首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The objective of this study was to test the hypothesis that intrauterine administration of prostaglandin E(2) (PGE(2)) or estradiol-17beta (E-17beta) would prolong CL function in nonpregnant mares. Nonpregnant mares were continuously infused with 240 mug/d of PGE(2), 6 mug/d of E-17beta, or vehicle (sham-treated) on Days 10 to 16 post ovulation (ovulation = Day 0), using osmotic minipumps surgically placed into the uterine lumen on Day 10 (n = 11 per group). Nonpregnant and pregnant mares served as negative and positive controls, respectively (n = 11 per group). Mares were defined as having prolonged CL function if plasma progesterone remained > 2.5 ng/ml and if ovulation did not occur on Days 9 to 30. Corpus luteal function was prolonged until Day 30 in 1 11 nonpregnant mares, 4 11 sham-treated mares, 6 11 E-17beta-treated mares, 8 11 PGE(2)-treated mares, and 11 11 pregnant mares. The incidence of prolonged CL function was similar (P=0.16) in the sham-treated and nonpregnant mares. The hypothesis that PGE(2) would prolong CL function in nonpregnant mares was supported, since the incidence of prolonged CL function was higher (P=0.003) in PGE(2)-treated versus nonpregnant mares, tended to be higher (P=0.09) in PGE(2)-versus sham-treated mares, and was not lower (P=0.11) in PGE(2)-treated versus pregnant mares. The hypothesis that E-17beta would prolong CL function in nonpregnant mares was not supported, since the incidence of prolonged CL function was not higher (P=0.34) in E-17beta-versus sham-treated mares, and was lower (P=0.02) in E-17beta-treated versus pregnant mares. These results demonstrate that intrauterine administration of a pharmacologic dose of PGE(2) initiated prolonged CL function in nonpregnant mares. Further experiments are needed to confirm the role of conceptus secretion of PGE(2) in CL maintenance, and to determine the mechanism of action of PGE(2) within the equine reproductive tract.  相似文献   

2.
The temporal relationships between blood flow in the corpus luteum (CL) and circulating progesterone concentrations were studied in 20 mares. Retrospective inspection of plasma progesterone concentrations indicated that a precipitous decrease occurred during Days 15-17 (Day 0 = ovulation) and was defined as the luteolytic period. Mean percentage of CL with color-Doppler signals for blood flow was maximum on Day 10 (77.3%), and Days 10-14 (49.8%) were defined as the preluteolytic period. The cross-sectional area of the CL decreased progressively from Day 4 (9.0 cm2) to Day 19 (1.5 cm2). Progesterone reached maximum concentration on Day 8 (12.8 ng/ml) and thereafter CL area and plasma progesterone decreased in parallel until the onset of luteolysis. During the luteolytic period, the decrease in plasma progesterone was about sixfold greater than during the preluteolytic period, whereas the decrease in CL area and in percentage of CL with blood-flow area were about twofold greater. There was no indication that an acute increase or decrease in luteal blood flow occurred prior to the precipitous decrease in plasma progesterone.  相似文献   

3.
The viability of embryos before flushing from donor mares (n = 5) and after transfer to recipient mares (n = 7) was monitored in mare serum by detecting early pregnancy factor (EPF) using the rosette inhibition test (RIT). The EPF activity was measured in donor mares before and after natural mating at natural estrus; after ovulation on Days 2, 5 and 8; and after embryo flushing (Day 8) on Days 8, 9, 10 and 13 after ovulation. The collected embryos were transferred immediately after flushing. The EPF activity in recipient mares were measured on the day of transfer and after embryo transfer on Days 1, 2, 3 and 5. Pregnancy was confirmed on Day 12 to 14 after embryo transfer. The mean EPF activity of donor mares was increased to the pregnant level (> an RI titer score of 10) on Day 2 after ovulation. Two days after flushing the embryos, the EPF activity of donor mares had decreased to the nonpregnant level. Among the 7 recipient mares, 3 mares were diagnosed pregnant on Day 12 after embryo transfer with ultrasound. The EPF activity of the pregnant recipient mares was increased above the minimum level observed in pregnant mares on Days 2 to 3 after transfer. However, among the nonpregnant recipient mares after embryo transfer, the EPF activity of 3 mares remained at the pregnant level only 2 to 3 d and then declined to the nonpregnant level. In one recipient mare, EPF activity did not reach the pregnant level throughout the sample collection. The results of this study indicated that equine EPF can be detected in serum of pregnant mares as early as Day 2 after ovulation. From our observation, we conclude that the measurement of EPF activity is useful for monitoring the in vivo viability of equine embryos and early detection of embryonic death.  相似文献   

