共查询到20条相似文献,搜索用时 15 毫秒
1.
Yasuno Iwasaki Mitsue Ishikawa Noriko Okada Shinichi Koizumi 《Journal of neurochemistry》1997,68(3):927-934
Abstract: A clonal cell line stably expressing trkB (TrkB/PC12) was established from rat pheochromocytoma PC12 cells. Brain-derived neurotrophic factor (BDNF), as well as nerve growth factor (NGF), stimulates neurite outgrowth in TrkB/PC12 cells. However, the morphology of BDNF-differentiated cells was clearly different from NGF-differentiated cells. BDNF treatment brought about longer and thicker neurites and induced a flattened soma and an increase in somatic size. This is not explained enough by the quantitative difference in the strength between TrkA and TrkB stimulation, because the level of BDNF-stimulated tyrosine phosphorylation of TrkB was similar to that of TrkA stimulated with NGF in PC12/TrkB cells. There was no difference in major tyrosine phosphorylated proteins induced by NGF and BDNF. Signal proteins such as phosphatidylinositol 3-kinase, phospholipase C-γ1, Shc, and mitogen-activated protein kinase seem to be involved in both TrkA- and TrkB-mediated signaling pathways. However, a tyrosine-phosphorylated 38-kDa protein (pp38) was detected in anti-pan-Trk immunoprecipitation only after NGF stimulation. Immunoprecipitation using three distinct anti-pan-Trk antibodies suggests that pp38 is not a fragment of TrkA. These data indicate that TrkA has a unique signal transduction pathway that is not stimulated through TrkB in TrkB/PC12 cells and suggest distinct functions among neurotrophin receptors. 相似文献
2.
Phosphatidylinositol (PI) breakdown represents a powerful system participating in the transduction mechanism of some neurotransmitters and growth factors and producing two second messengers, diacylglycerol and inositol trisphosphate. The transformation of PC12 neuroblastoma cells into neuron-like cells induced by nerve growth factor (NGF) is preceded by a rapid stimulation of PI breakdown; however, it was not known whether PI breakdown mediates actions of other members of the neurotrophin family. The present study analyzed the effects of NGF, brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) on PI breakdown in primary cultures of embryonic rat brain cells. Cultures were grown for 7 days; PI was then labeled by incubating cultures with myo-[3H]inositol, which then were exposed acutely to growth factors. BDNF and NT-3, but not NGF, elevated the levels of labeled inositol phosphates within 10-15 min after addition to the cultures in a dose-dependent manner. ED50 values for BDNF and NT-3 were 12.4 and 64.5 ng/ml, respectively. Comparable effects were found in cultures of cortical, striatal, and septal cells. The actions of BDNF and NT-3 probably reflect actions on neurons, because no effects were seen in cultures of nonneuronal cells. In contrast, basic fibroblast growth factor induced a marked stimulation of PI breakdown in cultures of nonneuronal cells. K252b, which selectively blocks neurotrophin actions by inhibiting trk-type receptor proteins, prevented the PI breakdown mediated by BDNF and NT-3. The findings suggest that rapid and specific induction of PI breakdown is involved in the signal transduction of BDNF and NT-3, and they provide evidence that cortical neurons are functionally responsive to BDNF and NT-3 during development. 相似文献
3.
Retinoic acid (RA) induces the differentiation of many cell lines, including those derived from neuroblastoma. RA treatment of SH-SY5Y cells induces the appearance of functional Trk B and Trk C receptors. Acute stimulation of RA-predifferentiated SH-SY5Y cells with brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), or neurotrophin 4/5 (NT-4/5), but not nerve growth factor (NGF), induces Trk autophosphorylation, followed by phosphorylation of Akt and the extracellular signal-regulated kinases (ERKs) 1 and 2. In addition, BDNF, NT-3, or NT-4/5, but not NGF, promotes cell survival and neurite outgrowth in serum-free medium. The mitogen-activated protein kinase and ERK kinase (MEK) inhibitor PD98059 blocks BDNF-induced neurite outgrowth and growth-associated protein-43 expression but has no effects on cell survival. On the other hand, the phosphatidylinositol 3-kinase inhibitor LY249002 reverses the survival response elicited by BDNF, leading to a cell death with morphological features of apoptosis. 相似文献
4.
