首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Crossing-over is a central feature of meiosis. Meiotic crossover (CO) sites are spatially patterned along chromosomes. CO-designation at one position disfavors subsequent CO-designation(s) nearby, as described by the classical phenomenon of CO interference. If multiple designations occur, COs tend to be evenly spaced. We have previously proposed a mechanical model by which CO patterning could occur. The central feature of a mechanical mechanism is that communication along the chromosomes, as required for CO interference, can occur by redistribution of mechanical stress. Here we further explore the nature of the beam-film model, its ability to quantitatively explain CO patterns in detail in several organisms, and its implications for three important patterning-related phenomena: CO homeostasis, the fact that the level of zero-CO bivalents can be low (the “obligatory CO”), and the occurrence of non-interfering COs. Relationships to other models are discussed.  相似文献   

2.
3.
海洋酸化生态学研究进展   总被引:4,自引:1,他引:4  
汪思茹  殷克东  蔡卫君  王东晓 《生态学报》2012,32(18):5859-5869
工业革命以来,人类排放的大量二氧化碳引起温室效应的同时,也被海洋吸收使得全球海洋出现了严重的酸化。海洋酸化及伴随的海水碳酸盐化学体系的变化对海洋生物产生深远的影响。以海洋酸化对钙化作用和光合作用的影响为重点,总结了近年来关于海洋酸化的研究,介绍了海洋中不同生态系统对海洋酸化的响应。一方面,海水中CO23-浓度和碳酸钙饱和度的降低对海洋钙化生物造成严重损害,生活在高纬的冷水珊瑚和翼足目等文石生产者是最早的受害者;贝类和棘皮动物在钙化早期对海洋酸化尤其敏感,其幼体存活率受到海洋酸化的严重制约。另一方面,CO2浓度的增加能促进海洋植物的光合作用和生长,增加初级生产力,改变浮游植物的群落组成。此外,海洋酸化可以促进固氮和脱氮作用同时削弱硝化作用,改变溶氧浓度分布和金属的生物可利用性,从而对海洋生物产生间接影响。海洋酸化对海洋生态系统的影响机制复杂,影响程度深远。为了能准确的评估海洋酸化的生态学效应,需要更全面深入的研究。  相似文献   

4.
Biochemistry of methanogenesis.   总被引:9,自引:0,他引:9  
Methane is a product of the energy-yielding pathways of the largest and most phylogenetically diverse group in the Archaea. These organisms have evolved three pathways that entail a novel and remarkable biochemistry. All of the pathways have in common a reduction of the methyl group of methyl-coenzyme M (CH3-S-CoM) to CH4. Seminal studies on the CO2-reduction pathway have revealed new cofactors and enzymes that catalyze the reduction of CO2 to the methyl level (CH3-S-CoM) with electrons from H2 or formate. Most of the methane produced in nature originates from the methyl group of acetate. CO dehydrogenase is a key enzyme catalyzing the decarbonylation of acetyl-CoA; the resulting methyl group is transferred to CH3-S-CoM, followed by reduction to methane using electrons derived from oxidation of the carbonyl group to CO2 by the CO dehydrogenase. Some organisms transfer the methyl group of methanol and methylamines to CH3-S-CoM; electrons for reduction of CH3-S-CoM to CH4 are provided by the oxidation of methyl groups to CO2.  相似文献   

5.
6.
7.
A most-probable-number method using 14C-labeled substrates is described for the enumeration of aquatic populations of heterotrophic microorganisms. Natural populations of microorganisms are inoculated into dilution replicates prepared from the natural water from which the organisms originated. The natural water is supplemented with a 14C-labeled compound added so as to approximate a true environmental concentration. 14CO2 evolved by individual replicates is trapped in NaOH and counted by liquid scintillation techniques for use in scoring replicates as positive or negative. Positives (14CO2 evolution) are easily distinguished from negatives (no 14CO2 evolution). The results from a variety of environments using the 14CO2 procedure agreed well with previously described methods, in most instances. The 14C-most-probable-number method described here reduces handling procedures over previously described most-probable-number procedures using 14C-labeled substrates. It also appears to have advantages over other enumeration methods in its attempt to approximate natural conditions more closely.  相似文献   

8.
A most-probable-number method using 14C-labeled substrates is described for the enumeration of aquatic populations of heterotrophic microorganisms. Natural populations of microorganisms are inoculated into dilution replicates prepared from the natural water from which the organisms originated. The natural water is supplemented with a 14C-labeled compound added so as to approximate a true environmental concentration. 14CO2 evolved by individual replicates is trapped in NaOH and counted by liquid scintillation techniques for use in scoring replicates as positive or negative. Positives (14CO2 evolution) are easily distinguished from negatives (no 14CO2 evolution). The results from a variety of environments using the 14CO2 procedure agreed well with previously described methods, in most instances. The 14C-most-probable-number method described here reduces handling procedures over previously described most-probable-number procedures using 14C-labeled substrates. It also appears to have advantages over other enumeration methods in its attempt to approximate natural conditions more closely.  相似文献   