4.
Myometrial activity and plasma progesterone (P) and oxytocin (OT) were measured in early pregnant (n = 5) and cycling (n = 5) ewes. Electromyography (EMG) leads and jugular and inferior vena cava (IVC) catheters were surgically placed in ewes about 1 wk before data collection. When ewes returned to estrus, they were bred to either an intact or vasectomized ram. Continuous EMG data were collected, and blood samples were collected twice daily from day of estrus (Day 0) until Day 18. Ewes bred with an intact ram were checked surgically for pregnancy on Day 20. Computerized, quantitative analysis of EMG events showed no difference in signal from the right to left uterine horns, and no differences between pregnant and cycling ewes (p less than 0.05) until Days 14-18 when nonpregnant ewes returned to estrus and had increased EMG activity. The mean number of EMG events 180-900 s in length decreased in pregnant ewes, but this difference was not significant (p less than 0.05). Jugular plasma progesterone (P) levels confirmed corpus luteum (CL) formation in all ewes, and no differences in P between pregnant and nonpregnant ewes were measured until Days 14-18, when cycling ewes underwent luteolysis and pregnant ewes maintained CL. IVC plasma oxytocin concentrations were increased in pregnant ewes compared to concentrations in nonpregnant ewes on Days 5-13 (p less than 0.05), and the difference was largest at Day 6 (means +/- SEM pg/ml: pregnant = 68.7 +/- 13.9, nonpregnant = 30.9 +/- 19.9).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The effects of oxytocin, prostaglandin F2 alpha (PGF2 alpha), and clenbuterol on uterine contractility and tone during anestrus and diestrus, and during mobility and postfixation of the embryonic vesicle were studied in 51 pony mares. Contractility was assessed by scoring real-time ultrasound images, and tone was assessed by transrectal digital compression. Scoring was done by an operator who had no knowledge of treatment assignments. In anovulatory mares primed with progesterone for 16 d, oxytocin did not significantly alter contractility but did stimulate an increase in tone, whereas clenbuterol depressed both contractility and tone. The PGF2 alpha given on Days 12, 15, and 18 did not significantly alter uterine contractility in pregnant mares, but it increased contractility on all days in nonpregnant mares. Clenbuterol decreased both tone and contractility when given to pregnant mares on the day of embryonic-vesicle fixation, while it decreased tone but not contractility when given on Day 19. Clenbuterol treatment was associated with dislodgment of the fixed embryo in only 1 of 5 mares. However, on Day 19, clenbuterol treatment was associated with a change in shape of the conceptus when viewed in a cross section of the uterine horn. The conceptus shape became more circular rather than irregular or triangular, as indicated by a significant decrease in the variation in the distances between adjacent walls measured in 4 different directions. Results indicated that: 1) oxytocin increased uterine tone but did not alter contractility in progesterone-primed anestrous mares; 2) on Days 12, 15 and 18, PGF2 alpha increased uterine contractility in nonpregnant mares but not in pregnant mares; 3) clenbuterol decreased both tone and contractility at all reproductive states except for a lack of a decrease in contractility on Day 19 of pregnancy; and 4) reduction in uterine tone from clenbuterol treatment on Day 19 was associated with a change in the two-dimensional shape of the in situ conceptus from irregular to a more circular form.  相似文献   

