanine hydroxylase activity and kidney 82% that present in pair-fed normals. Hepatic activity was normal after 8 days refeeding normal diet whereas kidney showed 63% of normal activity. The PCPA-fed animals showed 34% in liver and 38% in kidney as compared to normals; in both cases normal activity was noticed after refeeding. The phenylalanine-fed animals showed activity similar to that seen in phenylketonuric animals. The temporary inducement of phenylketonuria in these animals may be due to a slight change in conformation of the phenylalanine hydroxylase molecule; once the normal diet is resumed, the enzyme reverts back to its active form. This paper also suggests that α-methyl tyrosine when fed in conjunction with the phenylketonuric diet may suppress phenylalanine hydroxylase activity completely in the experimental animals thus yielding normal tyrosine levels as seen in human phenylketonurics.  相似文献   

7.
8.
An additive major gene effect is described for tyrosine hydroxylase activity in mouse corpus striatum (CS). Quantitative genetic analysis indicated the presence of a segregating Mendelian factor with robust additive effect in F2 generations derived from crossing two highly inbred mouse strains, C57BL/6ByJ and BALB/ cJ, with intermediate (INT) and high (HI) TH activity in CS. Significant positive correlation was found between striatal and mesencephalic TH activity in the segregating generations, raising the possiblity that a common single gene may express its effect through pleiotropy or linkage. Genetic preparations taking advantage of the major gene effect should serve well as animal models of DA-mediated neuropsychiatric disorders.  相似文献   

9.
The ability of polyamines (putrescine, spermidine, and spermine) to modify tyrosine hydroxylase (TH) activity was examined in crude or purified enzyme preparation and in adrenal tissue slices. Polyamines showed biphasic effects on TH activity in vitro at physiological pH 7.0, with an inhibitory effect at low concentrations (<1 mM) and a stimulatory effect at high concentrations. The degree of both inhibition and stimulation produced by polyamines at low and high concentrations, respectively, were proportional to the number of the amino group in the polyamines (putrescine < spermidine < spermine). The degree of inhibition by polyamines was much greater with purified enzyme than with crude enzyme preparations. Tyrosine hydroxylation in situ in adrenal tissue slices was stimulated by polyamines without inhibition at any concentrations tested. This evidence suggests that TH molecules in vivo could interact with polyamines or polyamine-like substances which inhibit the TH activity at physiological concentrations less than 1 mM.  相似文献   

10.
The short-term influences of stress on the activities of tyrosine hydroxylase in vivo and in vitro were examined in mice. The in vivo tyrosine hydroxylase activity was estimated by the rate of dopa accumulation which was measured at 30 min after the injection of NSD-1015 (100 mg kg), an aromatic l-amino acid decarboxylase inhibitor, intraperitoneally and was compared with tyrosine hydroxylase activity measured in vitro. For the in vivo assay, both the accumulation of dopa (tyrosine hydroxylase activity) and that of 5-hydroxytryptophan (tryptophan hydroxylase activity) and the levels of monoamines and the metabolites (noradrenalin, adrenalin, dopamine, normetanephrine, 3-methoxytyramine and serotonin) and those of precursor amino acids, tyrosine and tryptophan, were investigated in ten different brain regions and in adrenals. The amount of dopa accumulation in the brain as a consequence of decarboxylase inhibition, in vivo tyrosine hydroxylase activity, was significantly increased by stress, in nerve terminals (striatum, limbic brain, hypothalamus, cerebral cortex and cerebellum) and also in adrenals. The effect of stress on tyrosine hydroxylase activity in vitro at a subsaturating concentration of 6-methyltetrahydropterin cofactor was also observed in nerve terminals (striatum, limbic brain, hypothalamus, and cerebral cortex). The amount of 5-hydroxytryptophan accumulation, the in vivo tryptophan hydroxylase activity, was also significantly increased in bulbus olfactorius, limbic brain, cerebral cortex, septum and lower brain stem. The influence of stress was also observed on the levels of precursor amino acids, tyrosine and tryptophan and monoamines in specific brain parts. These results suggest that the stress influences both catecholaminergic neurons and serotonergic neurons in nerve terminals in the brain. This effect was also observed on tyrosine hydroxylase activity in vitro in nerve terminals. However, in adrenals, the influence by stress was not observed on the in vitro activity, although dopa accumulation was increased.  相似文献   