9.
Metal doped ZnO nanomaterials have attracted considerable attention as a chemical sensor for toxic gases. Here, the electronic sensitivity of pristine and Sc-, Ti-, V-, Cr-, Mn-, and Fe-doped Zn12O12 nanoclusters toward CO gas is investigated using density functional theory calculations. It is found that replacing a Zn atom by a Sc or Ti atom does not change the sensitivity of cluster but doping V and Cr atoms significantly increase the sensitivity. Also, Mn, or Fe doping slightly improves the sensitivity. It is predicted that among all, the Cr-doped ZnO cluster may be the most favorable sensor for CO detection because its electrical conductivity considerably changes after the CO adsorption, thereby, generating an electrical signal. The calculated Gibbs free energy change for the adsorption of CO molecule on the Cr-doped cluster is about -51.2 kcal mol-1 at 298.15 K and 1 atm, and the HOMO-LUMO gap of the adsorbent is changed by about 117.8 %.  相似文献   

10.
A metabolic sensor governing cell size in bacteria   总被引:7,自引:0,他引:7  
Weart RB  Lee AH  Chien AC  Haeusser DP  Hill NS  Levin PA 《Cell》2007,130(2):335-347
Nutrient availability is one of the strongest determinants of cell size. When grown in rich media, single-celled organisms such as yeast and bacteria can be up to twice the size of their slow-growing counterparts. The ability to modulate size in a nutrient-dependent manner requires cells to: (1) detect when they have reached the appropriate mass for a given growth rate and (2) transmit this information to the division apparatus. We report the identification of a metabolic sensor that couples nutritional availability to division in Bacillus subtilis. A key component of this sensor is an effector, UgtP, which localizes to the division site in a nutrient-dependent manner and inhibits assembly of the tubulin-like cell division protein FtsZ. This sensor serves to maintain a constant ratio of FtsZ rings to cell length regardless of growth rate and ensures that cells reach the appropriate mass and complete chromosome segregation prior to cytokinesis.  相似文献   

11.
Carbon monoxide (CO) has been implicated as a biological messenger molecule analogous to nitric oxide. A compact gas sensor based on a midinfrared laser absorption spectroscopy was developed for direct and real-time measurement of trace levels (in approximate pmol) of CO release by vascular cells. The midinfrared light is generated by difference frequency mixing of two nearinfrared lasers in a nonlinear optical crystal. A strong infrared absorption line of CO (4.61 microm) is chosen for convenient CO detection without interference from other gas species. The generation of CO from cultured vascular smooth muscle cells was detected every 20 s without any chemical modification to the CO. The sensitivity of the sensor reached 6.9 pmol CO. CO synthesis was measured from untreated control cells (0.25 nmol per 10(7) cells/h), sodium nitroprusside-treated cells (0.29 nmol per 10(7) cells/h), and hemin-treated cells (0.49 nmol per 10(7) cells/h). The sensor also detected decreases in CO production after the addition of the heme oxygenase (HO) inhibitor tin protoporphyrin-IX (from 0.49 to 0.02 nmol per 10(7) cells/h) and increases after the administration of the HO substrate hemin (from 0.27 to 0.64 nmol per 10(7) cells/h). These results demonstrate that midinfrared laser absorption spectroscopy is a useful technique for the noninvasive and real-time detection of trace levels of CO from biological tissues.  相似文献   

12.
We have studied the structural and enzymatic properties of a diguanylate cyclase from an obligatory anaerobic bacterium Desulfotalea psychrophila, which consists of the N-terminal sensor domain and the C-terminal diguanylate cyclase domain. The sensor domain shows an amino acid sequence homology and spectroscopic properties similar to those of the sensor domains of the globin-coupled sensor proteins containing a protoheme. This heme-containing diguanylate cyclase catalyzes the formation of cyclic di-GMP from GTP only when the heme in the sensor domain binds molecular oxygen. When the heme is in the ferric, deoxy, CO-bound, or NO-bound forms, no enzymatic activity is observed. Resonance Raman spectroscopy reveals that Tyr55 forms a hydrogen bond with the heme-bound O2, but not with CO. Instead, Gln81 interacts with the heme-bound CO. These differences of a hydrogen bonding network will play a crucial role for the selective O2 sensing responsible for the regulation of the enzymatic activity.  相似文献   

