共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetic properties of C12E8-solubilized (Na+ + K+)-ATPase 总被引:1,自引:0,他引:1
The properties of the rectal gland (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.8) solubilized in octaethyleneglycol dodecylmonoether ( C12E8 ) have been investigated. The kinetic properties of the solubilized enzyme resemble those of the membrane-bound enzyme to a large extent. The main difference is that Km for ATP for the (Na+ + K+)-ATPase is about 30 microM for the solubilized enzyme and about 100 microM for the membrane-bound enzyme. The Na+-form (E1) and the K+-form (E2) can also be distinguished in the solubilized enzyme, as seen from tryptic digestion, the intrinsic fluorescence and eosin fluorescence responses to Na+ and K+. The number of vanadate-binding sites is unchanged upon solubilization, and it is shown that vanadate binding is much more resistant to detergent inactivation than the enzymatic activities. The number of phosphorylation sites on the 95-100% pure supernatant enzyme is about 3.8 nmol/mg, and is equal to the number of vanadate sites. Inactivation of the enzyme by high concentrations of detergent can be shown to be related to the C12E8 /protein ratio, with a weight ratio of about 4 being a threshold for the onset of inactivation at low ionic strength. At high ionic strength, more C12E8 is required both for solubilization and inactivation. It is observed that the commercially available detergent polyoxyethylene 10-lauryl ether is much less deleterious than C12E8 , and its advantages in the assay of detergent-solubilized (Na+ + K+)-ATPase are discussed. The results show that (Na+ + K+)-ATPase can be solubilized in C12E8 in an active form, and that most of the kinetic and conformational properties of the membrane-bound enzyme are conserved upon solubilization. C12E8 -solubilized (Na+ + K+)-ATPase is therefore a good model system for a solubilized membrane protein. 相似文献
2.
M Esmann 《Biochimica et biophysica acta》1986,857(1):38-47
The bi-exponential time-course of detergent inactivation at 37 degrees C of C12E8-solubilized (Na+ + K+)-ATPase from shark rectal glands and ox kidney was investigated. The data for shark enzyme, obtained at detergent/protein weight ratios between 2 and 16, are interpreted in terms of a simple model where the membrane bound enzyme is solubilized predominantly as (alpha-beta)2 diprotomers at low detergent concentrations and as alpha-beta protomers at high C12E8 (octaethyleneglycoldodecylmonoether) concentrations. It is observed that the protomers are inactivated 15-fold more rapidly than the diprotomers, and that the rate of inactivation of both oligomers is proportional to the detergent/protein ratio. Inactivation of kidney enzyme was biexponential with a very rapid inactivation of up to 40% of the enzyme activity. The observed rate of inactivation of the slower phase varied with the detergent/protein ratio, but the inactivation pattern for the kidney enzyme could not readily be accommodated within the model for inactivation of the shark enzyme. The rates of inactivation at 37 degrees C were about the same in KCl and NaCl, i.e., in the E2(K) and E1 X Na forms, for both enzymes. 相似文献
3.
M Esmann 《Biochimica et biophysica acta》1984,787(1):81-89
Gel filtration of (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.8) solubilized in octaethyleneglycol dodecylmonother ( C12E8 ) has been performed under conditions where active (alpha beta)2 dimers (Mr 265000) are obtained, and under conditions where dissociation into alpha beta monomers occurs without appreciable loss of activity. It is shown that the alpha beta monomers aggregate with time to form (alpha beta)2 dimers at low detergent concentrations with no change in enzymatic activity. At high detergent concentrations the aggregation is much slower, but the enzymatic activity is lost rapidly. Polyacrylamide gel electrophoresis in the presence of C12E8 also suggest that high concentrations of detergent dissociate the (alpha beta)2 dimer into smaller particles, and conditions for gel electrophoresis are described. The inactivating effect of C12E8 at high C12E8 /protein ratios can be related to a delipidation of the enzyme, with about 0.19 mg phospholipid required per mg protein for optimal activity. The experiments suggest that the solubilized (Na+ + K+)-ATPase can be disrupted into particles containing only one alpha-chain and one or two beta-chains without irreversible loss of activity, and that the stable form of the enzyme is an (alpha beta)2 dimer. 相似文献
4.