6.
The local relationship between the pregnant uterine horn and the CL during maternal recognition of pregnancy is well-documented. It continues beyond that time; pregnancies were maintained in lutectomized cows when CL were induced on the ovary ipsilateral, but not contralateral, to the uterine horn of pregnancy during Days 28-53. This study evaluated factors affecting maintenance of pregnancy by CL induced after Day 53, in lutectomized cows that had received exogenous progesterone from Day 29 to 15 days after induction of a CL. Twenty-four suckled beef cows were lutectomized on Day 29 of gestation; pregnancy was maintained with progesterone from two controlled internal drug releasing (CIDR) inserts, exchanged every 5 days. Beginning on Day 53, ovaries and viability of pregnancy were evaluated by ultrasonography every 5 days. When a follicle >or=10 mm in diameter was present ipsilateral to the fetus, each cow received 1,000 IU of hCG. Following induction of a CL (20 of 24), progesterone was reduced to a single CIDR for 5 days, then removed. Retention of pregnancy was confirmed by rectal palpation and calving. Cows with induced CL maintained pregnancy to term, including four with the CL contralateral to the fetus. Three cows failed to form normal CL by Day 98 and lost pregnancy after removal of exogenous progesterone. One cow that did not respond to hCG lost pregnancy during exogenous progesterone. In conclusion, CL induced after Day 53 maintained pregnancy to term, even when induced contralateral to the pregnant uterine horn.  相似文献   

7.
This study was carried out to evaluate the luteotrophic influence of early (before Day 7 as well as after Day 7; Day 0=estrus) bovine embryos and the relationship between plasma progesterone (P4) concentrations and embryo survival. Virgin Holstein dairy heifers (n=325) from a single herd were randomly allocated to be nonbred, bred by artificial insemination (AI) or by embryo transfer (ET). Bred heifers were either treated with 1500 IU human chorionic gonadotrophin (hCG) on Day 7 of the estrous cycle or received no hCG treatment. Plasma P4 concentrations on Days 0, 5, 7, 10, 13, 15, 17, 19 and 21 were similar in pregnant AI- and ET-bred heifers and, this was observed in both hCG-treated and untreated females. Nonbred, AI- and ET-bred nonpregnant heifers (both hCG-treated and untreated) presented similar plasma P4 concentrations. Plasma P4 concentrations of pregnant heifers significantly deviated from those of nonpregnant and nonbred heifers on Day 17. In hCG-treated heifers, plasma P4 concentrations and Day 28 pregnancy rate were significantly higher in females with an induced accessory corpus luteum (CL) than in those females without an induced accessory CL. Treatment with hCG, although inducing the formation of accessory CL and significantly increasing plasma P4 concentrations had no significant effect on Day 28 pregnancy rate. In conclusion, this study does not support the existence of any peripherally detectable luteotrophic influence from early embryos (Days 5-7). Plasma P4 was only significantly related to embryo survival on Day 17, the time of expected onset of luteolysis.  相似文献   