13.
Transporters of nucleotide sugars regulate the availability of these substrates required for glycosylation reactions in the lumen of the Golgi apparatus and play an important role in the development of multicellular organisms. Caenorhabditis elegans has seven different sugars in its glycoconjugates, although 18 putative nucleotide sugar transporters are encoded in the genome. Among these, SQV-7, SRF-3, and CO3H5.2 exhibit partially overlapping substrate specificity and expression patterns. We now report evidence of functional redundancy between transporters CO3H5.2 and SRF-3. Reducing the activity of the CO3H5.2 gene product by RNA interference (RNAi) in SRF-3 mutants results in oocyte accumulation and abnormal gonad morphology, whereas comparable RNAi treatment of wild type or RNAi hypersensitive C. elegans strains does not cause detectable defects. We hypothesize this genetic enhancement to be a mechanism to ensure adequate glycoconjugate biosynthesis required for normal tissue development in multicellular organisms. Furthermore, we show that transporters SRF-3 and CO3H5.2, which are closely related in the phylogenetic tree, share a simultaneous and independent substrate transport mechanism that is different from the competitive one previously demonstrated for transporter SQV-7, which shares a lower amino acid sequence identity with CO3H5.2 and SRF-3. Therefore, different mechanisms for transporting multiple nucleotide sugars may have evolved parallel to transporter amino acid divergence.  相似文献   

14.
Numerous studies indicate that carbon monoxide (CO) participates in a broader range of processes than any other single molecule, ranging from subcellular to planetary scales. Despite its toxicity to many organisms, a diverse group of bacteria that span multiple phylogenetic lineages metabolize CO. These bacteria are globally distributed and include pathogens, plant symbionts and biogeochemically important lineages in soils and the oceans. New molecular and isolation techniques, as well as genome sequencing, have greatly expanded our knowledge of the diversity of CO oxidizers. Here, we present a newly emerging picture of the distribution, diversity and ecology of aerobic CO-oxidizing bacteria.  相似文献   

15.
16.
17.
18.
Carbon monoxide (CO) has been identified as another bioactive molecule like NO. Binding of CO to a tetraheme cytochrome c(3) (cyt c(3)) was investigated using visible absorption spectroscopy, circular dichroism (CD), and NMR. CO was found to bind to the four hemes in different manners. CD spectra, however, indicated that only single-site CO binding can keep the protein intact. The K(d) for the single-site binding was 8.0 microM, which is a typical value for a CO sensor protein. Furthermore, NMR spectra of uniformly (15)N-labeled and specifically [(15)N]His-labeled proteins have provided evidence that CO specifically binds to the sixth coordination site of heme 2 via single-site binding. The CO-bound cyt c(3) could conduct redox reactions. In light of triheme cytochrome c(7), the CO-bound cyt c(3) may work as an electron transporter. It was reported for sulfate-reducing bacteria that CO can be used as an energy source and CO cycling is operating like H(2) cycling. Therefore, the CO-bound cyt c(3) may play a role in maintaining electron transport pathways on accumulation of toxic CO for its utilization.  相似文献   

19.
Single-walled aluminum nitride nanotubes (AlNNTs) are introduced as an electronic sensor for detection of sulfur dioxide (SO(2)) molecules based on density functional theory calculations. The proposed sensor benefits from several advantages including high sensitivity: HOMO-LUMO energy gap of the AlNNT is appreciably sensitive toward the presence of SO(2) so that it decreases from 4.11?eV in the pristine tube to 1.01?eV in the SO(2)-adsorbed form, pristine application: this nanotube can detect the SO(2) molecule in its pristine type without manipulating its structure through doping, chemical functionalization, making defect, etc., short recovery time: the adsorption energy of SO(2) molecule is not so large to hinder the recovery of AlNNTs and therefore the sensor will possess short recovery times, and good selectivity: the tube can selectively detect the SO(2) molecule in the presence of several molecules such as H(2)O, CO, NH(3), HCOH, CO(2), N(2), and H(2).  相似文献   

20.
Arsenic biomethylation by photosynthetic organisms   总被引:3,自引:0,他引:3  
Arsenic (As) is a ubiquitous element that is widespread in the environment and causes numerous health problems. Biomethylation of As has implications for its mobility and toxicity. Photosynthetic organisms may play a significant role in As geochemical cycling by methylating it to different As species, but little is known about the mechanisms of methylation. Methylated As species have been found in many photosynthetic organisms, and several arsenite S-adenosylmethionine (SAM) methyltransferases have been characterized in cyanobacteria and algae. However, higher plants may not have the ability to methylate As. Instead, methylated arsenicals in plants probably originate from microorganisms in soils and the rhizosphere. Here, we propose possible approaches for developing 'smart' photosynthetic organisms with an enhanced and sensitive biomethylation capacity for bioremediation and safer food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号