首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Independent experimental and theoretical evaluation was performed for the adequacy of our previously proposed general molecular model of structural organization of light-harvesting pigments in chlorosomal bacteriochlorophyll (BChl) c/d/e-containing superantenna of different green bacteria. Simultaneous measurement of hole burning in the optical spectra of chlorosomal BChl c and temperature dependence of steady-state fluorescence spectra of BChl c was accomplished in intact cells of photosynthetic green bacterium Chloroflexus aurantiacus; this allows unambiguous determination of the structure of exciton levels of BChl c oligomers in this natural antenna, which is a fundamental criterion for adequacy of any molecular model for in vivo aggregation of antenna pigments. Experimental data were shown to confirm our model of organization of oligometric pigments in chlorosomal BChl c antenna of green bacterium Chloroflexus aurantiacus. This model, which is based on experimental data and our theory of spectroscopy of oligomeric pigments, implies that the unit building block of BChl c antenna is a cylindrical assembly containing six excitonically coupled linear pigment chains whose exciton structure with intense upper levels provides for the optimal spectral properties of the light-harvesting antenna.  相似文献   

2.
In the photosynthetic green filamentous bacterium Chloroflexus aurantiacus, excitation energy is transferred from a large bacteriochlorophyll (BChl) c antenna via smaller BChl a antennas to the reaction center. The effects of substituted 1,4-naphthoquinones on BChl c and BChl a fluorescence and on flash-induced cytochrome c oxidation were studied in whole cells under aerobic conditions. BChl c fluorescence in a cell suspension with 5.4 microM BChl c was quenched to 50% by addition of 0.6 microM shikonin ((R)-2-(1-hydroxy-4-methyl-3-pentenyl)-5,8-dihydroxy-1, 4-naphthoquinone), 0.9 microM 5-hydroxy-1,4-naphthoquinone, or 4 microM 2-acetyl-3-methyl-1,4-naphthoquinone. Between 25 and 100 times higher quinone concentrations were needed to quench BChl a fluorescence to a similar extent. These quinones also efficiently inhibited flash-induced cytochrome c oxidation when BChl c was excited, but not when BChl a was excited. The quenching of BChl c fluorescence induced by these quinones correlated with the inhibition of flash-induced cytochrome c oxidation. We concluded that the quinones inhibited electron transfer in the reaction center by specifically quenching the excitation energy in the BChl c antenna. Our results provide a model system for studying the redox-dependent antenna quenching in green sulfur bacteria because the antennas in these bacteria inherently exhibit a sensitivity to O(2) similar to the quinone-supplemented cells of Cfx. aurantiacus.  相似文献   

3.
Taisova AS  Keppen OI  Fetisova ZG 《Biofizika》2004,49(6):1069-1074
The properties of the light-harvesting superantenna of the photosynthesizing bacteria from the new family of green filamentous bacteria Oscillochloridaceae were investigated by optical spectroscopy. The antenna of Oscillochloris trichoides consists of peripheral chlorosomal and membrane subantennas. A method of isolation of Osc. trichoides chlorosomal antenna was developed using the chaothropic agent sodium thiocyanate, which simultaneously acts to stabilize chlorosomal activity. An analysis of the second derivatives of the absorption spectra of isolated chlorosomes and their acetone-methanol extracts suggested that BChl c was a predominant light-harvesting pigment in Osc. trichoides chlorosomes. Besides, it was found that, in addition to the BChl c-antenna, chlorosomes contain a minor BChl a-antenna. It was shown that the membrane BChl a-subantenna is a light-harvesting complex with absorption maxima in the near infrared region at 805 and 860 nm. Analysis of the spectral data obtained suggested that the Osc. trichoides chlorosomal antenna resembles those from Chlorobiaceae species, whereas the membrane B805-860 BChl a antenna of Osc. trichoides is close to the membrane B808-866 BChl a antenna of Chloroflexaceae species.  相似文献   

4.
A model of pigment organization in the B808-866 bacteriochlorophyll a antenna of the green photosynthetic bacterium Chloroflexus aurantiacus based on femtosecond pump-probe studies is proposed. The building block of the antenna was assumed to be structurally similar to that of the B800-850 light-harvesting 2 (LH2) antenna of purple bacteria and to have the form of two concentric rings of N strongly coupled BChl866 pigments and of N/2 weakly coupled BChl808 monomers, where N = 24 or 32. We have shown that the Qy transition dipoles of BChl808 and BChl866 molecules form the angles 43 degrees +/- 3 degrees and 8 degrees +/- 4 degrees, respectively, with the plane of the corresponding rings. Using the exciton model, we have obtained a quantitative fit of the pump-probe spectra of the B866 and B808 bands. The anomalously high bleaching value of the B866 band with respect to the B808 monomeric band provided the direct evidence for a high degree of exciton delocalization in the BChl866 ring antenna. The coherence length of the steady-state exciton wave packet corresponds to five or six BChl866 molecules at room temperature.  相似文献   