8.
The objective of this study was to determine whether periovulatory treatments with PGF2alpha affects the development of the CL, and whether the treatment was detrimental to the establishment of pregnancy. Reproductively sound mares were assigned randomly to one of the following treatment groups during consecutive estrus cycles: 1. 3,000 IU hCG within 24 hours before artificial insemination and 500 microg cloprostenol (PGF2alpha analogue) on Days 0, 1, and 2 after ovulation (n=8), 2. 2 mL sterile water injection within 24 hours before artificial insemination and 500 microg cloprostenol on Days 0, 1, and 2 after ovulation (n=8); 3. 3,000 IU hCG within 24 hours before artificial insemination and 500 microg cloprostenol on Day 2 after ovulation (n=8); or 4. 3,000 IU hCG within 24 hours before artificial insemination and 2 mL of sterile water on Days 0, 1, and 2 after ovulation (controls; n=8). Blood samples were collected from the jugular vein on Days 0, 1, 2, 5, 8, 11, and 14 after ovulation. Plasma progesterone concentrations were determined by the use of a solid phase 125I radioimmunoassay. All mares were examined for pregnancy by the use of transrectal ultrasonography at 14 days after ovulation. Mares in Group 1 and 2 had lower plasma progesterone concentrations at Day 2 and 5, compared to mares in the control group (P < 0.001). No difference was detected between group 1 and 2. Plasma progesterone concentrations in group 3 were similar to the control group until the day of treatment, but decreased after treatment and were significantly lower than the control group at Day 5 (P < 0.001). Plasma progesterone concentrations increased in all treatment groups after Day 5, and were comparable among all groups at Day 14 after ovulation. Cloprostenol treatment had a significant effect on pregnancy rates (P < 0.01). The pregnancy rate was 12.5% in Group 1, 25% in Group 2, 38% in Group 3, and 62.5% in Group 4. It was concluded that periovulatory treatment with PGF2alpha has a detrimental effect on early luteal function and pregnancy.  相似文献   

9.
Implantation in the ferret is believed to be induced by a luteal substance which acts in concert with progesterone (P4) and which is secreted sometime between Days 6 and 8 of pregnancy. This experiment was designed to identify the steroid products synthesized by ferret corpora lutea (CL) on these 2 days of pregnancy. CL were dissected from ferrets on Day 6 or 8 of pregnancy and incubated with [3H] pregnenolone (P3), [3H] P4, or [3H] dehydroepiandrosterone (DHEA). Controls with no tissue or with 50 microliters packed blood cells were incubated at the same time. After incubation of Day 6 CL with [3H] P3 for 180 min, 39% of the added label was found incorporated into P4, 3% into 17 alpha-hydroxyprogesterone (17 alpha-OHP4) and 1% into androstenedione (A). Incubation of Day 8 CL with the same precursor resulted in 35%, 1% and 0.65% of the label being incorporated into the previously mentioned products, respectively. Incubations of Days 6 and 8 ferret CL with [3H] P4 or [3H] DHEA confirmed these results, demonstrating activity of C21-steroid, 17 alpha-hydroxylase and delta 5-isomerase, 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD). These results suggest that ferret CL primarily accumulate steroids of the delta4 pathway on both Days 6 and 8 of pregnancy, with P4, 17 alpha-OHP4, A and testosterone (T) being the most abundant products after in vitro incubation. Thus, ferret CL appear to metabolize steroids in a manner similar to that observed in rats, sows and mares.  相似文献   

10.
The equine embryonic vesicle is mobile on Days 12-14 (Day 0 = ovulation), when it is approximately 9-15 mm in diameter. Movement from one uterine horn to another occurs, on average, approximately 0.5 times per hour. Mobility ceases (fixation) on Days 15-17. Transrectal color Doppler ultrasonography was used to study the relationship of embryo mobility (experiment 1) and fixation (experiment 2) to endometrial vascular perfusion. In experiment 1, mares were bred and examined daily from Day 1 to Day 16 and were assigned, retrospectively, to a group in which an embryo was detected (pregnant mares; n = 16) or not detected (n = 8) by Day 12. Endometrial vascularity (scored 1-4, for none to maximal, respectively) did not differ on Days 1-8 between groups or between the sides with and without the corpus luteum. Endometrial vascularity scores were higher (P < 0.05) on Days 12-16 in both horns of pregnant mares compared to mares with no embryo. In pregnant mares, the scores increased (P < 0.05) between Day 10 and Day 12 in the horn with the embryo and were higher (P < 0.05) than scores in the opposite horn on Days 12-15. In experiment 2, 14 pregnant mares were examined from Day 13 to 6 days after fixation. Endometrial vascularity scores and number of colored pixels per cross-section of endometrium were greater (P < 0.05) in the endometrium surrounding the fixed vesicle than in the middle portion of the horn of fixation. Results supported the hypothesis that transient changes in endometrial vascular perfusion accompany the embryonic vesicle as the vesicle changes location during embryo mobility.  相似文献   

