共查询到20条相似文献,搜索用时 15 毫秒
1.
Maintaining bee-friendly habitats in cities and suburbs can help conserve the vital pollination services of declining bee populations. Despite label precautions not to apply them to blooming plants, neonicotinoids and other residual systemic insecticides may be applied for preventive control of lawn insect pests when spring-flowering weeds are present. Dietary exposure to neonicotinoids adversely affects bees, but the extent of hazard from field usage is controversial. We exposed colonies of the bumble bee Bombus impatiens to turf with blooming white clover that had been treated with clothianidin, a neonicotinoid, or with chlorantraniliprole, the first anthranilic diamide labeled for use on lawns. The sprays were applied at label rate and lightly irrigated. After residues had dried, colonies were confined to forage for six days, and then moved to a non-treated rural site to openly forage and develop. Colonies exposed to clothianidin-treated weedy turf had delayed weight gain and produced no new queens whereas those exposed to chlorantraniliprole-treated plots developed normally compared with controls. Neither bumble bees nor honey bees avoided foraging on treated white clover in open plots. Nectar from clover blooms directly contaminated by spray residues contained 171±44 ppb clothianidin. Notably, neither insecticide adversely impacted bee colonies confined on the treated turf after it had been mown to remove clover blooms present at the time of treatment, and new blooms had formed. Our results validate EPA label precautionary statements not to apply neonicotinoids to blooming nectar-producing plants if bees may visit the treatment area. Whatever systemic hazard through lawn weeds they may pose appears transitory, however, and direct hazard can be mitigated by adhering to label precautions, or if blooms inadvertently are contaminated, by mowing to remove them. Chlorantraniliprole usage on lawns appears non-hazardous to bumble bees. 相似文献
2.
Tatsuya Amano Katsumi Ushiyama† Go Fujita & Hiroyoshi Higuchi 《Ethology : formerly Zeitschrift fur Tierpsychologie》2006,112(6):544-553
Animals often face great uncertainty as to the quality of foraging patches. There have been a number of theoretical studies investigating how non‐omniscient predators, i.e. predators that are unable to assess foraging patch quality prior to patch exploitation, should forage in a heterogeneous environment, but empirical studies, especially in the field, are scarce. This paper describes the way in which white‐fronted geese Anser albifrons forage on harvest remains of rice, focusing on the processes of patch selection and departure. Not only in autumn, but also in spring when rice depletion has progressed, patch rice density showed no positive effect on patch selection by geese, indicating the incapability of geese to select the most profitable patch. Instead, the geese tended to select patches with a large proportion of rice fields that were near the roost and a previously visited patch and bordered by a small number of windbreaks only. The rice consumption volume by geese increased with increasing initial rice density, while giving‐up density was independent of initial rice density and was positively correlated to the mean rice density of the habitat. This suggests that the geese could compensate their lack of information on patch quality at the moment of patch selection by leaving less profitable patches earlier. We discuss the necessity of predictive models based on random patch selection and an appropriate departure rule to explain the distribution of individuals of species with limited information on patch quality. 相似文献
3.
C. M. S. Plowright F. Landry D. Church J. Heyding N. Dupuis-Roy J. P. Thivierge V. Simonds 《Journal of Insect Behavior》2001,14(1):113-127
In three experiments, bumble bees were trained to discriminate between a reinforcing pattern (S+) and a nonreinforcing one (S–) which differed only in the configuration of four artificial petals. They were subsequently tested for recognition of the S+ rotated by 90° (S + 90). Experiment 1 used petals of four colors, and the other experiments used four symbols. The symbols either remained unchanged when the whole pattern was rotated (e.g., + in Experiment 2) or changed appearance (e.g., < in Experiment 3). The bees failed to recognize the S + 90 in the first two experiments, but in Experiment 3, the choice proportion for S + 90 in the presence of a New pattern was significantly higher than chance. Bumble bees can recognize a rotated pattern, possibly by using mental rotation, provided that a cue as to the extent of the pattern transformation is given. 相似文献
4.