The expressions for the kinetic constants corresponding to the steady state model for hydrolysis of ATP catalyzed by (Na+ + K+)-ATPase proposed recently are analyzed with the object of determining the rate constants. The theoretical background for the necessary procedures is described. The results of this analysis are: (1) A small class (four) of rate constants are determined directly by the previously published values of the kinetic constants. (2) For a somewhat larger class of rate constants upper and lower bounds may be established. For several rate constants the upper and lower bounds differ by less than a factor 1.6 (for the "(Na+ + K+)-enzyme", i.e. the enzyme activity with K+ and millimolar substrate concentration) and 1.2 (for the "Na+-enzyme",i.e. the activity at micromolar substrate concentrations). (3) Experiments on inhibition by K+ of the Na+-enzyme at various Mg2+ concentrations are reported and analyzed. With the additional assumption that the rate constants governing the addition to ATP of Mg2+ is independent of whether or not ATP is bound to an enzyme molecule, a set of consistent values for all the 23 rate constants in the mechanism may be obtained. (4) The values of some rate constants lend further support to the contention discussed in a previous paper that the enzyme hydrolyzes ATP along two kinetically distinct pathways, depending on the presence of K+ and on the concentration of substrate, without the necessity of having more than one active substrate site per enzyme unit at any time. (5) The results show that while the two enzyme forms, the "Na+-enzyme" E1 and the "K+-enzyme" E2K, add substrate with (second order) rate constants of the same order of magnitude (differing only by a factor of four in favor of the former), the rate constants for the reverse processes differ by a factor of 100, being largest for the K+-enzyme. This is the main reason for the large difference in the Michaelis constants for the two forms reported previously. (6) Compatibility of the model with the well-known rapid dephosphorylation of the phosphorylated enzyme in the presence of K+ requires the presence, at non-zero steady state concentration, of an enzyme-potassium-phosphate intermediate, which is acid labile and is therefore not detected as a phosphorylated enzyme using conventional methods. 相似文献
5.
Xia L Yuwen L Jie L Huilin L Xi Y Cunxin W Zhiyong W 《Journal of enzyme inhibition and medicinal chemistry》2004,19(4):333-338
Na+/K+-ATPase (EC 3.6.1.3) is an important membrane-bound enzyme. In this paper, kinetic studies on Na+/K+-ATPase were carried out under mimetic physiological conditions. By using microcalorimeter, a thermokinetic method was employed for the first time. Compared with other methods, it provided accurate measurements of not only thermodynamic data (deltarHm) but also the kinetic data (Km and Vmax). At 310.15K and pH 7.4, the molar reaction enthalpy (deltarHm) was measured as -40.514 +/- 0.9kJmol(-1). The Michaelis constant (Km) was determined to be 0.479 +/- 0.020 mM and consistent with literature data. The reliability of the thermokinetic method was further confirmed by colorimetric studies. Furthermore, a simple and reliable kinetic procedure was presented for ascertaining the true substrate for Na+/K+-ATPase and determining the effect of free ATP. Results showed that the MgATP complex was the real substrate with a Km value of about 0.5mM and free ATP was a competitive inhibitor with a Ki value of 0.253 mM. 相似文献
6.
M De Bortoli C Giunta 《Bollettino della Società italiana di biologia sperimentale》1980,56(22):2381-2385
In Xenopus laevis, the renal Na+/K+-dependent ATPase is a very important enzyme involved in osmoregulatory processes and active transport. The enzyme was obtained from a microsome fraction purified by sucrose discontinuous gradient (10%, 15%, 29.4%) ultracentrifugation after SDS treatment, and concentrated in the denser layer. The assayed biochemical parameters and their values are: 1) Km (ATP): 0.24 mM; 2) K1/2 (Na+): 20.6 mM; 3) K1/2 (K+) 1.6 mM; 4) Ki (ouabain): 0.025 micrometer; 5) optimum pH: 7.2; 6) optimum temperature:" two peaks at 37 degrees C and 45 degrees C. 相似文献
7.