Kevin Pong Ren Y. Xu Will F. Baron Jean-Claude Louis Klaus D. Beck 《Journal of neurochemistry》1998,71(5):1912-1919
Abstract: Glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor for midbrain dopaminergic neurons. To begin to understand the intracellular signaling pathways used by GDNF, we investigated the role of phosphatidylinositol 3-kinase activity in GDNF-stimulated cellular function and differentiation of dopaminergic neurons. We found that treatment of dopaminergic neuron cultures with 10 ng/ml GDNF induced maximal levels of Ret phosphorylation and produced a profound increase in phosphatidylinositol 3-kinase activity, as measured by western blot analysis and lipid kinase assays. Treatment with 1 µ M 2-(4-morpholinyl)-8-phenylchromone (LY294002) or 100 n M wortmannin, two distinct and potent inhibitors of phosphatidylinositol 3-kinase activity, completely inhibited GDNF-induced phosphatidylinositol 3-kinase activation, but did not affect Ret phosphorylation. Furthermore, we examined specific biological functions of dopaminergic neurons: dopamine uptake activity and morphological differentiation of tyrosine hydroxylase-immunoreactive neurons. GDNF significantly increased dopamine uptake activity and promoted robust morphological differentiation. Treatment with LY294002 completely abolished the GDNF-induced increases of dopamine uptake and morphological differentiation of tyrosine hydroxylase-immunoreactive neurons. Our findings show that GDNF-induced differentiation of dopaminergic neurons requires phosphatidylinositol 3-kinase activation. 相似文献
5.
Nobuyuki Takei Kumi Sasaoka Ko Inoue Masami Takahashi Yasuhisa Endo †Hiroshi Hatanaka 《Journal of neurochemistry》1997,68(1):370-375
Abstract: Differentiation and survival of neurons induced by neurotrophins have been widely investigated, but little has been reported about the long-term effect of brain-derived neurotrophic factor (BDNF) on synaptic transmission. Among many steps of neurotransmission, one important step is regulated release of transmitters. Therefore, the release of glutamate and GABA from cortical neurons cultured for several days with or without BDNF was measured by an HPLC-fluorescence method. Although BDNF had little effect on the basal release of glutamate, high K+ -evoked release was greatly increased by BDNF. BDNF also tended to increase evoked release of GABA. Recently, several proteins involved in the step of "regulated release" have been identified. Thus, the effect of BDNF on the levels of these proteins was then investigated. Neurons were cultivated with or without BDNF, collected, and electrophoresed for western blotting. BDNF increased levels of synaptotagmin, synaptobrevin, synaptophysin, and rab3A, which were known as vesicle protein. Levels of syntaxin, SNAP-25, and β-SNAP were also increased by BDNF. In addition, the numbers of cored and clear vesicles in nerve terminals or varicosities were also increased by BDNF. These results raise the possibility that BDNF increases regulated release of neurotransmitters through the up-regulation of secretory mechanisms. 相似文献
6.
Masashi Yamada Toshihiko Ikeuchi Saburo Aimoto Dr. Hiroshi Hatanaka 《Neurochemical research》1996,21(7):815-822
PC12h-R cell, a subclone of PC12 cells, exhibited a neuron-like phenotype, including neurite outgrowth and increased acetylcholinesterase
activity, in response to epidermal growth factor (EGF) as well as nerve growth factor (NGF). We examined the mechanism by
which EGF induced the neuronal differentiation in PC12h-R cells. The EGF-induced neuronal differentiation of PC12h-R cells
was not blocked by K252a, whereas that induced by NGF was. EGF induced sustained tyrosine phosphorylation of the EGF receptor
in PC12h-R cells, but not in the parent PC12h cells, which do not show neuronal differentiation in response to EGF. In addition,
the rate of EGF-induced down-regulation of the EGF receptor in PC12h-R cells was decreased compared with that in PC12h cells.
