首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study was initiated to determine the mechanism of iron-uptake in Salmonella typhi. When stressed for iron, microorganisms produce siderophores to obtain the necessary nutrient. Generally two types of siderophores exist: the phenolate-type predominantly produced by bacteria and the hydroxamate-type commonly secreted by fungi. Results of this investigation showed that S. typhi produced siderophores of the phenolate-type since culture supernatant of the organism grown under iron-deprivation supported the growth of the phenolate-dependent auxotroph. The culture supernatant when extracted for phenolate siderophores, also supported the growth of the phenolate auxotroph but not the hydroxamate auxotroph. Production of phenolate-type siderophores were further confirmed using biochemical assays. These results showed that S. typhi utilized the high-affinity iron transport system to obtain the necessary iron.  相似文献   

2.
Immunofluorescence and conventional bacteriological methods were compared for their ability to detect Salmonella typhi in 134 fecal specimens from 105 individuals associated with an outbreak of typhoid fever. Smears prepared from untreated fecal material (direct method) and after a preliminary incubation in selenite F broth (delayed method) were tested with an anti-Vi serum conjugated with fluorescein isothiocyanate. The delayed method was more sensitive than the direct method in detecting S. typhi. The delayed method was positive in 40 of 41 patients positive by culture methods, but gave positive or questionable reactions in 11 presumably uninfected individuals. The fluorescent-antibody test employing a Vi conjugate is a satisfactory screening procedure for detecting S. typhi, but all positives must be confirmed bacteriologically.  相似文献   

3.
Carlson SA  Omary MB  Jones BD 《Life sciences》2002,70(12):1415-1426
Pathogenic Salmonella species initiate infection of a mammalian host by inducing their own uptake into intestinal M-cells. During the uptake process, the bacteria utilize an intrinsic secretion system to release proteins that enter host cells. The secreted invasion-mediating proteins subsequently interact with host cell components that induce alterations in the actin cytoskeleton. To identify potential cellular determinants of invasion, we employed a yeast two-hybrid system using the secreted Salmonella invasion protein (SipC) as the bait protein. This system identified cytokeratins, supportive components of the cytoskeletal matrix, as proteins that may physically interact with SipC. Transfection-based studies revealed an inhibition of Salmonella invasion when a dominant negative cytokeratin-18 was expressed. Immunofluorescent confocal microscopy studies revealed that Salmonella did not enter HEp-2 cells expressing the dominant negative cytokeratin-18. These results suggest that an interaction between SipC and cytokeratin-18 may occur as part of Salmonella invasion.  相似文献   

4.
利用RT-LAMP技术鉴别伤寒沙门菌   总被引:1,自引:0,他引:1  
  相似文献   

5.
Salmonella typhimurium multiplication inside eukaryotic host cells is critical for virulence. Salmonella typhimurium strain SL1344 appears as filaments upon growth in macrophages and MelJuSo cells, a human melanoma cell line, indicating a specific blockage in the bacterial cell division process. Several studies have investigated the host cell response impairing bacterial division. However, none looked at the bacterial factors involved in inhibition of Salmonella division inside eukaryotic cells. We show here that blockage in the bacterial division process is sulA-independent and takes place after FtsZ-ring assembly. Salmonella typhimurium genes in which mutations lead to filamentous growth within host cells were identified by a large scale mutagenesis approach on strain 12023, revealing bacterial functions crucial for cell division within eukaryotic cells. We finally demonstrate that SL1344 filamentation is a result of hisG mutation, requires the activity of an enzyme of the histidine biosynthetic pathway HisFH and is specific for the vacuolar environment.  相似文献   

