首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of periosteum has been hypothesized to adversely affect halo pin penetration and performance (Voor, 1992. Ph.D. Dissertation, Tulane University, New Orleans, LA). However, biomechanical testing of halo pins has historically been conducted on bone specimens with periosteum removed. This may have lead to an unrealistic measure of biomechanical pin performance. Our study compares the biomechanical performance of two halo pin designs on bovine bone specimens with, and without, intact periosteum. The two pin designs included in this study were the conventional pin (Bremer Medical) with conical tip, and a newly released trochar-style pin (DePuy AcroMed). Results showed the mean peak load before failure of the trochar-style pin (mean +/- 95% confidence interval: 656+/-29 N) to be significantly higher than the conventional pin (517+/-53 N) on bone with intact periosteum (p = 0.001). With the periosteum removed, the mean peak load of the trochar-style pin (655+/-99 N) remained statistically the same (p = 0.987), while the mean peak load of the conventional pin (634+/-65 N) increased significantly (p = 0.026). Variation of the data of the conventional pin significantly decreased from 32 to 19% on removal of periosteum (sigma = 165-103 N, respectively, p = 0.0967), while variation of the trochar-style remained statistically the same at 30-29% (sigma = 193-188 N, respectively, p = 0.954). These results show that the trochar-style pin may be biomechanically superior to the conventional pin for vertical forces experienced during immobilization. The performance of this new pin style may also not be significantly affected by overlying soft tissue. Use of this new pin style may, therefore, improve overall stability and fixation of the halo apparatus.  相似文献   

2.
The ability to assess the elastic and failure properties of cortical bone at the radial diaphysis has a clinical importance. A new generation of quantitative ultrasound (QUS) devices and peripheral quantitative computed tomography (p-QCT) has been developed to assess non-invasively bone material and structural properties at the distal radius. This anatomical site is characterized by a thin cortical thickness that complicates traditional mechanical testing methods on specimens. Until now, mechanical properties of cortical bone at distal radius (e.g., elastic modulus, yield stress and strain) remain rarely studied probably due to experimental difficulties. The present study introduces an inverse finite-element method strategy to measure the elastic modulus and yield properties of human cortical specimens of the radial diaphysis. Twenty millimeter-thick portions of diaphysis were cut from 40 human radii (ages 45-90) for biomechanical test. Subsequently the same portion was modeled in order to obtain a specimen-specific three dimensional finite-element model (3D-FEM). Longitudinal elastic constants at the apparent level and stress characterizations were performed by coupling mechanical parameters with isotropic linear-elastic simulations. The results indicated that the mean apparent Young's modulus for radial cortical bone was 16 GPa (SD 1.8) and the yield stress was 153 MPa (SD 33). Breaking load was 12,946 N (SD 3644), cortical thickness 2.9 mm (SD 0.6), structural effective strain at the yield (epsilon(y)=0.0097) and failure (epsilon(u)=0.0154) load were also calculated. The 3D-FEM strategy described here may help to investigate bone mechanical properties when some difficulties arise from machining mechanical sample.  相似文献   

3.
The mechanical properties of the adult human skull are well documented, but little information is available for the infant skull. To determine the age-dependent changes in skull properties, we tested human and porcine infant cranial bone in three-point bending. The measurement of elastic modulus in the human and porcine infant cranial bone agrees with and extends previous published data [McPherson, G. K., and Kriewall, T. J. (1980), J. Biomech., 13, pp. 9-16] for human infant cranial bone. After confirming that the porcine and human cranial bone properties were comparable, additional tensile and three-point bending studies were conducted on porcine cranial bone and suture. Comparisons of the porcine infant data with previously published adult human data demonstrate that the elastic modulus, ultimate stress, and energy absorbed to failure increase, and the ultimate strain decreases with age for cranial bone. Likewise, we conclude that the elastic modulus, ultimate stress, and energy absorbed to failure increase with age for sutures. We constructed two finite element models of an idealized one-month old infant head, one with pediatric and the other adult skull properties, and subjected them to impact loading to investigate the contribution of the cranial bone properties on the intracranial tissue deformation pattern. The computational simulations demonstrate that the comparatively compliant skull and membranous suture properties of the infant brain case are associated with large cranial shape changes, and a more diffuse pattern of brain distortion than when the skull takes on adult properties. These studies are a fundamental initial step in predicting the unique mechanical response of the pediatric skull to traumatic loads associated with head injury and, thus, for defining head injury thresholds for children.  相似文献   