Furthermore, we found that the duration of EGF-induced tyrosine phosphorylation of the EGF receptor in PC12h-R cells was similar
to that of NGF-induced tyrosine phosphorylation of p140
trkA in PC12h cells. The EGF-induced phosphorylation of the EGF receptor in PC12h cells was less sustained than that of p140
trkA by NGF in PC12h cells. These findings suggested that the EGF-induced neuronal differentiation of PC12h-R cells is due to
the sustained activation of the EGF receptor, resulting from the decreased down-regulation of the EGF receptor and that the
duration of the receptor tyrosine kinase activity determines the cellular responses of PC12 cells. We concluded that sustained
activation of the receptor tyrosine kinase induces neuronal differentiation, although transient activation promotes proliferation
of PC12 cells.
Special issue dedicated to Dr. Hans Thoenen. 相似文献
7.
Hans R. Widmer David R. Kaplan Stuart J. Rabin Klaus D. Beck Franz Hefti Beat Knüsel 《Journal of neurochemistry》1993,60(6):2111-2123
Abstract: Phospholipase Cγ1 (PLC-γ1) is involved at an early step in signal transduction of many hormones and growth factors and catalyzes the hydrolysis of phosphatidylinositol (PI) 4,5-bisphosphate to diacylglycerol and inositol trisphosphate, two potent intracellular second messenger molecules. The transformation of PC12 cells into neuron-like cells induced by nerve growth factor is preceded by a rapid stimulation of PLC-γ1 phosphorylation and PI hydrolysis. The present study analyzed the effects of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) on phosphorylation of PLC-γ1 in primary cultures of embryonic rat brain cells. BDNF and NT-3 stimulated the phosphorylation of PLC-γ1, followed by hydrolysis of PI. The stimulation of PLC-γ1 phosphorylation occurred within 20 s after addition of BDNF or NT-3 and lasted up to 30 min, with a peak after 4 min. ED50 values were similar for BDNF and NT-3, with τ25 ng/ml. Phosphorylation of PLC-γ1 by BDNF and NT-3 was found in cultures from all major brain areas. K-252b, a compound known to inhibit selectively neurotrophin actions by interfering with the phosphorylation of trk -type neurotrophin receptors, prevented the BDNF- and NT-3-stimulated phosphorylation of PLC-γ1. Receptors of the trk type were coprecipitated with anti-PLC-γ1 antibodies. The presence of trkB mRNA in the cultures was substantiated by northern blot analysis. The action of BDNF and NT-3 seems to be neuron specific because no phosphorylation of PLC-γ1 was observed in cultures of nonneuronal brain cells. The results provide evidence that developing neurons of the cerebral cortex and other brain areas are responsive to BDNF and NT-3, and they indicate that the transduction mechanism of BDNF and NT-3 in the brain involves rapid phosphorylation of PLC-γ1 followed by PI hydrolysis. 相似文献
8.