5.
Exciton calculations on tubular pigment aggregates similar to recently proposed models for BChl c/d/e antennae in light-harvesting chlorosomes from green photosynthetic bacteria yield electronic absorption spectra that are super-impositions of linear J-aggregate spectra. While the electronic spectroscopy of such antennae differs considerably from that of linear J-aggregates, tubular exciton models (which may be viewed as cross-coupled J-aggregates) may be constructed to yield spectra that resemble that of the BChl c antenna in the green bacterium Chloroflexus aurantiacus. Highly symmetric tubular models yield absorption spectra with dipole strength distributions essentially identical to that of a J-aggregate; strong symmetry-breaking is needed to simulate the absorption spectrum of the BChl c antenna.Abbreviations BChl bacteriochlorophyll - [E,M] BChl c S bacteriochlorophyll c with ethyl and methyl substituents in the 8- and 12-positions, and with stearol as the esterifying alcohol  相似文献   

6.
7.
A theory of excitation energy transfer within the chlorosomal antennae of green bacteria has been developed for an exciton model of aggregation of bacteriochlorophyll (BChl) c (d or e). This model of six exciton-coupled BChl chains with low packing density, approximating that in vivo, and interchain distances of approximately 2 nm was generated to yield the key spectral features found in natural antennae, i.e., the exciton level structure revealed by spectral hole burning experiments and polarization of all the levels parallel to the long axis of the chlorosome. With picosecond fluorescence spectroscopy it was demonstrated that the theory explains the antenna-size-dependent kinetics of fluorescence decay in chlorosomal antenna, measured for intact cells of different cultures of the green bacterium C. aurantiacus, with different chlorosomal antenna size determined by electron microscopic examination of the ultrathin sections of the cells. The data suggest a possible mechanism of excitation energy transfer within the chlorosome that implies the formation of a cylindrical exciton, delocalized over a tubular aggregate of BChl c chains, and Forster-type transfer of such a cylindrical exciton between the nearest tubular BChl c aggregates as well as to BChl a of the baseplate.  相似文献   

8.
Bacteriochlorophyll (BChl) c was extracted from Chloroflexus aurantiacus and purified by reverse-phase high-pressure liquid chromatography. This pigment consists of a complex mixture of homologues, the major component of which is 4-ethyl-5-methylbacteriochlorophyll c stearyl ester. Unlike previously characterized BChls c, the pigment from C. aurantiacus is a racemic mixture of diastereoisomers with different configurations at the 2a chiral center. Diluting a concentrated methylene chloride solution of BChl c with hexane produces an oligomer with absorption maxima at 740-742 and at 460-462 nm. Both the absorption spectrum and the fluorescence emission spectrum (maximum at 750 nm) of this oligomer closely match those of BChl c in chlorosomes. Further support for this model comes from the ability of alcohols, which disrupt BChl c oligomers by ligating the central Mg atom, to convert BChl c in chlorosomes to a monomeric form when added in low concentrations. The lifetime of fluorescence from the 740 nm absorbing BChl c oligomer is about 80 ps. Although exciton quenching might be unusually fast in the in vitro BChl c oligomer because of its large size and/or the presence of minor impurities, this result suggests that energy transfer from the BChl c antenna in chlorosomes must be very fast if it is to be efficient.  相似文献   

9.
It was shown that an increase in the bacteriochlorophyll (BChl) c antenna size observed upon lowering growth light intensities led to enhancement of the hyperchromism of the BChl c Q(y) absorption band of the green photosynthetic bacterium Chloroflexus aurantiacus. With femtosecond difference absorption spectroscopy, it was shown that the amplitude of bleaching of the oligomeric BChl c Q(y) band (as compared to that for monomeric BChl a) increased with increasing BChl c content in chlorosomes. This BChl c bleaching amplitude was about doubled as the chlorosomal antenna size was about trebled. Both sets of findings clearly show that a unit BChl c aggregate in the chlorosomal antenna is variable in size and governed by the grow light intensity, thus ensuring the high efficiency of energy transfer within the BChl c antenna regardless of its size.  相似文献   