11.
12.
Higher activity of the peripheral sympathetic nervous system, accompanied by higher tyrosine hydroxylase activity is frequently and consistently reported in human essential hypertension as well as in animal models of hypertension. However, results obtained in the adrenals, particularly in young animals before the development of hypertension, are scarce and controversial. In the present study tyrosine hydroxylase activity and catecholamine content in the adrenals of spontaneously hypertensive rats and of age-matched control Wistar Kyoto rats were evaluated before, during and after the development of hypertension (5, 12 and 22-week-old animals). Results show that both tyrosine hydroxylase activity and total amine content in the adrenals of spontaneously hypertensive rats were significantly reduced (35% reduction) at all studied ages. Determination of the kinetic parameters for tyrosine hydroxylase in the adrenals of 5 week-old spontaneously hypertensive rats revealed a 38% reduction in V(max) values (13.4 versus 21.3 nmol L-DOPA/mg prot/h in age-matched controls) accompanied by lower levels of expression of both tyrosine hydroxylase total protein and phosphoSer40 observed by Western-Blot. In contrast, norepinephrine content in both plasma and tail artery were significantly higher in the spontaneously hypertensive strain. In conclusion, contrary to the higher peripheral sympathetic activity, tyrosine hydroxylase activity and catecholamine content in the adrenals of spontaneously hypertensive rats are markedly reduced before, during and after the development of hypertension. End product, long-term feedback inhibition by the high norepinephrine plasma levels could be responsible for this reduction, establishing yet another regulatory mechanism of tyrosine hydroxylase operating in adrenal cromaffin cells.  相似文献   

13.
Beta-carbolines have been suggested to be involved in the pathogenesis of Parkinson's disease as a result of their structural similarity to the neurotoxin N -methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The chloral-derived beta-carboline derivative 1-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline (TaClo) causes cell loss in neuronal and glial cell cultures and induces a slowly developing neurodegenerative process in rats. In our experiments, effects of TaClo and its derivatives 2-methyl-TaClo (2-Me-TaClo), and 1-dichloromethylene-1,2,3,4-tetrahydro-beta-carboline (1-CCl(2) -THbetaC) on tyrosine hydroxylase (TH) activity were investigated in TH assays using homogenate preparations of the rat nucleus accumbens and recombinant human TH (hTH1). TH activity was determined in vitro by measuring l-DOPA production with HPLC-ECD. Using homogenate preparations, TaClo, 2-Me-TaClo, and 1-CCl(2) -THbetaC inhibited TH in concentrations of 0.1 mm, while 1-CCl(2) -THbetaC in low concentrations enhanced TH activity. When TH was activated by PACAP-27, TaClo, 2-Me-TaClo, or 1-CCl(2) -THbetaC also inhibited activated enzyme activity in high concentrations. However, in the case of 2-Me-TaClo and 1-CCl(2) -THbetaC a biphasic effect was observed with a marked increase of TH activity in the nanomolar range. In our experiments using recombinant hTH1, TaClo, 2-Me-TaClo, or 1-CCl(2) -THbetaC did not modify enzyme activity. After activation of hTH1 by PKA all the tetrahydro-beta-carbolines investigated in this study decreased l-DOPA formation. We suggest that these beta-carbolines modulate dopamine synthesis by interacting with a protein kinase TH-activating system.  相似文献   

14.
Catechol estrogens, the 2-hydroxylated metabolites of estrogens, recently shown to be formed in brain, inhibit tyrosine hydroxylase, the enzyme that catalyzes the pivotal step in the biosynthesis of the neurotransmitters dopamine and norepinephrine. The nature of the inhibition is by competition with the pterin cofactor and thus resembles feedback inhibition of the enzyme by catecholamines.  相似文献   