Abstract: Expression of the neurotrophin-3 (NT-3) receptor (TrkC) and the effects of NT-3 on signal transduction were investigated in highly enriched populations of embryonic rat hippocampal pyramidal neurons grown in bilaminar cultures. PCR analysis revealed that the predominant trkC isoform is K1, which lacks an insert in the kinase domain. Polyclonal TrkC-specific antibodies stained >90% of the neurons and revealed a single ~145-kDa protein in immunoblots of extracts from adult hippocampus and pyramidal neuron cultures. Addition of NT-3 (50 mg/ml) to these cultures induced the tyrosine phosphorylation of TrkC but not TrkB, as determined by anti-phosphotyrosine staining of immunoprecipitates; thus, all the effects of NT-3 are mediated through TrkC. NT-3 also increased the tyrosine phosphorylation of 42-, 44-, 49-, 55-, 95-, and 145-kDa proteins; the pattern induced by brain-derived neurotrophic factor (BDNF) was similar but not identical to that induced by NT-3, suggesting that subtle differences may exist in signaling by TrkB and TrkC receptors. Immunoprecipitation of p21ras from 32P-prelabeled cells showed that NT-3 increased the level of the GTP-bound form of the protein threefold over the control within 5 min. Mitogen-activated protein (MAP) kinase activity was maximally elevated by NT-3 within 2 min and then returned slowly toward baseline over the next 60 min. Tyrosine phosphorylation of phospholipase C-γ increased rapidly after NT-3, suggesting that this enzyme becomes activated. Consistent with this, the neurotrophin rapidly increased protein kinase C activity as well as intracellular Ca2+ levels. The effects of both NT-3 and BDNF on Ca2+ levels were attenuated in Ca2+-free medium, suggesting that both neurotrophins increase Ca2+ flux across the plasma membrane as well as release from internal stores. NT-3 also increased c-Fos expression in >80% of the cells; the effect peaked at 30 minand declined to baseline by 120 min. Despite the activation of ras-MAP kinase and phosphoinositide signaling pathways, neither NT-3 nor BDNF alone or in combination could sustain hippocampal pyramidal neurons deprived of glial support. We conclude that in this system NT-3 and BDNF do not appear to be acting as classical “neurotrophic” factors and that activation of the MAP kinase pathway is insufficient for the promotion of neuronal survival. 相似文献
9.
10.
R Tremblay K. Hewitt H. Lesiuk G. Mealing P Morley & J. P. Durkin 《Journal of neurochemistry》1999,72(1):102-111
Abstract : Several lines of evidence indicate that a rapid loss of neuronal protein kinase C (PKC) activity is a characteristic feature of cerebral ischemia and is a necessary step in the NMDA-induced death of cultured neurons. Exposing embryonic day 18 primary rat cortical neurons to 50 μ M NMDA or 50 μ M glutamate for 10 min caused ~80% cell death over the next 24 h, but excitotoxic death was largely averted, i.e., by 70-80%, in cells pretreated with brain-derived neurotrophic factor (BDNF). An 8-h preexposure to BDNF (50-100 ng/ml) maximally protected cortical cells from the effects of NMDA and glutamate, although the transient application of BDNF between 8 and 4 h before NMDA was equally protective. These effects of BDNF were abolished at supralethal, i.e., >100 μ M , NMDA concentrations. It is significant that BDNF pretreatment prevented the inactivation of PKC in cortical cells normally seen 30 min to 2 h following lethal NMDA or glutamate exposure. This BDNF effect did not arise from changes in NMDA channel activity because neither whole-cell NMDA current amplitudes nor increases in intracellular free Ca2+ concentration were altered by the 8-h BDNF pretreatment. Furthermore, BDNF offered no neuroprotection to cells treated with the PKC inhibitors staurosporine (10-20 n M ), calphostin C (1-2.5 μ M ), or GF-109203X (100 n M ) at the time of NMDA addition. These results underscore the importance of PKC inactivation in glutamate-induced neuronal death. They also suggest that BDNF neuroprotection arises, at least in part, via its ability to block the mechanism by which pathophysiological Ca2+ influx through the NMDA receptor causes membrane PKC inactivation. 相似文献
11.