4.
Radio frequency energy (RFE) thermal chondroplasty has been a widely-utilized method of cartilage debridement in the past. Little is known regarding its effect on tissue mechanics. This study investigated the acute biomechanical effects of bipolar RFE treatment on human chondromalacic cartilage. Articular cartilage specimens were extracted (n?=?50) from femoral condyle samples of patients undergoing total knee arthroplasty. Chondromalacia was graded with the Outerbridge classification system. Tissue thicknesses were measured using a needle punch test. Specimens underwent pretreatment load-relaxation testing using a spherical indenter. Bipolar RFE treatment was applied for 45?s and the indentation protocol was repeated. Structural properties were derived from the force-time data. Mechanical properties were derived using a fibril-reinforced biphasic cartilage model. Statistics were performed using repeated measures ANOVA. Cartilage thickness decreased after RFE treatment from a mean of 2.61?mm to 2.20?mm in Grade II, II-III, and III specimens (P?相似文献   

5.
The objective of this work is to gain more insight into the processes of oral perception of food texture. Particularly, the limits for detectable thickness differences of objects, which are evaluated in the human mouth, are investigated. In a sensory study small, flexible circular disks (diameter in mm range) of varying thickness (in microm range) and material properties are evaluated between tongue and palate in human subjects. The thicker sample is identified in pair comparison tests. Experimental evidence suggests the existence of one detection process (attempt to align tongue and palate and the disk between them) to which the tongue-palate system reacts in two different ways: (1) by bending the disk (thickness below 125 microm, Young's modulus of 480 MPa) and (2) by impressing the disk into the tongue (thickness above approximately 200 microm, Young's modulus of 480 MPa), whereas the first reaction is necessarily followed by the second if the first one fails. For both ranges, differences in thickness of 25 microm can be detected. The two reaction processes cover isolated ranges and leave an insecure detection range in between them, for which neither one of the processes applies. Since deformation and load distribution on the disk are supposed to play a major role in the first detection process (the loads exerted on the disk in order to bend it are compared), we formulate a mathematical model to quantify these mechanical effects. The model is employed to identify parameter constellations (thickness, material properties) for which the insecure range is omitted or the range is enlarged. Theoretical findings are confirmed by further experiments. Their results are consistent with the characteristics and functioning of the mechanoreceptors in-mouth.  相似文献   

6.
目的:通过三维有限元分析方法来观察并比较3种不同弹性模量钛合金股骨假体在羊股骨置换模型中von-Mises应力分布的情况。方法:采用64排螺旋CT对一健康成年羊的下肢股骨进行全长的CT扫描,扫描层厚为0.5 mm,扫描所得的数据存储为DICOM文件。将得到的DICOM文件导入到CT图像分析软件Mimics 10.0,然后利用Mimics 10.0软件来生成股骨的骨质点云数据,再将生成的骨质点云数据导入到Simpleware分析软件,通过机械加工反求中的复杂曲面造型技术建立起精确的三维实体模型。对三维实体模型进行网格划分,确定了髓腔的形状,并根据羊下肢股骨髓腔的形状设计了作者实验用的羊股骨假体模型,然后在ANSYS 12.1软件中进行网格划分。给予加载缓慢行走载荷以及扭转载荷,分析并比较羊股骨以及3种不同弹性模量钛合金股骨假体在股骨置换模型中von-Mises应力分布的情况。结果:在缓慢行走载荷以及扭转载荷条件下,3种不同弹性模量钛合金股骨假体von-Mises应力分布变化趋势一致,假体的柄颈结合部以及假体柄上1/3为应力集中区域。3种不同弹性模量的最大应力集中点均位于柄颈结合部,60 GPa弹性模量的股骨假体植入后假体的最大应力最小(37.8 MPa、29.1 MPa),股骨的最大应力最大(12.6 MPa、24.5 MPa);80 GPa的次之,假体的最大应力(38.4 MPa、33.4 MPa),股骨的最大应力(12.5 MPa、24.5 MPa);110 GPa的股骨假体植入后假体的最大应力最大(38.9 MPa、38.1 MPa),股骨的最大应力最小(12.3 MPa、24.5 MPa)。60 GPa弹性模量的股骨假体植入后的假体最大位移和相对位移均最小(缓慢行走载荷下假体最大位移为0.551 mm、相对位移为0.008 mm,扭转载荷下假体最大位移为0.730 mm、相对位移为0.011 mm)。结论:较低弹性模量的钛合金股骨假体(60 GPa)由于其弹性模量更接近于骨组织的弹性模量,股骨假体与股骨间的"应力遮挡"效应较小,更有利于应力在股骨假体及股骨间的传递,增加了股骨假体的早期稳定性,延长了其临床寿命。  相似文献   