M Esmann 《Biochimica et biophysica acta》1992,1106(1):1-12
Oligomycin induces occlusion of Na+ in membrane-bound Na,K-ATPase. Here it is shown that Na,K-ATPase from pig kidney or shark rectal gland solubilized in the nonionic detergent C12E8 is capable of occluding Na+ in the presence of oligomycin. The apparent affinity for Na+ is reduced for both enzymes upon solubilization, and there is an increase in the sigmoidicity of binding curves, which indicates a change in the cooperativity between the occluded ions. A high detergent/protein ratio leads to a decreased occlusion capacity. De-occlusion of Na+ by addition of K+ is slow for solubilized Na,K-ATPase, with a rate constant of about 0.1 s-1 at 6 degrees C. Stopped-flow fluorescence experiments with 6-carboxyeosin, which can be used to monitor the E1Na-form in detergent solution, show that the K(+)-induced de-occlusion of Na+ correlates well with the fluorescence decrease which follows the transition from the E1Na-form to the E2-form. There is a marked increase in the rate of fluorescence change at high detergent/protein ratios, indicating that the properties of solubilized enzyme are subject to modification by detergent in other respects than mere solubilization of the membrane-bound enzyme. The temperature dependence of the rate of de-occlusion in the range 2 degrees C to 12 degrees C is changed slightly upon solubilization, with activation energies in the range 20-23 kcal/mol for membrane-bound enzyme, increasing to 26-30 kcal/mol for solubilized enzyme. Titrations of the rate of transition from E1Na to E2K with oligomycin can be interpreted in a model with oligomycin having an apparent dissociation constant of about 2.5 microM for C12E8-solubilized shark Na,K-ATPase and 0.2 microM for solubilized pig kidney Na,K-ATPase. 相似文献
8.
The detergent solubilization of dog kidney (Na + K)-ATPase has been investigated. The nonionic detergents, Brij 58, C12E8, and Lubrol WX were tested for their ability to produce active, soluble enzyme. Lubrol WX gave the best results. Enzyme so treated is found in the supernatant fraction after centrifugation at 100,000g for 1 h. It has the same or slightly greater specific activity, the same subunit composition as judged by SDS-gel electrophoresis, and very similar kinetic parameters with respect to sodium, potassium, ATP, pNPP, and ouabain as the membrane-bound enzyme. The Lubrol-treated enzyme is stable for at least 5 days at 4 °C. The phospholipid content of the Lubrol-treated enzyme is decreased, as might be expected, by about 50%. Limited tryptic proteolysis and fluorescence changes seen after modification with FITC indicate that the solubilized (Na + K)-ATPase undergoes the same conformational transitions as the membrane enzyme. Our results indicate that kidney enzyme solubilized as described here is nondenatured and fully active, and therefore a valuable preparation for spectroscopic and other approaches for study of this enzyme. 相似文献
9.
A detailed steady-state kinetic investigation of the hydrolysis of ATP catalyzed by (Na+ + K+)-ATPase is reported. The activity was studied in the presence of (i) Na+ (130 mM), K+ (20 mM) and micromolar ATP concentrations and Na+ (150 mM) the ('Na+-enzyme'). The data obtained lead to the following results: 1. The action of each enzyme may be described by a simple kinetic mechanism with one (Na+-enzyme) or two ((Na+ + K+)-enzyme) dead-end Mg complexes. 2. For both enzymes, both MgATP and free ATP are substrates, with Mg2+, in the latter case, as the second substrate. 3. For each enzyme, the complete set of kinetic constants (seven for the Na+-enzyme, eight for the (Na+ + K+)-enzyme) are determined from the data. 4. For each enzyme it is shown that, in the alternate substrate mechanism obtained, the ratio of net steady-state flux along the 'MgATP pathway' to that of the 'ATP-Mg pathway' increases linearly with the concentration of free Mg2+. The parameters of this function are determined from the data. As a result of this, at high (greater than 3 mM) free Mg2+ concentrations the alternate substrate mechanism degenerates into a 'limiting' kinetic mechanism, with MgATP as the (essentially) sole substrate, and Mg2+ as an uncompetitive (Na+-enzyme) or non-competitive ((Na+ + K+)-enzyme) inhibitor. 相似文献
10.