15.
Allostery of tyrosine hydroxylase was found by kinetical studies of partially purified tyrosine hydroxylase from clonal rat pheochromocytoma PC12h cells. Positive cooperativity toward the cofactors, (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin [(6R)BH4] and (6S)-L-erythro-5,6,7,8-tetrahydrobiopterin [(6S)BH4], was observed. It is indicated that biopterin might be the regulatory factor of the enzyme polymers, which changes the affinity for the cofactor itself. Moreover, the stereochemical structure of (6R)BH4, the naturally-occurring cofactor, took an important role on the kinetical properties of the enzyme in concern with L-tyrosine.  相似文献   

16.
The native form of tyrosine hydroxylase (TH) is a homotetramer which consists of four identical subunits each with an MW of approximately 60 kD. The relationships between the catalytic activity of TH and oligomerization of the enzyme have not yet been characterized. We have investigated, by deletion and/or substitution mutagenesis, the involvement of the leucine zipper (LZ) motifs in the oligomer formation of TH and its relation to catalytic activity. Our results demonstrate that deletion of the carboxyl-terminal LZ (LZ-C) abolishes tetramer formation. Interruption of the other two LZ motifs (LZ-A and LZ-B), located in a central region of the catalytic domain by substitution of Leu to Pro at residues 294 and 301 or 386 and 393 has no effect on the tetramer formation of TH. However, the interruption of LZ-A and LZ-B abolishes TH enzymatic activity. The substitution of Leu residues 188 and 190 with Pro at the regulatory domain of TH reduces enzymatic TH activity without affecting tetramer formation. Thus, LZ-C is required for tetramer formation, while LZ-A and LZ-B seem to be involved in the catalytic activity without affecting the tetramer formation of TH.  相似文献   

17.
Activation of cholinergic neurons in the brain is produced by administration of the acetylcholinesterase inhibitors physostigmine and diisopropylfluorophosphate (DFP). This activation has a biphasic effect on tyrosine hydroxylase (EC 4.14.3-) activity. The acute effect of DFP, 1 mg/kg, intraperitoneally, or physostigmine, 0.2 mg/kg, intravenously, or 10 mug, intraventricularly, was a rapid reduction in tyrosine hydroxylase activity in the hypothalamus. The activities of DOPA decarboxylase (EC 4.1.1.28) and dopamine-beta-hydroxylase (EC 1.14.17.1) were not changed. In contrast to the acute effect, chronic administration of physostigmine, 0.2 mg/kg, intravenously, twice daily for 7 days produced an increase in tyrosine hydroxylase activity in the hypothalamus. The rapid acute effects may be due to an allosteric inactivation of tyrosine hydroxylase, while the chronic effects may reflect enzyme induction.  相似文献   

18.
19.
It is established that GABA interacts with tyrosine hydroxylase through the allosteric site which is not identical to sites of tyrosine, DOPA, pterin cofactor, dopamine binding. This interaction is very significant in the GABA influence on the regulation of the tyrosine hydroxylase activity by presynaptic receptors. GABA is supposed to be able to cause dissociation of oligomeric forms of tyrosine hydroxylase.  相似文献   

20.
The formation of 3H2O from L-4-3H-phenylalanine is used as an index of tyrosine hydroxylase activity in synaptosomes from rat hippocampus, hypothalamus, and striatum. The reactions are linear with respect to time (up to 20 min) and with respect to protein concentration (up to 0.2 mg/ml). Formation of 3H2O from L-4-3H-phenylalanine is inhibited by standard tyrosine hydroxylase inhibitors (α-methyl-p-tyrosine, L-3-iodotyrosine, dopamine, L-norepinephrine, and L-apomorphine) and by the tyrosine hydroxylase substrate L-tyrosine as well as by synaptosomal lysis. The blank 3H2O produced from L-4-3H-phenylalanine (0.02% of total DPM) is 10-fold less than the blank 3H2O produced from L-3,5-3H-tyrosine. The Km values of tyrosine hydroxylase for phenylalanine determined by the production of 3H2O from L-4-3H-phenylalanine are 3.1, 1.3, and 1.2 μm in hippocampal, hypothalamic and striatal synaptosomes respectively. The results indicate that analysis of 3H2O formed from L-4-3H-phenylalanine is a sensitive and reliable method for quantitating synaptosomal tyrosine hydroxylase activity from tissues with low levels of tyrosine hydroxylase such as synaptosomes from hippocampus and hypothalamus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号