C. Anthony Altar Carolyn B. Boylan Michelle Fritsche Bruce E. Jones Carl Jackson Stanley J. Wiegand Ronald M. Lindsay Carolyn Hyman 《Journal of neurochemistry》1994,63(3):1021-1032
Abstract: Brain-derived neurotrophic factor (BDNF) promotes the survival of dopamine (DA) neurons, enhances expression of DA neuron characteristics, and protects these cells from 6-hydroxydopamine (6-OHDA) toxicity in vitro. We tested the ability of BDNF or neurotrophin-3 (NT-3) to exert similar protective effects in vivo during chronic delivery of 6-OHDA to the rat neostriatum. Chronic infusions of BDNF or NT-3 (12 µg/day) above the substantia nigra were started 6 days before and continued during an 8-day chronic intrastriatal infusion of 6-OHDA. In control and neurotrophin-treated animals, 6-OHDA treatment selectively depleted 50–60% of nigrostriatal DA nerve terminals but produced little if any loss of pars compacta DA cell bodies. This partial DA lesion resulted in three rotations per minute toward the lesioned hemisphere after treatment with the DA release-inducing drug d-amphetamine. Compared with supranigral infusions of vehicle, BDNF and NT-3 decreased the number of these ipsiversive rotations by 70 and 48% and increased by 20- and 10-fold, respectively, the number of contraversive rotations observed after amphetamine injection. When challenged with the DA receptor agonist apomorphine, BDNF- and NT-3-treated animals also exhibited a seven- and 3.5-fold increase in the number of contraversive rotations relative to the vehicle group, respectively. Compared with vehicle, BDNF increased striatal levels of homovanillic acid (HVA; 86%), 3,4-dihydroxyphenylacetic acid (DOPAC; 42%), and 5-hydroxyindoleacetic acid (5-HIAA; 32%) and the HVA/DA (43%) and 5-HIAA/serotonin (34%) ratios in the DA-denervated striatum. NT-3 augmented only striatal 5-HIAA levels (24%). Neither factor altered the 6-OHDA-induced decrease in striatal DA levels or high-affinity DA uptake and thus did not protect against the destruction of DA terminals and did not alter striatal D1 or D2 ligand binding. Choline, GABA, and glutamate uptake in the striatum were not altered by the lesion or neurotrophin treatment. Thus, BDNF and to a lesser extent NT-3 reverse rotational behavioral deficits and augment striatal DA and 5-HT metabolism in a partial DA lesion model. 相似文献
12.
Mary Beth Spina Stephen P. Squinto James Miller Ronald M. Lindsay Carolyn Hyman 《Journal of neurochemistry》1992,59(1):99-106
Brain-derived neurotrophic factor (BDNF) has recently been shown to enhance the survival of dopamine neurons in cultures derived from the embryonic rat mesencephalon. We now extend this study by demonstrating that, in addition to the effect of sustaining survival of dopaminergic neurons, BDNF also confers protection against the neurotoxic effects of 6-hydroxydopamine (6-OHDA) and N-methyl-4-phenylpyridinium ion (MPP+). Exposure of mesencephalic cultures to either 6-OHDA or MPP+ resulted in a loss of 70-80% of dopaminergic neurons, as determined by tyrosine hydroxylase (TH) immunocytochemistry. In BDNF-treated cultures, loss of TH-positive cells after exposure to either toxin was reduced to only 30%. To facilitate biochemical measurements, we studied SH-SY5Y dopaminergic neuroblastoma cells. BDNF was found to protect these cells from the dopaminergic neurotoxins, 6-OHDA and MPP+. Indicative of oxidative stress, treatment of SH-SY5Y cells with 10 microM 6-OHDA for 24 h caused a fivefold increase in the levels of oxidized glutathione (GSSG). Pretreatment with BDNF for 24 h completely prevented the rise in GSSG. Further examination revealed that BDNF increased the activity of the protective enzyme, glutathione reductase, by 100%. In contrast, BDNF had no effect on the activity of catalase. These results add further impetus to exploring the therapeutic potential of BDNF in animal models of Parkinson's disease. 相似文献
13.