The enzymatic differentiation of various tissues is under hormonal control in the perinatal period. Since the regulation of Na+/K+-ATPase has not been explored prenatally, the aim of this study was to determine the corticosteroid sensitivity of sodium pump maturation in the fetal period. Na+/K+-ATPase activity was both measured in kidney homogenates of fetal rats and localized by in-situ histochemistry. Sodium pump activity was first quantifiable on day 18 of fetal development as 1.4 +/- 0.17 mumol Pi/h per mg protein, and was increased 3.4-times by day 22 of gestation. While the Na+/K+-ATPase activity was the most intense in cortical tubules at an earlier fetal age (18th and 19th day), the reaction product in the medullary tubules increased with fetal age, becoming highly intense on the 21st and 22nd day of gestation. From the 18th to 21st day of fetal development homogenate Na+/K+-ATPase activity increased as a function of chronologic age. While mineralocorticoids were without any effect on Na+/K+-ATPase activity, on the last day of the fetal development, the glucocorticoid dexamethasone proved to be successful in stimulating enzyme activity in corticosteroid-suppressed animals. According to our results, glucocorticoid hormones seem to be operating as an endogenous driving force for sodium pump maturation at the end of fetal development. 相似文献
11.
To evaluate previously proposed functions of renal caveolar Na(+)/K(+)-ATPase, we modified the standard procedures for the preparation of the purified membrane-bound kidney enzyme, separated the caveolar and noncaveolar pools, and compared their properties. While the subunits of Na(+)/K(+)-ATPase (α,β,γ) constituted most of the protein content of the noncaveolar pool, the caveolar pool also contained caveolins and major caveolar proteins annexin-2 tetramer and E-cadherin. Ouabain-sensitive Na(+)/K(+)-ATPase activities of the two pools had similar properties and equal molar activities, indicating that the caveolar enzyme retains its ion transport function and does not contain nonpumping enzyme. As minor constituents, both caveolar and noncaveolar pools also contained Src, EGFR, PI3K, and several other proteins known to be involved in stimulous-induced signaling by Na(+)/K(+)-ATPase, indicating that signaling function is not limited to the caveolar pool. Endogenous Src was active in both pools but was not further activated by ouabain, calling into question direct interaction of Src with native Na(+)/K(+)-ATPase. Chemical cross-linking, co-immunoprecipitation, and immunodetection studies showed that in the caveolar pool, caveolin-1 oligomers, annexin-2 tetramers, and oligomers of the α,β,γ-protomers of Na(+)/K(+)-ATPase form a large multiprotein complex. In conjunction with known roles of E-cadherin and the β-subunit of Na(+)/K(+)-ATPase in cell adhesion and noted intercellular β,β-contacts within the structure of Na(+)/K(+)-ATPase, our findings suggest that interacting caveolar Na(+)/K(+)-ATPases located at renal adherens junctions maintain contact of two adjacent cells, conduct essential ion pumping, and are capable of locus-specific signaling in junctional cells. 相似文献
12.