Sean O'Donnell & Robin L. Foster 《Ethology : formerly Zeitschrift fur Tierpsychologie》2001,107(5):387-399
Regulation of nest temperature is important to the fitness of eusocial insect colonies. To maintain appropriate conditions for the developing brood, workers must exhibit thermoregulatory responses to ambient temperature. Because nest-mate workers differ in task performance, thermoregulatory behavior provides an opportunity to test threshold of response models for the regulation of division of labor. We found that worker bumble bees ( Bombus bifarius nearcticus ) responded to changes in ambient temperature by altering their rates of performing two tasks – wing fanning and brood cell incubation. At the colony level, the rate of incubating decreased, and the rate of fanning increased, with increasing temperature. Changes in the number of workers performing these tasks were more important to the colony response than changes in workers' task performance rates. At the individual level, workers' lifetime rates of incubation and fanning were positively correlated, and most individuals did not specialize exclusively on either of these temperature-sensitive tasks. However, workers differed in the maximum temperature at which they incubated and in the minimum temperature at which they fanned. More individuals fanned at high and incubated at low temperatures. Most of the workers that began incubating at higher temperatures continued performing this task at lower temperatures, when additional nest-mates became active. The converse was true for fanning behavior. These data are consistent with a threshold of response model for thermoregulatory behavior of B. bifarius workers. 相似文献
5.
Habitat fragmentation can have severe effects on plant pollinator interactions, for example changing the foraging behaviour of pollinators. To date, the impact of plant population size on pollen collection by pollinators has not yet been investigated. From 2008 to 2010, we monitored nine bumble bee species (Bombus campestris, Bombus hortorum s.l., Bombus hypnorum, Bombus lapidarius, Bombus pascuorum, Bombus pratorum, Bombus soroensis, Bombus terrestris s.l., Bombus vestalis s.l.) on Vaccinium uliginosum (Ericaceae) in up to nine populations in Belgium ranging in size from 80 m2 to over 3.1 ha. Bumble bee abundance declined with decreasing plant population size, and especially the proportion of individuals of large bumble bee species diminished in smaller populations. The most remarkable and novel observation was that bumble bees seemed to switch foraging behaviour according to population size: while they collected both pollen and nectar in large populations, they largely neglected pollen collection in small populations. This pattern was due to large bumble bee species, which seem thus to be more likely to suffer from pollen shortages in smaller habitat fragments. Comparing pollen loads of bumble bees we found that fidelity to V. uliginosum pollen did not depend on plant population size but rather on the extent shrub cover and/or openness of the site. Bumble bees collected pollen only from three plant species (V.
uliginosum, Sorbus aucuparia and Cytisus scoparius). We also did not discover any pollination limitation of V. uliginosum in small populations. We conclude that habitat fragmentation might not immediately threaten the pollination of V. uliginosum, nevertheless, it provides important nectar and pollen resources for bumble bees and declining populations of this plant could have negative effects for its pollinators. The finding that large bumble bee species abandon pollen collection when plant populations become small is of interest when considering plant and bumble bee conservation. 相似文献
6.
Bumble Bees Show Asymmetrical Discrimination Between Two Odors in a Classical Conditioning Procedure
Olfactory processing of two odorants and their mixture was investigated in bumble bees Bombus terrestris using classical conditioning of the proboscis extension. In a standard procedure, workers were able to learn linalool, phenylacetaldehyde, and the mixture of these two components, with a similar level of response to these three stimuli. Thereafter, when we applied a differential conditioning procedure where one rewarded odorant was presented alternately against an unrewarded one, an asymmetrical discrimination between the two pure odors was found. Bumble bees performed well in the discriminative task when linalool was the rewarded stimulus and phenylacetaldehyde the unrewarded one, but they had difficulty learning phenylacetaldehyde if it was the rewarded odor in the symmetrical procedure. Indeed, unrewarded stimulations with linalool appeared to disrupt the learning of the alternative odor, possibly due to an innate biological meaning of linalool. 相似文献
7.
Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity. 相似文献
8.
9.
10.
In winter, foraging activity is intended to optimize food search while minimizing both thermoregulation costs and predation risk. Here we quantify the relative importance of thermoregulation and predation in foraging patch selection of woodland birds wintering in a Mediterranean montane forest. Specifically, we account for thermoregulation benefits related to temperature, and predation risk associated with both illumination of the feeding patch and distance to the nearest refuge provided by vegetation. We measured the amount of time that 38 marked individual birds belonging to five small passerine species spent foraging at artificial feeders. Feeders were located in forest patches that vary in distance to protective cover and exposure to sun radiation; temperature and illumination were registered locally by data loggers. Our results support the influence of both thermoregulation benefits and predation costs on feeding patch choice. The influence of distance to refuge (negative relationship) was nearly three times higher than that of temperature (positive relationship) in determining total foraging time spent at a patch. Light intensity had a negligible and no significant effect. This pattern was generalizable among species and individuals within species, and highlights the preponderance of latent predation risk over thermoregulation benefits on foraging decisions of birds wintering in temperate Mediterranean forests. 相似文献
11.
Pollinators, such as bees, often develop multi-location routes (traplines) to exploit subsets of flower patches within larger plant populations. How individuals establish such foraging areas in the presence of other foragers is poorly explored. Here we investigated the foraging patterns of pairs of bumble bees (Bombus terrestris) released sequentially into an 880m2 outdoor flight cage containing 10 feeding stations (artificial flowers). Using motion-sensitive video cameras mounted on flowers, we mapped the flower visitation networks of both foragers, quantified their interactions and compared their foraging success over an entire day. Overall, bees that were released first (residents) travelled 37% faster and collected 77% more nectar, thereby reaching a net energy intake rate 64% higher than bees released second (newcomers). However, this prior-experience advantage decreased as newcomers became familiar with the spatial configuration of the flower array. When both bees visited the same flower simultaneously, the most frequent outcome was for the resident to evict the newcomer. On the rare occasions when newcomers evicted residents, the two bees increased their frequency of return visits to that flower. These competitive interactions led to a significant (if only partial) spatial overlap between the foraging patterns of pairs of bees. While newcomers may initially use social cues (such as olfactory footprints) to exploit flowers used by residents, either because such cues indicate higher rewards and/or safety from predation, residents may attempt to preserve their monopoly over familiar resources through exploitation and interference. We discuss how these interactions may favour spatial partitioning, thereby maximising the foraging efficiency of individuals and colonies. 相似文献
12.
Plant-herbivore chemical signals and behavioral plasticity may enhance parasitoid host-foraging efficacy in the field; however, no studies have quantified the potential benefits from these factors under field-type conditions. The effect of plant-herbivore signals and learning on the foraging efficacy of Microplitis croceipes was quantified by directly observing and recording total and sequential duration of various foraging behaviors relative to 5 randomly placed herbivore-damaged and host-infested cotton plants and 20 undamaged and non-host-infested plants. Microplitis croceipes spent significantly more time searching (flying and antennation) on host infested versus uninfested plants. Antennation time was significantly and negatively correlated with successive host stings. Contrary to expectations of increased duration, flight time remained constant throughout the foraging bout, which may indicate that there was some learning associated with flight. These results suggest that plant-herbivore chemical signals and learning enhances the foraging efficacy of M. croceipes. 相似文献
13.