11.
Transrectal ultrasonography was used to quantitate uterine contractile activity during the estrous cycle and early pregnancy in pony mares (nonbred, n = 9; pregnant, n = 16). Continuous 1-min scans of longitudinal sections of the uterine body were videotaped, and uterine activity scores (1=minimal activity, 5=maximal activity) were assigned to each tape segment. There was a tendency (P<0.06) for a main effect of reproductive status (nonbred versus pregnant), a main effect of day (P<0.0001), and a reproductive status by day interaction (P<0.006). Uterine activity scores were higher (P<0.05) in pregnant mares on Days 1, 11, 12, and 17 (Day 0=day of ovulation) than in nonbred mares. Maximal activity in pregnant mares occurred on Days 11 to 14 during the reported period of maximal embryo mobility. Activity scores decreased (P<0.05) between the day prior to and the day of fixation (mean = Day 15) of the embryonic vesicle. Activity scores were maintained at an intermediate level for several days following fixation before declining to minimal levels by 7 d postfixation. A postovulatory decrease (P<0.04) in activity scores was observed in nonbred mares, but not in pregnant mares, between Days 0 and 1 followed by a progressive increase (P<0.03) between Days 2 and 4. Maximal activity in nonbred mares occurred during the late luteal phase (Days 13 to 14), corresponding temporally to the reported onset of luteolysis.  相似文献   

12.
Although the mare corpus luteum (CL) is capable of aromatization, the expression of other enzymes involved in estradiol synthesis is not yet clear. This study examined the localization of P450C17 in the mare CL at different stages of its functional development. In ovaries from follicular phase mares P450C17 was localized in the theca cells of ovarian follicles. Following ovulation, no immunostaining for P450C17 was detected in the mature CLs of nonpregnant mares. In pregnant mares, no immunostaining for P450C17 was identified in the corpus luteum prior to secretion of eCG by the feto placental unit at Day 35 of pregnancy. The P450C17 was found to be expressed in CLs retrieved from Day 40 of pregnancy onwards. The changing expression of P450C17 raises the possibility that this may be a regulatory step for estrogen synthesis in the mare ovary.  相似文献   

13.
Luteal progesterone was removed by an injection of prostaglandin F(2alpha) or bilateral ovariectomy on Day 12 of pregnancy in pony mares. The embryonic vesicle remained mobile in the uterus until loss occurred on Days 13, 13, 15, or 19 in four prostaglandin-treated mares and Days 15, 17, 19, or 26 in four ovariectomized mares. Exogenous progesterone given daily, starting on Day 12, maintained pregnancy until Day 40 in five of five prostaglandin-treated and three of four ovariectomized mares. During two-hour mobility trials on Day 14, embryonic vesicles in mares without luteal or exogenous progesterone (n = 9) moved to a different uterine segment less frequently (mean number of location changes per two-hour trial: 7.2 +/-1.0 vs 10.4 +/-1.1, P < 0.05) and were observed more often in the uterine body (14.9 +/-2.9 vs 8.9 +/-1.3, P < 0.10) compared to vesicles in mares with a progesterone influence (n = 15). Of mares that still had a vesicle present on Day 18, fixation occurred by Day 17 in all (12 12 ) mares under the influence of luteal or exogenous progesterone but failed to occur in the three mares that were not under progesterone influence. Progesterone replacement was started on Day 16 in three mares that received prostaglandin F(2alpha) on Day 12 and still had a vesicle on Day 16. The vesicle was maintained and continued to develop in all three mares, indicating that the vesicles were viable four days after PGF(2alpha) treatment. However, fixation tended to be delayed (P < 0.15) and orientation of the embryo proper was altered (P < 0.005) compared to mares that were continuously under the influence of progesterone. The results demonstrated the importance of luteal progesterone to mobility, fixation, orientation, and survival of the embryonic vesicle.  相似文献   