7.
The biomechanical properties of the medial collateral and anterior cruciate ligaments from 30 New Zealand White rabbits were measured. Because of its complex geometry, the ACL was divided into two portions (medial and lateral) to provide uniform loading. This allowed an examination of the intra-ligamentous properties. A laser micrometer system was used to measure the cross-sectional area for tensile stress and a video dimension analyzer was used to measure the strain. The mechanical properties (stress-strain curves) of the MCL and ACL were different, with the modulus (determined between 4 and 7% strain) in the MCL (1120 +/- 153 MPa) more than twice that of either portion of the ACL (516 +/- 64 and 516 +/- 69 MPa for the medial and lateral portions, respectively). This higher modulus correlated with the more uniform and dense appearance of the collagen fibrils examined with scanning electron microscopy (SEM).  相似文献   

8.
Up to now, due to cortical thickness and imaging resolution, it is not possible to derive subject-specific mechanical properties on the 'vertebral shell' from imaging modalities applicable in vivo. As a first step, the goal of this study was to assess the apparent Young's modulus of vertebral cortico-cancellous bone specimens using an inverse method. A total of 22 cortico-cancellous specimens were harvested from 22 vertebral bodies. All specimens were tested in compression until failure. To compute the apparent Young's modulus of the specimen from the inverse method, the boundary conditions of the biomechanical experiments were faithfully reproduced in a finite element model (FEM), and an optimisation routine was used. The results showed a mean of the apparent Young's modulus of 374?±?208?MPa, ranging from 87 to 791?MPa. By computing an apparent Young's modulus of a cortico-cancellous medium, this study gives mechanical data for an FEM of an entire vertebra including an external shell combining both bone tissues.  相似文献   

9.

Background and Purpose

Transcranial near-infrared laser therapy (TLT) is a promising and novel method to promote neuroprotection and clinical improvement in both acute and chronic neurodegenerative diseases such as acute ischemic stroke (AIS), traumatic brain injury (TBI), and Alzheimer’s disease (AD) patients based upon efficacy in translational animal models. However, there is limited information in the peer-reviewed literature pertaining to transcranial near-infrared laser transmission (NILT) profiles in various species. Thus, in the present study we systematically evaluated NILT characteristics through the skull of 4 different species: mouse, rat, rabbit and human.

Results

Using dehydrated skulls from 3 animal species, using a wavelength of 800nm and a surface power density of 700 mW/cm2, NILT decreased from 40.10% (mouse) to 21.24% (rat) to 11.36% (rabbit) as skull thickness measured at bregma increased from 0.44 mm in mouse to 0.83 mm in rat and then 2.11 mm in rabbit. NILT also significantly increased (p<0.05) when animal skulls were hydrated (i.e. compared to dehydrated); but there was no measurable change in thickness due to hydration.In human calvaria, where mean thickness ranged from 7.19 mm at bregma to 5.91 mm in the parietal skull, only 4.18% and 4.24% of applied near-infrared light was transmitted through the skull. There was a slight (9.2-13.4%), but insignificant effect of hydration state on NILT transmission of human skulls, but there was a significant positive correlation between NILT and thickness at bregma and parietal skull, in both hydrated and dehydrated states.