10.
Independent experimental and theoretical evaluation was performed for the adequacy of our previously proposed general molecular model of the structural organization of light-harvesting pigments in chlorosomal bacteriochlorophyll (BChl) /d/e-containing superantennae of different green bacteria. Measurement of the temperature dependence of steady-state fluorescence spectra of BChl c was accomplished in intact cells of a photosynthetic green bacterium Chloroflexus aurantiacus; this allows in vivodetermination of the structure of exciton levels of BChl c oligomers in this natural antenna. Experimental data confirm our model of organization of oligomeric pigments in chlorosomal BChl c antenna of green bacterium Chloroflexus aurantiacus. This model implies that the unit building block of the antenna is a cylindrical assembly containing six excitonically coupled linear pigment chains, whose exciton structure with intense upper levels provides for the optimal spectral properties of the light-harvesting antenna.  相似文献   

11.
This work continuous a series of studies devoted to discovering principles of organization of natural antennas in photosynthetic microorganisms that generate in vivo large and highly effective light-harvesting structures. The largest antenna is observed in green photosynthesizing bacteria, which are able to grow over a wide range of light intensities and adapt to low intensities by increasing of size of peripheral BChl c/d/e antenna. However, increasing antenna size must inevitably cause structural changes needed to maintain high efficiency of its functioning. Our model calculations have demonstrated that aggregation of the light-harvesting antenna pigments represents one of the universal structural factors that optimize functioning of any antenna and manage antenna efficiency. If the degree of aggregation of antenna pigments is a variable parameter, then efficiency of the antenna increases with increasing size of a single aggregate of the antenna. This means that change in degree of pigment aggregation controlled by light-harvesting antenna size is biologically expedient. We showed in our previous work on the oligomeric chlorosomal BChl c superantenna of green bacteria of the Chloroflexaceae family that this principle of optimization of variable antenna structure, whose size is controlled by light intensity during growth of bacteria, is actually realized in vivo. Studies of this phenomenon are continued in the present work, expanding the number of studied biological materials and investigating optical linear and nonlinear spectra of chlorosomes having different structures. We show for oligomeric chlorosomal superantennas of green bacteria (from two different families, Chloroflexaceae and Oscillochloridaceae) that a single BChl c aggregate is of small size, and the degree of BChl c aggregation is a variable parameter, which is controlled by the size of the entire BChl c superantenna, and the latter, in turn, is controlled by light intensity in the course of cell culture growth.  相似文献   

12.
Chlorosomes are the main light harvesting complexes of green photosynthetic bacteria. Recently, a lamellar model was proposed for the arrangement of pigment aggregates in Chlorobium tepidum chlorosomes, which contain bacteriochlorophyll (BChl) c as the main pigment. Here we demonstrate that the lamellar organization is also found in chlorosomes from two brown-colored species (Chl. phaeovibrioides and Chl. phaeobacteroides) containing BChl e as the main pigment. This suggests that the lamellar model is universal among green sulfur bacteria. In contrast to green-colored Chl. tepidum, chlorosomes from the brown-colored species often contain domains of lamellar aggregates that may help them to survive in extremely low light conditions. We suggest that carotenoids are localized between the lamellar planes and drive lamellar assembly by augmenting hydrophobic interactions. A model for chlorosome assembly, which accounts for the role of carotenoids and secondary BChl homologs, is presented.  相似文献   

13.
Energy transfer and pigment arrangement in intact cells of the green sulfur bacteria Prosthecochloris aestuarii, Chlorobium vibrioforme and chlorobium phaeovibrioides, containing bacteriochlorophyll (BChl) c, d or e as main light harvesting pigment, respectively, were studied by means of absorption, fluorescence, circular dichroism and linear dichroism spectroscopy at low temperature. The results indicate a very similar composition of the antenna in the three species and a very similar structure of main light harvesting components, the chlorosome and the membrane-bound BChl a protein. In all three species the Qy transition dipoles of BChl c, d or e are oriented approximately parallel to the long axis of the chlorosome. Absorption and fluorescence excitation spectra demonstrate the presence of at least two BChl c-e pools in the chlorosomes of all three species, long-wavelength absorbing BChls being closest to the membrane. In C. phaeovibrioides, energy from BChl e is transferred with an efficiency of 25% to the chlorosomal BChl a at 6 K, whereas the efficiency of transfer from BChl e to the BChl a protein is 10%. These numbers are compatible with the hypothesis that the chlorosomal BChl a is an intermediary in the energy transfer from the chlorosome to the membrane.Abbreviations BChl bacteriochlorophyll - Chl chlorophyll - CD circular dichroism - LD linear dichroism  相似文献   