6.
Scanning electron micrograph of HeLa S3 monolayered cells, inoculated with viable bacteria of a Salmonella typhi strain GIFU 10007, revealed that the extended microvilli tangled the bacteria within 10 min after inoculation. The micrographs of HeLa cells, at 1 hr after inoculation, indicate the following: shortening of bacterium-attached microvilli, subsiding of tangled bacteria into microvilli bush, and then attachment of bacterial soma to cell surface making the cell membrane depressed. The transmission electron micrographs, at 1 hr after inoculation, demonstrated the findings of interaction between HeLa cell and S. typhi 10007, similar to those observed on scanning electron micrographs. Hair-like fine structures from the soma of challenge organisms were also observed. They were in contact with HeLa cell microvilli and cell membrane. The bacteria were first partially and then totally surrounded by the HeLa cell plasma membrane. One, two, or several bacteria with intact outer membrane were enclosed in intracytoplasmic membrane-bound vacuoles. Fragmented vacuolar membrane was still visible around the intracellularly accumulated bacteria at 24 hr after inoculation. The viable cells of S. typhi 10007 are regarded as internalizing into HeLa cells by a process of endocytosis and to multiply within the membrane-bound vacuoles.  相似文献   

7.
There are an estimated 2 million cases of salmonellosis in the United States every year. Unlike the incidence of many infectious diseases, the incidence of salmonellosis in the United States and other developed countries has been rising steadily over the past 30 years, and the disease now accounts for 10 to 15% of all cases of acute gastroenteritis in the United States. The infecting organism is ingested and must traverse the intestinal epithelium to reach its preferred site for multiplication, the reticuloendothelial system. Despite several recent studies, the genetic basis of the invasion process is poorly understood. An emerging theme from these studies is that wild-type Salmonella organisms probably have several chromosomal loci that are required for the most efficient level of invasion. In this study, we have identified and characterized 13 TnphoA insertion mutants of Salmonella enteritidis CDC5 that exhibit altered invasion phenotypes. The mutants were identified by screening a bank of TnphoA insertions in S. enteritidis CDC5str for their invasion phenotype in three tissue culture cell lines (HEp-2, CHO, and MDCK). These 13 mutants were separated into six classes based on their invasive phenotypes in the tissue culture cell lines. Several mutants were defective for entry of some cell lines but not for others, while two mutants (SM6 and SM7) were defective for entry into all three tissue culture cell lines. This suggests that Salmonella spp. may express more than one invasion pathway. Southern analysis and chromosomal mapping indicated that as many as nine chromosomal loci may contribute to the invasion phenotype. It is becoming clear that the invasive phenotype of Salmonella spp. is multifactorial and more complex than that of some other invasive members of the family Enterobacteriaceae.  相似文献   

8.
9.
10.
Detection of Salmonella typhi by polymerase chain reaction   总被引:1,自引:0,他引:1  
A rapid and sensitive method for detection of Salmonella typhi would help in preventing the spread of outbreaks and in clinical diagnosis. In order to develop unique PCR primers to detect Salm. typhi , ribosomal RNA genes from Salm. typhi (Rawlings) were cloned in pUC18. The resulting clone was confirmed by sequencing. The cloned DNA fragment contained the 5S, part of the 23S rRNA genes and the 5S-23S spacer region (EMBL/GenBank accession No. U04734).
It was expected that the 5S-23S spacer region is divergent unlike the highly conserved 23S+5S genes. This was confirmed by comparison with the rRNA gene sequences in the EMBL/GenBank database. A pair of PCR primers specific for Salm. typhi was obtained, based on this spacer region sequence. The specificity of this pair of primers was tested with 54 Salm. typhi strains (of 27 different phage types). All these Salm. typhi strains showed the positive 300 bp PCR product with this pair of primers. Six other Salmonella species as well as six other non- Salmonella bacteria were tested and none showed the 300 bp PCR product. The sensitivity of the detection level was 0·1 pg of pure Salm. typhi genomic DNA, or approximately 40 Salm. typhi cells in a spiked food sample. This pair of primers therefore has the potential for development into a diagnostic tool for the rapid diagnosis of typhoid fever.  相似文献   