Raja Ponnuchamy Vincent Bonhomme Srinivasan Prasad Lipi Das Prakash Patel Cédric Gaucherel Arunachalam Pragasam Krishnamurthy Anupama 《PloS one》2014,9(7)
The aim of the study was to use melissopalynology to delineate the foraging preferences of bees in tropical environs. This was done by comparing pollen spectra obtained from the same hives every three months for three years at four sampling locations (in two sites) within a confined landscape mosaic. If melissopalynology is highly replicable, the spatial variation of the pollen spectrum from the honey samples would be much more than the temporal (inter-annual) variations. In other words, given the three factors, Month, Year and Location, honey pollen from different Locations, in a given Year and Month, would be much less similar than samples from different Years, in a given Location and Month. We then determined how the factors, Month, Year and Location, influenced the pollen influx of honey. The pollen analyses of the 42 honey samples collected during the three years yielded 80 pollen taxa/types: 72 dicotyledonous and 8 monocotyledonous, encompassing 41 botanical families spread into seven life forms namely, trees, shrubs, epiphytes, herbs, climbers, grasses, and sedges. Our results showed that pollen spectra were equally comparable between Locations and between Months and Years; the importance of this result is that it helped to demonstrate the complexity of ecological/environmental phenomena involved in the process of foraging by bees in a heterogeneous and complex landscape. 相似文献
14.
Currently, there is concern about declining bee populations and some blame the residues of neonicotinoid pesticides in the nectar and pollen of treated crops. Bumble bees are important wild pollinators that are widely exposed to dietary neonicotinoids by foraging in agricultural environments. In the laboratory, we tested the effect of a pulsed exposure (14 days ‘on dose’ followed by 14 days ‘off dose’) to a common neonicotinoid, imidacloprid, on the amount of brood (number of eggs and larvae) produced by Bombus terrestris L. bumble bees in small, standardised experimental colonies (a queen and four adult workers). During the initial ‘on dose’ period we observed a dose-dependent repression of brood production in colonies, with productivity decreasing as dosage increased up to 98 µg kg−1 dietary imidacloprid. During the following ‘off dose’ period, colonies showed a dose-dependent recuperation such that total brood production during the 28-day pulsed exposure was not correlated with imidacloprid up to 98 µg kg−1. Our findings raise further concern about the threat to wild bumble bees from neonicotinoids, but they also indicate some resilience to a pulsed exposure, such as that arising from the transient bloom of a treated mass-flowering crop. 相似文献
15.
Fungi in the genus Ascosphaera (Ascomycota: Eurotiomycetes: Ascosphaerales) cause chalkbrood disease in larvae of bees. Here, we report the first-ever detection of the fungus in adult bumble bees that were raised in captivity for studies on colony development. Wild queens of Bombus griseocollis, B. nevadensis and B. vosnesenskii were collected and maintained for establishment of nests. Queens that died during rearing or that did not lay eggs within one month of capture were dissected, and tissues were examined microscopically for the presence of pathogens. Filamentous fungi that were detected were plated on artificial media containing broad spectrum antibiotics for isolation and identification. Based on morphological characters, the fungus was identified as Ascosphaera apis (Maasen ex Claussen) Olive and Spiltoir, a species that has been reported earlier only from larvae of the European honey bee, Apis mellifera, the Asian honey bee, Apis cerana, and the carpenter bee Xylocopa californica arizonensis. The identity of the fungus was confirmed using molecular markers and phylogenetic analysis. Ascosphaera apis was detected in queens of all three bumble bee species examined. Of 150 queens dissected, 12 (8%) contained vegetative and reproductive stages of the fungus. Both fungal stages were also detected in two workers collected from colonies with Ascosphaera-infected B. nevadensis queens. In this study, wild bees could have been infected prior to capture for rearing, or, the A. apis infection could have originated via contaminated European honey bee pollen fed to the bumble bees in captivity. Thus, the discovery of A. apis in adult bumble bees in the current study has important implications for commercial production of bumble bee colonies and highlights potential risks to native bees via pathogen spillover from infected bees and infected pollen. 相似文献
16.