14.
Pregnancy rates at Days 2 and 14 postovulation were determined for 15 normal mares and 15 subfertile mares. Embryonic loss rates were estimated by the difference in the Day 2 and Day 14 pregnancy rates. Mares were artificially inseminated with the pooled ejaculates from three stallions, and the embryonic vesicle was detected with ultrasonography at Days 9, 10, 12 and 14. Mares were short-cycled with prostaglandin F(2) alpha (PGF(2alpha)) and rebred to the same stallions, and the Day 2 pregnancy rates were determined by recovery of cleaved ova (embryos) from the surgically excised oviducts. Significantly more (P < 0.01) normal versus subfertile mares were pregnant at Day 14 (12 15 vs 3 15 ). There was no significant difference in the Day 2 pregnancy rate for normal versus subfertile mares (10 14 vs 11 14 ). There were no significant differences (P > 0.5) in the mean number of blastomeres per embryo or in the mean diameter of embryos recovered at Day 2 from normal or subfertile mares. The estimated embryonic loss rate was significantly lower (P < 0.01) for normal verusus subfertile mares (0 10 vs 8 11 ). Fertilization rates were similar for normal and subfertile mares; however, subfertile mares had a higher embryonic loss rate prior to Day 14 postovulation.  相似文献   

15.
We have characterized the testosterone secretion pattern during the first 80 d of pregnancy in mares and determined the sources that contribute to circulating testosterone levels during this period. Ten untreated, pregnant mares (Group 1), 10 altrenogest-treated, pregnant mares (Group 2), and 10 altrenogest-treated, pregnant mares in which the CL was eliminated by administration of PGF-2alpha on Day 16 (Group 3) were used in this study. Complete luteolysis occurred following PGF-2alpha administration in all mares in Group 3. Six of the 10 mares in Group 3 did not have an active CL until after Day 60 of pregnancy (Group 3a) and were included in the analysis. The remaining four mares developed a new CL on Days 32, 40, 43 and 49 of pregnancy and were excluded from analysis. Mares without a functional CL (Group 3a) had significantly lower testosterone concentrations than mares with a functional CL (Groups 1 and 2), during the period before equine chorionic gonadotropin (eCG) secretion. At the onset of eCG secretion, testosterone concentrations increased rapidly but the rate of increase decreased with time in mares with a functional CL (Groups 1 and 2). In mares without a functional CL (Group 3a), testosterone concentrations did not increase at the onset of eCG secretion but increased at a gradually increasing rate after Day 50. The lower testosterone concentration in mares without a functional CL before eCG secretion suggests that the CL contributes significantly to the circulating testosterone concentration during the period before eCG secretion. The close time relationship between the onset of eCG secretion and the increase in testosterone secretion in mares with a functional CL and the lack of a testosterone increase in pregnant mares without a functional CL suggest that the increase in testosterone secretion after Day 35 of pregnancy is the result of eCG-stimulated, luteal testosterone synthesis.  相似文献   