11.
Conventional cancer therapies are often limited in effectiveness and exhibit strong side effects. Therefore, alternative therapeutic strategies are demanded. The employment of tumor-colonizing bacteria that exert anticancer effects is such a novel approach that attracts increasing attention. For instance, Salmonella enterica serovar Typhimurium has been used in many animal tumor models as well as in first clinical studies. These bacteria exhibit inherent tumoricidal effects. In addition, they can be used to deliver therapeutic agents. However, bacterial expression has to be restricted to the tumor to prevent toxic substances from harming healthy tissue. Therefore, we screened an S. Typhimurium promoter-trap library to identify promoters that exclusively drive gene expression in the cancerous tissue. Twelve elements could be detected that show reporter gene expression in tumors but not in spleen and liver. In addition, a DNA motif was identified that appears to be necessary for tumor specificity. Now, such tumor-specific promoters can be used to safely express therapeutic proteins by tumor-colonizing S. Typhimurium directly in the neoplasia.  相似文献   

12.
Members of Salmonella enterica are important foodborne pathogens of significant public health concern worldwide. This study aimed to determine a range of virulence genes among typhoidal (S. typhi) and non-typhoidal (S. enteritidis) strains isolated from different geographical regions and different years. A total of 87 S. typhi and 94 S. enteritidis strains were tested for presence of 22 virulence genes by employing multiplex PCR and the genetic relatedness of these strains was further characterized by REP-PCR. In S. typhi, invA, prgH, sifA, spiC, sopB, iroN, sitC, misL, pipD, cdtB, and orfL were present in all the strains, while sopE, agfC, agfA, sefC, mgtC, and sefD were present in 98.8, 97.7, 90.8, 87.4, 87.4 and 17.2 %, of the strains, respectively. No lpfA, lpfC, pefA, spvB, or spvC was detected. Meanwhile, in S. enteritidis, 15 genes, agfA, agfC, invA, lpfA, lpfC, sefD, prgH, spiC, sopB, sopE, iroN, sitC, misL, pipD, and orfL were found in all S. enteritidis strains 100 %, followed by sifA and spvC 98.9 %, pefA, spvB and mgtC 97.8 %, and sefC 90.4 %. cdtB was absent from all S. enteritidis strains tested. REP-PCR subtyped S. typhi strains into 18 REP-types and concurred with the virulotyping results in grouping the strains, while in S. enteritidis, REP-PCR subtyped the strains into eight profiles and they were poorly distinguishable between human and animal origins. The study showed that S. typhi and S. enteritidis contain a range of virulence factors associated with pathogenesis. Virulotyping is a rapid screening method to identify and profile virulence genes in Salmonella strains, and improve an understanding of potential risk for human and animal infections.  相似文献   

13.
14.
15.
Transcriptional repression of eukaryotic promoters   总被引:108,自引:0,他引:108  
M Levine  J L Manley 《Cell》1989,59(3):405-408
  相似文献   

16.
17.
18.
Invasiveness of Salmonella typhi strains in HeLa S3 monolayer cells   总被引:2,自引:0,他引:2  
The internalization and intracellular multiplication, i.e., the invasiveness, of Salmonella typhi strains recently isolated from typhoid fever patients were confirmed in HeLa cell monolayers. When stained with Giemsa solution, intracellular bacteria were 0.6 X 1.2 micron in size and stained purple, whereas extracellular bacteria associated or not with the HeLa cell surface were 1.0 X 3.0 micron and stained deep blue. Strain GIFU 10007 was internalized into 23% of the HeLa cells within 10 min after inoculation. About 90% of the HeLa cells were infected after 24 hr incubation in kanamycin (KM)-containing medium. Intracellular multiplication of the challenge organism was verified by a large number of intracellular bacteria after 24 hr incubation in KM-containing medium by both light-microscopy of the Giemsa stained preparation and viable counts of intracellular bacteria. The viable counts of strain 10007 showed an increase of more than 40-fold within 24 hr after inoculation, whereas in the four other less or non-infective strains, recovery of viable bacteria was poor or nil. Strains which were highly invasive usually failed to show strong adhesion. The contribution of Vi antigen to the internalization of challenge organisms was not proved. Infective strains, when killed by formalin were still adhesive, but were not internalized. The same strains, when killed by boiling, were neither adhesive nor internalized. From these findings it was concluded that the internalization and multiplication of infective S. typhi strains in cultured HeLa cells should be regarded as an invasion rather than phagocytosis by host cells, and such invasiveness could be an indicator to estimate the virulence of S. typhi strains.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号