14.
Whole cells, chlorosome-membrane complexes and isolated chlorosomes of the green mesophilic filamentous bacterium Oscillochloris trichoides, representing a new family of the green bacteria Oscillochloridaceae, were studied by optical spectroscopy and electron microscopy. It was shown that the main light-harvesting pigment in the chlorosome is BChl c. The presence of BChl a in chlorosomes was visualized only by pigment extraction and fluorescence spectroscopy at 77 K. The molar ratio BChl c: BChl a in chlorosomes was found to vary from 70:1 to 110:1 depending on light intensity used for cell growth. Micrographs of negatively and positively stained chlorosomes as well as of ultrathin sections of the cells were obtained and used for morphometric measurements of chlorosomes. Our results indicated that Osc. trichoides chlorosomes resemble, in part, those from Chlorobiaceae species, namely, in some spectral features of their absorption, fluorescence, CD spectra, pigment content as well as the morphometric characteristics. Additionally, it was shown that similar to Chlorobiaceae species, the light-harvesting chlorosome antenna of Osc. trichoides exhibited a highly redox-dependent BChl c fluorescence. At the same time, the membrane B805–860 BChl a antenna of Osc. trichoides is close to the membrane B808–866 BChl a antenna of Chloroflexaceae species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The transfer of excitation energy in intact cells of the thermophilic green photosynthetic bacterium Chloroflexus aurantiacus was studied both at low temperature and under more physiological conditions. Analysis of excitation spectra measured at 4K indicates that the minor fraction of bacteriochlorophyll a present in the chlorosome functions as an intermediate in energy transfer between the main light-harvesting pigment BChl c and the membrane-bound B808-866 antenna complex. This supports the hypothesis that BChl a is associated with the base plate which connects the chlorosome with the membrane. The overall efficiency for energy transfer from the chlorosome to the membrane is only 15% at 4K. High efficiencies of close to 100% are observed above 40°C near the temperature where the cultures are grown. Cooling to 20°C resulted in a sudden drop of the transfer efficiency which appeared to originate in the chlorosome. This decrease may be related to a lipid phase transition. Further cooling mainly affected the efficiency of transfer between the chlorosome and the membrane. This effect can only partially be explained by a decreased Förster overlap between the chlorosomal BChl a and BChl a 808 associated with the membrane-bound antenna system. The temperature dependence of the fluorescence yield of BChl a 866 also appeared to be affected by lipid phase transitions, suggesting that this fluorescence can be used as a native probe of the physical state of the membrane.  相似文献   

16.
The gene encoding bacteriochlorophyll (BChl) c synthase was identified by insertional inactivation in the photosynthetic green sulfur bacterium Chlorobium tepidum and was named bchK. The bchK mutant of C. tepidum was rusty-orange in color and completely lacked BChl c. Because of the absence of the BChl c antenna, the mutant grew about seven times slower than the wild type at light intensities that were limiting to the wild type (< 90 micromol m(-2) s(-1)). Various pheophorbides, which probably represent precursors of BChl c which had lost magnesium, accumulated in the mutant cells. A small fraction of these pheophorbides were apparently esterified by the remaining chlorophyll (Chl) a and BChl a synthases in cells. The amounts of BChl a, Chl a, isoprenoid quinones, carotenoids, Fenna-Matthews-Olson protein, and chlorosome envelope protein CsmA were not significantly altered on a cellular basis in the mutant compared to in the wild type. This suggests that the BChl a antennae, photosynthetic reaction centers, and remaining chlorosome components were essentially unaffected in the mutant. Electron microscopy of thin sections revealed that the mutant lacked normal chlorosomes. However, a fraction containing vestigial chlorosomes, denoted "carotenosomes," was partly purified by density centrifugation; these structures contained carotenoids, isoprenoid quinones, and a 798-nm-absorbing BChl a species that is probably protein associated. Because of the absence of the strong BChl c absorption found in the wild type, the bchK mutant should prove valuable for future analyses of the photosynthetic reaction center and of the roles of BChl a in photosynthesis in green bacteria. An evolutionary implication of our findings is that the photosynthetic ancestor of green sulfur bacteria could have evolved without chlorosomes and BChl c and instead used only BChl a-containing proteins as the major light-harvesting antennae.  相似文献   