The steady-state kinetic mechanism of ATP hydrolysis catalyzed by membrane-bound (Na+ + K+)-ATPase from ox brain. III. A minimal model 总被引:2,自引:0,他引:2
A steady-state kinetic investigation of the effect of K+ on the Na+-enzyme activity of the (Na+ + K+)-ATPase in broken membrane preparations is reported. Analysis of the kinetic patterns obtained, together with the results reported in the first two articles of this series permit the following conclusions. 1. K+ inhibits the Na+-enzyme (the enzyme activity measured at micromolar substrate concentrations in the presence of Na+). The inhibition of non-competitive at low and competitive at higher K+ concentrations and is enhanced by free Mg2+. 2. The results indicate that the Na+-enzyme at steady-state tends to be accumulated in an enzyme-potassium complex when K+ is added. 3. The enzyme-potassium complex, in turn, binds Mg2+ in a dead-end fashion. The dissociation constant for the enzyme-K-Mg complex, estimated from the data, is 7.2 mM. The same value was obtained earlier for the Mg2+ inhibition constant of the substrate-free form of the (Na+ + K+)-enzyme (the enzyme activity measured with Na+ and K+ and at millimolar substrate concentrations) suggesting that the two constants describe the same equilibrium. 4. On the basis of the known (optimal) activity of the (Na+ + K+)-ATPase, relative to that of the Na+-ATPase, a rate constant condition is found which must be met if the Post-Albers kinetic scheme is to satisfy the data. Kinetic data for the phosphoenzyme indicate that this condition is not satisfied. 5. On the basis of the kinetic results a model for the hydrolytic action of (Na+ + K+)-ATPase is proposed. This model encompasses the Post-Albers scheme but contains two distinctive hydrolysis cycles (an 'Na+-enzyme cycle' and a '(Na+ + K+)-enzyme cycle') with widely different affinities for the substrates. Only one of the cycles (the Na+-enzyme cycle) involves acid-stable phosphorylated enzyme intermediates at discernible steady-state concentrations. Which of the two main cycles is predominant in any particular system is determined by the concentration of ligands and substrates. 6. According to this scheme, an enzyme preparation may exhibit both a high (Na+-enzyme) and a low ((Na+ + K+)-enzyme) substrate affinity, without the necessity of assigning more than one substrate site to a particular enzyme unit at any one time. 相似文献
13.
The ouabain-sensitive synthesis of [32P]ATP from [32P]Pi and ADP (vsyn) was measured in parallel with the ouabain-sensitive hydrolysis of [32P]ATP (vhy) at steady state, at varying concentrations of sodium, potassium, magnesium, inorganic phosphate, ADP, ATP and oligomycin, and at varying pH. Na+ was necessary for ATP synthesis, but vsyn was decreased by high sodium concentrations. Oligomycin, depending on the Na+ concentration, either decreased or did not affect vsyn. Potassium, at low concentrations (1-5 mM) increased vsyn at all magnesium and sodium concentrations tested, lower potassium concentrations being needed to activate vsyn at lower sodium concentrations. vsyn was optimal below pH 6.7, decreasing abruptly at higher values of pH. At pH 6.7, vsyn was a hyperbolic function of the concentration of inorganic phosphate. In the presence of potassium, half-maximal rate was obtained at [Pi] congruent to 40 mM, whereas a higher concentration was needed to obtain half-maximal rate in the absence of K+. In contrast, increasing the concentration of ADP caused a nonhyperbolic activation of vsyn, the pattern obtained in the presence of potassium being different from that obtained in its absence. Increasing the ATP concentration above 0.5 mM decreased vsyn. The data are used to elucidate (1) which reaction steps are involved in the ATP-synthesis catalysed by the Na+/K(+)-ATPase at steady state in the absence of ionic gradients and (2) the mechanism by which K+ ions stimulate the reaction. 相似文献
14.
A method is described for studying the coupling ratio of the Na+/K+ pump, i.e., the ratio of pump-mediated fluxes of Na+ and K+, in a reconstituted system. The method is based on the comparison of the pump-generated current with the rate of K+ transport. Na+/K+-ATPase from kidney is incorporated into the membrane of artificial lipid vesicles; ATPase molecules with outward-oriented ATP-binding site are activated by addition of ATP to the medium. Using oxonol VI as a potential-sensitive dye for measuring transmembrane voltage, the pump current is determined from the change of voltage with time t. In a second set of experiments, the membrane is made selectively K+-permeable by addition of valinomycin, so that the membrane voltage U is equal to the Nernst potential of K+. Under this condition, dU/dt reflects the change of intravesicular K+ concentration and thus the flux of K+. Values of the Na+/K+ coupling ratio determined in this way are close to 1.5 in the experimental range (10-75 mM) of extravesicular (cytoplasmic) Na+ concentrations. 相似文献
15.