16.
One-minute continuous ultrasonic scans of longitudinal sections of the uterine body were videotaped, and contractility scores (1 to 5, minimal to maximal contractility) were assigned without knowledge of mare identity, day of the estrous cycle or pregnancy status. Contractility was assessed, and plasma progesterone concentrations were determined for each of 3 daily examinations (at 0800, 1600 and 2400 hours) from Day 9 to Day 19 (Day 0 = day of ovulation). For both the nonbred (n=11) and pregnant (n=11) mares, there was no effect of hour of scan on the extent of uterine contractility. When data for the nonbred mares were normalized to the onset of luteolysis (defined for each mare as the first >/=25% decrease in plasma progesterone concentrations between successive samples), there was an abrupt increase (P<0.05) in contractility 24 hours prior to the onset of luteolysis. Contractility was also assessed daily in 20 nonbred and 27 pregnant mares from Day 0 to Day 17. For the nonbred mares, a biphasic profile in contractility occurred during the estrous cycle as indicated by the following significant changes: a decrease between Days 0 and 2, an increase between Days 2 and 4, a plateau between Days 4 and 7, a decrease between Days 7 and 11, an increase between Days 11 and 13, and a decrease between Days 14 and 16. For pregnant mares, contractility increased (P<0.05) prior to the late-diestrous increase for nonbred mares. In addition, a significant reduction in contractility was detected on Day 5 in these mares compared with that in the nonbred mares. Contractility in the uterine body in 7 mares was assessed every 5 minutes after departure of the embryonic vesicle from the uterine body. Levels of contractility in the uterine body were lower (P<0.05) 55 minutes after the vesicle had exited the body than 相似文献   

17.
Accuracy of ultrasonography in early pregnancy diagnosis in the ewe   总被引:3,自引:0,他引:3  
Nonbred and pregnant ewes were examined ultrasonographically at intervals of 4 to 6 days on Days 17 to 34 after estrus. Each ewe was diagnosed as pregnant or nonpregnant, and a score for degree of certainty in the diagnosis was recorded. The goal of the study was to define criteria that could be used for identification and accuracy of diagnosis of an early conceptus and to ascertain the confidence which the operator had in makeing the diagnosis. Pregnancy was retrospectively confirmed by ultrasonographic detection of an embryo proper and by embryonic heartbeat on Days 21 to 34, and later judged against the number of lambs born to each ewe. The percentage of ewes accurately diagnosed pregnant by ultrasonography was not significantly higher than that by guessing (50%) before Day 24, but reached 85% on Days 32 and 34. However, the ability to detect nonpregnant ewes by ultrasonography was higher (P<0.01), with a greater specificity starting on Days 21 to 23 (80%) and reaching 98% by Days 32 to 34. Before Day 24, the diagnosis of pregnancy in many cases was based primarily upon the ultrasonographic appearance of the uterine lumen and location of the uterus in relation to the bladder rather than upon detection of the conceptus. For the certainty score there was a main effect of day (P<0.01) but not for the reproductive status (pregnant vs nonpregnant). The certainty score increased in all ewes among days, and was highest on Days 32 to 34. It was concluded that real time transrectal ultrasonographic scanning of sheep between Days 24 and 34 of gestation offers a safe, accurate and practical means for diagnosing pregnancy.  相似文献   

18.
Pony mares were bilaterally ovariectomized at different stages of pregnancy between Days 25 and 210. Abortion or fetal resorption occurred within 2 to 6 days after operations in all 14 mares ovariectomized between Days 25 and 45 and after an interval of 10 to 15 days in 9 of 20 other ovariectomized between 50 and 70 days. All 12 mares ovariectomized on either 140 or 210 days carried their foals to normal term. The termination of early pregnancy was preceded by a loss of uterine tone and of a palpable uterine bulge. The mean length of gestation in all mares in which pregnancy was not interrupted by ovariectomy was not significantly different from that in a group of contemporary control mares. Plasma progestagen concentrations dropped to less than 2 ng/ml after ovariectomy, whether or not pregnancy was maintained. Mares ovariectomized on Day 25 and injected with 100 mg progesterone daily for 10 or 20 days remained pregnant during treatment but showed a loss of uterine tone and the fetal bulge disappeared within 4 to 6 days after the end of treatment. Non-pregnant ovariectomized or intact seasonally anoestrous mares injected i.m. with 50 or 100 mg progesterone daily for 8 weeks showed changes in uterine tone, length and thickness similar to those occurring in mares during early pregnancy.  相似文献   