Inhibition of Glial Cell Line-Derived Neurotrophic Factor Induced Intracellular Activity by K-252b on Dopaminergic Neurons 总被引:2,自引:1,他引:2
Kevin Pong Ren Y. Xu Klaus D. Beck T. J. Zhang Jean-Claude Louis 《Journal of neurochemistry》1997,69(3):986-994
Abstract: The c- ret protooncogene encodes Ret, the functional tyrosine kinase receptor for glial cell line-derived neurotrophic factor (GDNF). K-252b, a known protein tyrosine kinase inhibitor, has been shown earlier to inhibit the trophic activity of brain-derived neurotrophic factor on dopaminergic (DAergic) neurons and nerve growth factor on basal forebrain cholinergic neurons while potentiating neurotrophin-3 activity on central cholinergic and peripheral sensory neurons and PC12 cells. We tested whether K-252b would modulate GDNF-induced differentiation in DAergic neuron cultures. Exposure to 1 ng/ml GDNF increased dopamine (DA) uptake 80% above control, whereas treatment with 5 µ M K-252b decreased the efficacy of GDNF by 60%. Concentrations of GDNF of <100 pg/ml were completely inhibited, whereas concentrations of >100 pg/ml were moderately active, between 10 and 20% above control. In addition, K-252b shifted the ED50 from 20 to 200 pg/ml. GDNF treatment increased soma size and neurite outgrowth in tyrosine hydroxylase-immunoreactive neurons. K-252b inhibited differentiation of these morphological parameters induced by GDNF. Furthermore, GDNF stimulated Ret autophosphorylation at maximal levels, whereas the inhibition of DA uptake and morphological differentiation by K-252b correlated with a significantly decreased level of Ret autophosphorylation. Therefore, K-252b is able to inhibit intracellular activities induced by GDNF on mesencephalic DAergic neurons. 相似文献
14.
Abstract: Cultures of neonatal rat superior cervical ganglia (SCG) were used to test the hypothesis that the cytokines leukemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) control GTP cyclohydrolase I (GTPCH) gene expression and 5,6,7,8-tetrahydrobiopterin (BH4) content as traits of the noradrenergic phenotype. Treatment for 7 days with 1 ng/ml of LIF was found to produce the characteristic switch in the SCG neurotransmitter phenotype reported by others, as evidenced by a 60% decline in tyrosine hydroxylase (TH) activity and a 75% increase in choline acetyltransferase activity. This LIF treatment paradigm decreased BH4 levels in a concentration-dependent manner, with a maximal decline of 60% observed at 1 ng/ml. Analysis of the time course of this response indicated that LIF decreased BH4 levels by 60% following 3–7 days of treatment. Treatment of cultures with CNTF (2 ng/ml) resulted in a decline in BH4 levels that was of equal magnitude and followed the same time course as that produced by LIF. The LIF-dependent decline in BH4 levels resulted from a reduction in GTPCH enzyme activity, which decreased by 75% following 7 days of treatment. Nuclease protection assays of RNA extracted from cells treated for 7 days with 2 ng/ml of LIF or CNTF detected a 78–96% reduction in GTPCH mRNA content relative to β-actin mRNA content. Concomitant decreases in TH and GTPCH gene expression in response to LIF or CNTF demonstrate a coordinated regulation of gene expression for this BH4-dependent enzyme and the rate-limiting enzyme in the synthesis of its essential cofactor, BH4. Moreover, these results indicate that GTPCH gene expression in SCG neurons should be regarded as a trait of the noradrenergic phenotype. 相似文献
15.