17.
Bacteriochlorophyll c pigments extracted from light harvesting chlorosomes in green photosynthetic bacteria are known to self-assemble into aggregates whose electronic spectroscopy resembles that of intact chlorosomes. Femtosecond optical experiments reveal that the chlorosomes and their reconstituted aggregates exhibit closely analogous internal energy transfer kinetics and exciton state evolution. These comparisons furnish compelling new evidence that proteins do not exert a major local role in the BChl c antenna pigment organization of intact chlorosomes.  相似文献   

18.
The morphology (mainly prosthecae length), ultrastructure, and antenna pigment composition of the green sulfur bacterium Prosthecochloris aestuarii changed when grown under different light intensities. At light intensities of 0.5 and 5 micromol quanta m(-2) s(-1), the cells had a star-like morphology. Prosthecae, the characteristic appendages of the genus Prosthecochloris, were 232 nm and 194 nm long, respectively. In contrast, when grown at 100 micromol quanta m(-2) s(-1), these appendages were shorter (98 nm) and the cells appeared more rod-shaped. Transmission electron microscopy revealed a significant decrease in the cell perimeter to area ratio and in the number of chlorosomes per linear microm of membrane as light intensity increased. In addition to these morphological and ultrastructural responses, Prosthecochloris aestuarii exhibited changes in its pigment composition as a function of light regime. Lower specific pigment content and synthesis rates were found in cultures grown at light intensities above 5 micromol quanta m(-2) s(-1). A blue shift in the bacteriochlorophyll (BChl) c Q(y) absorption maximum of up to 17.5 nm was observed under saturating light conditions (100 micromol quanta m(-2) s(-1)). This displacement was accompanied by changes in the composition of BChl c homologs and by a very low carotenoid content. The morphological, ultrastructural and functional changes exhibited by Prosthecochloris aestuarii revealed the strong light-response capacity of this bacterium to both high and low photon-flux densities.  相似文献   

19.
Femtosecond absorption difference spectra were measured for chlorosomes isolated from the green bacterium Chloroflexus aurantiacus at room temperature. Using the relative difference absorption of the oligomeric BChl c and monomeric BChl a bands, the size of a unit BChl c aggregate as well as the exciton coherence size were estimated for the chlorosomal BChl c antenna under study. A quantitative fit of the data was obtained within the framework of the exciton model proposed before [Fetisova et al. (1996) Biophys J 71: 995–1010]. The size of the antenna unit was found to be 24 exciton-coupled BChl c molecules. The anomalously high bleaching value of the oligomeric B740 band with respect to the monomeric B795 band provided the direct evidence for a high degree of exciton delocalization in the chlorosomal B740 BChl c antenna. The effective delocalization size of individual exciton wavefunctions (the thermally averaged inverse participation ratio) in the chlorosomal BChl c antenna is 9.5, whereas the steady-state wavepacket corresponds to the coherence size (the inverse participation ratio of the density matrix) of 7.4 at room temperature.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

20.
The fluorescence properties of bacteriochlorophylls (BChl) of the chlorosomal light-harvesting antenna of Oscillochloris trichoides (strain DG-6) from a new family of green filamentous bacteria Oscillochloridaceae were investigated in comparison with green bacteria from two other families. A strong dependence of the fluorescence intensity of chlorosomal bacteriochlorophyll c of Osc. trichoides on the redox potential of medium was found, which previously was observed only in green sulfur bacteria. The presence of BChl a in chlorosomes did not appear in their absorption spectra but was visualized by fluorescence spectroscopy at 77 K. From the comparative analysis of fluorescence spectral data for the chlorosomal light-harvesting antenna of Osc. trichoides and similar spectral data for green bacteria from two other families, it was concluded that, in some fluorescence spectral features (spectral position of bacteriochlorophyll c/a fluorescence bands; shape and full width at half maximum fluorescence band of chlorosomal bacteriochlorophyll c; the Stokes shift value of bacteriochlorophyll c band; a high molar ratio of bacteriochlorophyll c : bacteriochlorophyll a in chlorosomes that makes the bacteriochlorophyll a fluorescence band unresolved at room temperature; and highly redox-dependent fluorescence intensity of chlorosomal bacteriochlorophyll c), Osc. trichoides chlorosomes are close to the chlorosomal antenna of Chlorobiaceae species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号