(1) The kinetics of the phosphorylated enzymic intermediates of (Na+ + K+)-ATPase from ox brain, which are formed by incubation of the enzyme with 25 microM AT32P, 150 mM Na+ and 1 mM Mg2+, have been studied in dephosphorylation experiments at 1 degree C. The dephosphorylation of the 32P-labelled enzyme was initiated by addition of either 1 mM unlabelled ATP, 2.5 mM ADP or 1 mM unlabelled ATP + ADP in concentrations from 25 to 1000 microM. (2) In the absence of ADP the dephosphorylation curve was linear in a semilogarithmic plot almost from t = 0, whereas by addition of ADP a biphasic behaviour was obtained. The slope of the slow phase of dephosphorylation was virtually independent of the ADP concentration. (3) The results were analysed by the mathematical equation corresponding to the simplest possible model for the interconversion and breakdown of the phosphointermediates: (formula: see text) where alpha, beta, H and G are functions of all the rate constants and H and G furthermore are functions of the initial values for [E1P] and [E2P]. (4) The analysis confirmed the model and enabled the determination of all the rate constants. (5) k-1 was found to be equal to k'-1 + k"-1 . [ADP] indicating an ADP-independent 'spontaneous' dephosphorylation of E1P. The rate constant for this process was close to that for dephosphorylation of E2P, i.e., k'-1 congruent to k3. Also the value of k"-1 was determined. (6) k3 was found to be at least 10 . k-2. The implication of this for the role of the E1P to E2P transition in the Na+ + K+)-stimulated ATP hydrolysis will be discussed in detail in the following paper (Plesner, I.W., Plesner, L., N?rby, J.G. and Klodos, I. (1981) Biochim. Biophys. Acta 643, 483--494). (7) A refinement of the model, accounting for the effect of Na+ on the steady-state ratio between [E1P] and [E2P] is proposed: (formula: see text). At [Na+] = 150 mM as used here, E1P(Na) and E'1P are assumed to be in rapid equilibrium. (8) Comparison of our results with those of others underlines the general validity of the conclusions of the present paper. 相似文献
16.
A single Na+/K+-ATPase pumps three Na+ outwards and two K+ inwards by alternately exposing ion-binding sites to opposite sides of the membrane in a conformational sequence coupled to pump autophosphorylation from ATP and auto-dephosphorylation. The larger flow of Na+ than K+ generates outward current across the cell membrane. Less well understood is the ability of Na+/K+ pumps to generate an inward current of protons. Originally noted in pumps deprived of external K+ and Na+ ions, as inward current at negative membrane potentials that becomes amplified when external pH is lowered, this proton current is generally viewed as an artifact of those unnatural conditions. We demonstrate here that this inward current also flows at physiological K+ and Na+ concentrations. We show that protons exploit ready reversibility of conformational changes associated with extracellular Na+ release from phosphorylated Na+/K+ pumps. Reversal of a subset of these transitions allows an extracellular proton to bind an acidic side chain and to be subsequently released to the cytoplasm. This back-step of phosphorylated Na+/K+ pumps that enables proton import is not required for completion of the 3 Na+/2 K+ transport cycle. However, the back-step occurs readily during Na+/K+ transport when external K+ ion binding and occlusion are delayed, and it occurs more frequently when lowered extracellular pH raises the probability of protonation of the externally accessible carboxylate side chain. The proton route passes through the Na+-selective binding site III and is distinct from the principal pathway traversed by the majority of transported Na+ and K+ ions that passes through binding site II. The inferred occurrence of Na+/K+ exchange and H+ import during the same conformational cycle of a single molecule identifies the Na+/K+ pump as a hybrid transporter. Whether Na+/K+ pump–mediated proton inflow may have any physiological or pathophysiological significance remains to be clarified. 相似文献
17.