Natalie G. Ahn David J. Robbins† John W. Haycock† Rony Seger Melanie H. Cobb Edwin G. Krebs† 《Journal of neurochemistry》1992,59(1):147-156
Treatment of PC12 pheochromocytoma cells with nerve growth factor (NGF) or bradykinin leads to the activation of extracellular signal-regulated kinases ERK1 and ERK2, two isozymes of microtubule-associated protein 2 (MAP) kinase that are present in numerous cell lines and regulated by diverse extracellular signals. The activation of MAP kinase is associated with its phosphorylation on tyrosine and threonine residues, both of which are required for activity. In the present studies, we have identified a factor in extracts of PC12 cells treated with NGF or bradykinin, named MAP kinase activator, that, when reconstituted with inactive MAP kinase from untreated cells, dramatically increased MAP kinase activity. Activation of MAP kinase in vitro by this factor required MgATP and was associated with the phosphorylation of a 42- (ERK1) and 44-kDa (ERK2) polypeptide. Incorporation of 32P into ERK1 and ERK2 occurred primarily on tyrosine and threonine residues and was associated with a single tryptic peptide, which is identical to one whose phosphorylation is increased by treatment of intact PC12 cells with NGF. Thus, the MAP kinase activator identified in PC12 cells is likely to be a physiologically important intermediate in the signaling pathways activated by NGF and bradykinin. Moreover, stimulation of the activator by NGF and bradykinin suggests that tyrosine kinase receptors and guanine nucleotide-binding protein-coupled receptors are both capable of regulating these pathways. 相似文献
16.
The presence of GnRH receptor in cerebral cortical neurons of rat embryos and adult rats has been described. In this work,
we studied the effects of GnRH on outgrowth and length of neurites and cytoskeletal neurofilament proteins expression (NF-68
and NF-200 kDa) by immunoblot of cultured cerebral cortical neurons of rat embryos. Our results show that GnRH increases both
outgrowth and length of neurites accompanied by an increase in neurofilaments expression. It is conceivable that GnRH plays
a role in neuronal plasticity parallel to its gonadal function. 相似文献
17.
Distribution of Brain-Derived Neurotrophic Factor in Rats and Its Changes with Development in the Brain 总被引:21,自引:3,他引:18
Ritsuko Katoh-Semba Ikuo K. Takeuchi †Reiji Semba ‡Kanefusa Kato 《Journal of neurochemistry》1997,69(1):34-42
Abstract: A newly established, sensitive, two-site enzyme-immunoassay system for brain-derived neurotrophic factor (BDNF) is described. Using this system, we investigated the tissue distribution of BDNF and developmental changes in tissue levels of BDNF in rats. The minimal limit of detection of the assay was 3 pg/0.2 ml of assay mixture. BDNF was successfully solubilized from tissues in the presence of guanidine hydrochloride but not in any of the other buffers examined. In the rat brain at 1 month of age, the highest level of BDNF was detected in the hippocampus (5.41 ng/g of wet weight), followed by the hypothalamus (4.23 ng/g) and the septum (1.68 ng/g). In other regions, levels of BDNF ranged between 0.9 and 1.7 ng/g. The level of BDNF in the posterior lobes of the cerebellum from rats at 30 days of age was slightly higher than that in the anterior lobes. The concentration of BDNF increased in all regions of the brain with postnatal development. In peripheral tissues, BDNF was found at very low concentrations (0.65 ng/g in the spleen, 0.21 ng/g in the thymus, and 0.06 ng/g in the liver). The subfractionation of the hippocampal homogenate indicated that ∼50% of BDNF was contained in the crude nuclear fraction. Immunoblots of BDNF-immunoreactive proteins extracted from the hippocampus, hypothalamus, and cerebellum contained doublet bands of protein of ∼14 kDa, a value close to the molecular mass of recombinant human BDNF. Immunocytochemical investigations showed that, in the hippocampus, BDNF was localized in the nucleus of the granule cells in the dentate gyrus and of the cells in the pyramidal cell layer. The frequency of cells that were stained in the dentate gyrus was greater than that of cells in the pyramidal cell layer. 相似文献
18.