Conclusion

This is the first systematic study to demonstrate differential NILT through the skulls of 4 different species; with an inverse relationship between NILT and skull thickness. With animal skulls, transmission profiles are dependent upon the hydration state of the skull, with significantly greater penetration through hydrated skulls compared to dehydrated skulls. Using human skulls, we demonstrate a significant correlation between thickness and penetration, but there was no correlation with skull density. The results suggest that TLT should be optimized in animals using novel approaches incorporating human skull characteristics, because of significant variance of NILT profiles directly related to skull thickness.  相似文献   

10.
BACKGROUND: Robust techniques for characterizing the biomechanical properties of mouse pulmonary arteries will permit exciting gene-level hypotheses regarding pulmonary vascular disease to be tested in genetically engineered animals. In this paper, we present the first measurements of the biomechanical properties of mouse pulmonary arteries. METHOD OF APPROACH: In an isolated vessel perfusion system, transmural pressure, internal diameter and wall thickness were measured during inflation and deflation of mouse pulmonary arteries over low (5-40 mmHg) and high (10-120 mmHg) pressure ranges representing physiological pressures in the pulmonary and systemic circulations, respectively. RESULTS: During inflation, circumferential stress versus strain showed the nonlinear "J"-shape typical of arteries. Hudetz's incremental elastic modulus ranged from 27 +/- 13 kPa (n = 7) during low-pressure inflation to 2,700 +/- 1,700 kPa (n = 9) during high-pressure inflation. The low and high-pressure testing protocols yielded quantitatively indistinguishable stress-strain and modulus-strain results. Histology performed to assess the state of the tissue after mechanical testing showed intact medial and adventitial architecture with some loss of endothelium, suggesting that smooth muscle cell contractile strength could also be measured with these techniques. CONCLUSIONS: The measurement techniques described demonstrate the feasibility of quantifying mouse pulmonary artery biomechanical properties. Stress-strain behavior and incremental modulus values are presented for normal, healthy arteries over a wide pressure range. These techniques will be useful for investigations into biomechanical abnormalities in pulmonary vascular disease.  相似文献   

11.
Models of post-traumatic osteoarthritis where early degenerative changes can be monitored are valuable for assessing potential therapeutic strategies. Current methods for evaluating cartilage mechanical properties may not capture the low-grade cartilage changes expected at these earlier time points following injury. In this study, an explant model of cartilage injury was used to determine whether streaming potential measurements by manual indentation could detect cartilage changes immediately following mechanical impact and to compare their sensitivity to biomechanical tests. Impacts were delivered ex vivo, at one of three stress levels, to specific positions on isolated adult equine trochlea. Cartilage properties were assessed by streaming potential measurements, made pre- and post-impact using a commercially available arthroscopic device, and by stress relaxation tests in unconfined compression geometry of isolated cartilage disks, providing the streaming potential integral (SPI), fibril modulus (Ef), matrix modulus (Em), and permeability (k). Histological sections were stained with Safranin-O and adjacent unstained sections examined in polarized light microscopy. Impacts were low, 17.3?±?2.7 MPa (n?=?15), medium, 27.8?±?8.5 MPa (n?=?13), or high, 48.7?±?12.1 MPa (n?=?16), and delivered using a custom-built spring-loaded device with a rise time of approximately 1 ms. SPI was significantly reduced after medium (p?=?0.006) and high (p<0.001) impacts. Ef, representing collagen network stiffness, was significantly reduced in high impact samples only (p?相似文献   

12.
Compression tests have often been performed to assess the biomechanical properties of full-thickness articular cartilage. We tested whether the apparent homogeneous strain-dependent properties, deduced from such tests, reflect both strain- and depth-dependent material properties. Full-thickness bovine articular cartilage was tested by oscillatory confined compression superimposed on a static offset up to 45%. and the data fit to estimate modulus, permeability, and electrokinetic coefficient assuming homogeneity. Additional tests on partial-thickness cartilage were then performed to assess depth- and strain-dependent properties in an inhomogeneous model, assuming three discrete layers (i = 1 starting from the articular surface, to i = 3 up to the subchondral bone). Estimates of the zero-strain equilibrium confined compression modulus (H(A0)), the zero-strain permeability (kp0) and deformation dependence constant (M), and the deformation-dependent electrokinetic coefficient (ke) differed among individual layers of cartilage and full-thickness cartilage. HiA0 increased from layer 1 to 3 (0.27 to 0.71 MPa), and bracketed the apparent homogeneous value (0.47 MPa). ki(p0) decreased from layer 1 to 3 (4.6 x 10(-15) to 0.50 x 10(-15) m2/Pa s) and was less than the homogeneous value (7.3 x 10(-15) m2/Pa s), while Mi increased from layer 1 to 3 (5.5 to 7.4) and became similar to the homogeneous value (8.4). The amplitude of ki(e) increased markedly with compressive strain, as did the homogeneous value: at low strain, it was lowest near the articular surface and increased to a peak in the middle-deep region. These results help to interpret the biomechanical assessment of full-thickness articular cartilage.  相似文献   