19.
Plasma membrane receptors for prostaglandins (PG) F2 alpha and E2 were quantified in ovine corpora lutea obtained from nonpregnant and pregnant ewes on Days 10, 13, and 15 post-estrus, and from additional ewes on Days 25 and 40 of pregnancy. Regardless of reproductive status or day post-estrus, concentrations of luteal receptors for PGF2 alpha were 7- to 10-fold greater than those for PGE2. In pregnant ewes the concentration of receptors for PGF2 alpha was highest on Day 10 (35.4 +/- 2.8 fmol/mg) and lowest on Day 25 (22.3 +/- 2.5 fmol/mg). A difference in the concentration of luteal receptors for PGF2 alpha between pregnant and nonpregnant ewes was apparent only on Day 15 post-estrus, at which time the concentration of receptors for PGF2 alpha was higher in pregnant ewes than in nonpregnant ewes (27.1 +/- 2.7 vs. 17.7 +/- 2.7 fmol/mg). Concentrations of receptors for PGE2 in pregnant ewes were similar (p > 0.05; 2.8 +/- 0.3 to 3.7 +/- 0.2 fmol/mg) between Days 13 and 40 but were higher (p < 0.05) than in corpora lutea obtained from nonpregnant ewes on Days 10 (5.0 +/- 0.4 vs. 4.1 +/- 0.2 fmol/mg) and 15 (3.7 +/- 0.2 vs. 2.0 +/- 0.4 fmol/mg) post-estrus. Although concentrations of receptors for both PGF2 alpha and PGE2 were lowest in corpora lutea obtained from nonpregnant ewes on Day 15, this was not due to luteal regression since the weights and concentrations of progesterone in corpora lutea on Day 15 were not lower than those for corpora lutea obtained on Days 10 and 13.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The objective was to evaluate the effects of 400 IU of eCG given on Days 5 or 8 of an estrus synchronization protocol with progesterone-releasing intravaginal devices (PRID) and estradiol benzoate (EB), in recipients for fixed-time embryo transfer. A secondary objective was to determine the effects of injectable progesterone (given concurrent with EB treatment). Three-hundred-and-four crossbred Bos taurus x Bos indicus beef heifers were randomly assigned to one of four treatment groups (2 x 2 factorial design). At unknown stages of the estrous cycle (Day 0), all heifers received a progesterone-releasing intravaginal device (PRID), plus 2mg of EB i.m., with or without a concurrent treatment of 50mg of progesterone i.m. Heifers were further subdivided to receive 0.15 mg of d-cloprostenol (PGF) i.m. and 400 IU of eCG i.m. on Days 5 or 8. In all heifers, intravaginal devices were removed on Day 8 and 1mg of EB was given i.m. on Day 9 (Day 10 was arbitrarily considered the day of estrus). On Day 17, all heifers with >1 CL or a single CL with a diameter > or =18 mm (based on ultrasonographic examination), received an in vitro produced (IVP) embryo by non-surgical transfer. On Day 17, there was an effect of day of eCG administration on the number of CL (1.35 +/- 0.08 versus 1.13 +/- 0.04, for Day 5 versus Day 8, respectively; P = 0.02) and (in a subset of 154 heifers) mean (+/-S.E.M.) plasma progesterone concentrations (2.41 +/- 0.26 versus 1.74 +/- 0.19 ng/mL; P = 0.03). Although the proportion of recipients transferred/treated and pregnant/transferred did not differ among groups, the proportion of recipients pregnant/treated tended (P = 0.1) to be higher in heifers treated with eCG on Day 5 versus Day 8 (47.0% versus 40.7%, respectively). Progesterone treatment had no significant effect. In conclusion, treatment with eCG (and D-cloprostenol) on Day 5 significantly increased the number of CL and plasma progesterone concentrations and tended to increase pregnancy rates, although progesterone treatment had no significant effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号