Transient Association of the Phosphotyrosine Phosphatase SHP-2 with TrkA Is Induced by Nerve Growth Factor 总被引:3,自引:1,他引:3
Abstract: Nerve growth factor (NGF) treatment of rat PC12 pheochromocytoma cells results in an increase in the tyrosine phosphorylation of the NGF receptor, TrkA, leading to differentiation to a neuronal phenotype. Dephosphorylation by protein tyrosine phosphatases (PTPases) is thought to play an important role in regulating this signaling pathway. To identify PTPases that are recruited to the activated TrkA receptor, we used an ingel PTPase assay to examine the presence of PTPases in TrkA immunoprecipitates. The Src homology 2 domain containing PTPase SHP-2 was found to associate transiently with TrkA following receptor activation, reaching a peak after 1 min of NGF treatment and then decreasing rapidly. The association of SHP-2 with TrkA was accompanied by the tyrosine phosphorylation of SHP-2 and an association of SHP-2 with multiple tyrosine-phosphorylated proteins. In addition, the PTPase activity in SHP-2 immunoprecipitates increased greater than twofold after 1 min of NGF treatment. This is the first demonstration that the association of SHP-2 with TrkA is induced by NGF and that this association leads to SHP-2 activation and tyrosine phosphorylation. We conclude that SHP-2 plays a significant role in early biochemical events in TrkA-mediated signal transduction. 相似文献
19.
† Susan E. Lewis ‡Mahendra S. Rao †§Aviva J. Symes †William T. Dauer †§J. Stephen Fink ‡Story C. Landis †Steven E. Hyman 《Journal of neurochemistry》1994,63(2):429-438
Abstract: The neurotransmitter phenotype switch that occurs in cultures of rat superior cervical ganglion neurons after treatment with leukemia inhibitory factor or ciliary neurotrophic factor is a useful model permitting investigation of the mechanisms of cytokine-mediated differentiation. Recently the actions of leukemia inhibitory factor and ciliary neurotrophic factor have been linked through their interactions with related receptor complexes. Here we compare the effects of these two cytokines on gene expression in sympathetic neuronal cultures and begin to investigate their mechanisms. We report that, as has been shown for leukemia inhibitory factor, ciliary neurotrophic factor regulates peptides and classical transmitters in these cultures at the mRNA level. In addition, we find that the induction of substance P mRNA by these cytokines is rapid, dependent on protein synthesis, and occurs in 40–50% of superior cervical ganglion neurons in dissociated culture. 相似文献
20.
Production and Characterization of Recombinant Mouse Brain-Derived Neurotrophic Factor and Rat Neurotrophin-3 Expressed in Insect Cells 总被引:3,自引:0,他引:3
Sheryl L. Meyer Diane M. Lang M. Elizabeth Forbes Ernest Knight Jr. James D. Hirsch Stephen P. Trusko Richard W. Scott 《Journal of neurochemistry》1994,62(3):825-833
Abstract: Bioactive brain-derived neurotrophic factor (BDNF) and neurotrophin-3 were produced using the baculovirus expression system and purified to homogeneity using ion-exchange and reversed-phase chromatography. Yields of purified neurotrophin-3 (300–500 μg/L) were similar to levels reported for baculovirus-expressed nerve growth factor (NGF), whereas initial yields of BDNF were significantly lower (20–50 μg/L). Improved production of BDNF (150–200 μg/L) was achieved by expressing BDNF from a chimeric prepro-NGF/mature BDNF construct using the Trichoplusia ni insect cell line, Tn-5B1-4. Examination of the distribution of BDNF protein from both the nonchimeric prepro-BDNF and the chimeric prepro-NGF/mature BDNF viruses in Sf-21-and Tn-5B1-4-infected cells suggests a specific deficiency in the Tn-5B1-4 cells in processing the nonchimeric precursor. In addition, the vast majority of the BDNF protein at 2 days after infection was intracellular and insoluble. N-terminal amino acid sequencing of purified recombinant BDNF and neurotrophin-3 demonstrated that the insect cells processed their precursors to the correct N-terminus expected for the mature protein. Bioactivity was characterized in vitro on primary neuronal cultures from the CNS and PNS. 相似文献