Effect of amiodarone on Na+-, K+-ATPase and Mg2+-ATPase activities in rat brain synaptosomes 总被引:2,自引:0,他引:2
Amiodarone hydrochloride is a diiodinated antiarrhythmic agent widely used in the treatment of cardiac disorders. With the increasing use of amiodarone, several untoward effects have been recognized and neuropathy following amiodarone therapy has recently been reported. The present studies were carried out to study the effect of amiodarone on rat brain synaptosomal ATPases in an effort to understand its mechanism of action. Na+, K+-ATPase and oligomycin sensitive Mg2+ ATPase activities were inhibited by amiodarone in a concentration dependent manner with IC50 values of 50 microM and 10 microM respectively. [3H]ouabain binding was also decreased in a concentration dependent manner with an IC50 value of 12 microM, and 50 microM amiodarone totally inhibited [3H]ouabain binding. Kinetics of [3H]ouabain binding studies revealed that amiodarone inhibition of [3H]ouabain binding is competitive. K+-activated p-nitrophenyl phosphatase activity showed a maximum inhibition of 32 per cent at 200 microM amiodarone. Synaptosomal ATPase activities did not show any change in rats treated with amiodarone (20 mg kg-1 day-1) for 6 weeks, when compared to controls. The treatment period may be short, since the reported neurological abnormalities in patients were observed during 3-5 years of treatment. The present results suggest that amiodarone induced neuropathy may be due to its interference with sodium dependent phosphorylation of Na+, K+-ATPase reaction, thereby affecting active ion transport phenomenon and oxidative phosphorylation resulting in low turnover of ATP in the nervous system. 相似文献
18.
The (Na+,k+)ATPase from the rectal gland of Carcharhinus obscurus has been solubilized in Lubrol WX as an active complex containing 379,900 g of protein and 61 mol of phospholipid. This detergent-lipid-protein complex contains two catalytic subunits of molecular weight 106,400 and four glycopeptide subunits of protein molecular weight 36,600. The latter subunit has a total molecular weight of 51,700 when the carbohydrate is included. Attempts to dissociate this active enzyme complex to smaller size by increasing the detergent concentration led to inactivation. Thus, the smallest active particle in the presence of Lubrol WX contains the two polypeptide subunits in a mole ratio of 2:4 under conditions where the micellar form of detergent is present at a 70:1 molar ratio. This large excess of Lubrol WX eliminates any possibility of artificial togetherness as the result of statistical considerations. 相似文献
19.
In outer medullary kidney tubules, both specific mineralocorticoid, and specific glucocorticoid Na+/K+-ATPase activation in vitro were inhibitable by amiloride, an inhibitor of a number of Na+-transporting mechanisms (Bentley, P.J. (1968) J. Physiol. (Lond.) 195, 317-330; Kinsella, J. L., and Aronson, P. S. (1980) Am. J. Physiol. 238, F461-F469). In addition, dexamethasone raised, whereas amiloride reduced, intracellular Na+ levels. These observations are consistent with the possibility that the steroidal responses are mediated by changes in intracellular Na+ ion activity. However, when intracellular Na+ levels were increased by the incubation of tubule segments in medium containing ouabain (10(-4) M), no Na+/K+-ATPase activation was observed, over incubation periods of up to 6 h. As mineralocorticoid and glucocorticoid effects are maximal within 2 h (Rayson, B.M., and Lowther, S.O. (1984) Am. J. Physiol. 246, F656-F662), these results suggest that the Na+ ion per se does not mediate the steroidal effects observed, directly. Incubation of tubule segments in medium containing 10(-4) M ouabain, at 37 degrees C, for longer periods (18 h), however, did indeed increase Na+/K+-ATPase activity, markedly. Thus, a potential homeostatic mechanism was demonstrable, where a chronic increase in intracellular Na+ level, measured after 2-4 h of treatment, resulted in an increase in Na+/K+-ATPase activity, such that the intracellular Na+ level was restored after 18-20 h of incubation to one not significantly different from the control value. This mechanism, however, appears to be clearly distinguishable from that which mediates steroidal Na+/K+-ATPase activation. 相似文献
20.
Annular lipid-protein stoichiometry in native pig kidney Na+/K+ -ATPase preparation was studied by [125I]TID-PC/16 labeling. Our data indicate that the transmembrane domain of the Na+/K+ -ATPase in the E1 state is less exposed to the lipids than in E2, i.e., the conformational transitions are accompanied by changes in the number of annular lipids but not in the affinity of these lipids for the protein. The lipid-protein stoichiometry was 23 ± 2 (α subunit) and 5.0 ± 0.4 (β subunit) in the E1 conformation and 32 ± 2 (α subunit) and 7 ± 1 (β subunit) in the E2 conformation. 相似文献