The aim of this study was to investigate an underlying mechanism of the apparent tolerance of Africanized honey bees (AHB) to Varroa jacobsoni mites in Mexico. This was achieved by conducting the first detailed study into the mites' reproductive biology in AHB worker cells. The data was then compared directly with a similar study previously carried out on European honey bees (EHB) in the UK. A total of 1071 singly infested AHB worker cells were analyzed and compared with the data from 908 singly infested EHB worker cells. There was no significant difference between the number of mother mites dying in the cells (AHB = 2.0%, EHB = 1.8%); the mean number of eggs laid per mite (AHB = 4.86, EHB = 4.93); the number of mites producing no offspring (AHB = 12%, EHB = 9%); and developmental times of the offspring in worker cells of AHB and EHB. However, there was a major difference between the percentage of mother mites producing viable adult female offspring (AHB = 40%, EHB = 75%). This was caused by the increased rate of mite offspring mortality suffered by the first (male) and second (female) offspring in AHB worker cells. Therefore, only an average of 0.7 viable adult female offspring are produced per mite in AHB, compared to 1.0 in EHB. 相似文献
17.
18.
Context-dependent decision-making conditions individual plasticity and is an integrant part of alternative reproductive strategies. In eusocial Hymenoptera (ants, bees and wasps), the discovery of worker reproductive parasitism recently challenged the view of workers as a homogeneous collective entity and stressed the need to consider them as autonomous units capable of elaborate choices which influence their fitness returns. The reproductive decisions of individual workers thus need to be investigated and taken into account to understand the regulation of reproduction in insect societies. However, we know virtually nothing about the proximate mechanisms at the basis of worker reproductive decisions. Here, we test the hypothesis that the capacity of workers to reproduce in foreign colonies lies in their ability to react differently according to the colonial context and whether this reaction is influenced by a particular internal state. Using the bumble bee Bombus terrestris, we show that workers exhibit an extremely high reproductive plasticity which is conditioned by the social context they experience. Fertile workers reintroduced into their mother colony reverted to sterility, as expected. On the contrary, a high level of ovary activity persisted in fertile workers introduced into a foreign nest, and this despite more frequent direct contacts with the queen and the brood than control workers. Foreign workers'' reproductive decisions were not affected by the resident queen, their level of fertility being similar whether or not the queen was removed from the host colony. Workers'' physiological state at the time of introduction is also of crucial importance, since infertile workers failed to develop a reproductive phenotype in a foreign nest. Therefore, both internal and environmental factors appear to condition individual reproductive strategies in this species, suggesting that more complex decision-making mechanisms are involved in the regulation of worker reproduction than previously thought. 相似文献
19.
This study examines the foraging behaviour of Campoplex dubitator Horstmann (Hymenoptera: Ichneumonidae), a parasitoid of the highly concealed bark-mining host, Enarmonia formosana Scopoli (Lepidoptera: Tortricidae), and how this foraging behaviour is affected by host density. The ultimate aim was to
determine whether foraging behaviour and patch fidelity could explain patterns of parasitism in the field. An ethogram was
first constructed to portray C. dubitator behaviour prior to and immediately following host attacks. The pre-attack behavioural sequence was highly structured whereas
behavioural transitions became less predictable after a sting event. Females spent more time on patches with higher host densities
and host encounters caused a significant reduction in the leaving tendency. The giving up time was only slightly affected
by host encounters. Campoplex dubitator did not demonstrate the ability to distinguish between occupied and empty host mines. The results show that C. dubitator forages more efficiently at lower host densities and this behavioural phenomenon may result in the patterns of parasitism
observed in the field. 相似文献
20.
Rubén E. Soto Juan C. Castilla & Francisco Bozinovic 《Ethology : formerly Zeitschrift fur Tierpsychologie》2005,111(11):1044-1049
We study whether and how physiological demands affect foraging decisions under predation risk, by evaluating the effect of starvation on the rate of food consumption and prey‐size preferences and the potential trade‐off between starvation and predation risk on foraging behavior in the whelk Acanthina monodon, a gastropod inhabiting the intertidal rocky shores of central Chile. These whelks appear to adjust their foraging strategy to physiological (nutritional) demand and predation risk. Starvation reduced the effect of predation risk on the rate of food consumption by A. monodon. Thus, in the absence of the predator sea star, the rate of food consumption by starved and satiated whelks was similar. When a predator was present, starved whelks fed faster than satiated whelks. Our results indicate that foraging behaviour represents an integrated and hierarchical response to environmental conditions and the physiological conditions of the forager. 相似文献