13.
The ultimate compressive strength and modulus of elasticity of femoral cortical bone from adult geese (Anser anser), were determined by sex and by quadrant by compressing small right circular cylinders which were 2.4 mm in height and 0.8 mm in diameter. The average ultimate compressive strength was 183 +/- 29 MPa. The average modulus of elasticity was 13.2 +/- 3.4 GPa. The bending strength and bending modulus of elasticity were determined by a three point bend test on rectangular prisms which had the approximate dimensions 0.75 mm X 0.75 mm X 25 mm. The average bending strength was 263 +/- 44 MPa while the average bending modulus was 19.6 +/- 3.1 GPa. The calcium content was determined by atomic absorption spectrophotometry and no correlation was found with the mechanical properties. The histology of the cortical bone was examined both quantitatively and qualitatively. A unique type of Haversian bone is described. Goose bone was found to be morphologically similar to adolescent human bone and to have mechanical properties similar to those of adult human bone.  相似文献   

14.
Biomechanical properties of calf muscles and Achilles tendon may be altered considerably in children with cerebral palsy (CP), contributing to childhood disability. It is unclear how muscle fascicles and tendon respond to rehabilitation and contribute to improvement of ankle-joint properties. Biomechanical properties of the calf muscle fascicles of both gastrocnemius medialis (GM) and soleus (SOL), including the fascicle length and pennation angle in seven children with CP, were evaluated using ultrasonography combined with biomechanical measurements before and after a 6-wk treatment of passive-stretching and active-movement training. The passive force contributions from the GM and SOL muscles were separated using flexed and extended knee positions, and fascicular stiffness was calculated based on the fascicular force-length relation. Biomechanical properties of the Achilles tendon, including resting length, cross-sectional area, and stiffness, were also evaluated. The 6-wk training induced elongation of muscle fascicles (SOL: 8%, P = 0.018; GM: 3%, P = 0.018), reduced pennation angle (SOL: 10%, P = 0.028; GM: 5%, P = 0.028), reduced fascicular stiffness (SOL: 17%, P = 0.128; GM: 21%, P = 0.018), decreased tendon length (6%, P = 0.018), increased Achilles tendon stiffness (32%, P = 0.018), and increased Young's modulus (20%, P = 0.018). In vivo characterizations of calf muscles and Achilles tendon mechanical properties help us better understand treatment-induced changes of calf muscle-tendon and facilitate development of more effective treatments.  相似文献   

15.
Kim J  Chisholm BJ  Bahr J 《Biofouling》2007,23(1-2):113-120
Interactions between coating thickness, modulus and shear rate on pseudobarnacle adhesion to a platinum-cured silicone coating were studied using a statistical experimental design. A combined design method was used for two mixture components and two process variables. The two mixture components, vinyl end-terminated polydimethylsiloxanes (V21: MW=6 kg mole(-1) and V35: MW=4 9.5 kg mole(-1), Gelest Inc.) were mixed at five different levels to vary the modulus. The dry coating thickness was varied from 160 - 740 microm and shear tests were performed at four different shear rates (2, 7, 12, and 22 microm s(-1)). The results of the statistical analysis showed that the mixture components were significant factors on shear stress, showing an interaction with the process variable. For the soft silicone coating based on the high molecular weight polydimethylsiloxane (E=0.08 MPa), shear stress significantly increased as coating thickness decreased, while shear rate slightly impacted shear force especially at 160 microm coating thickness. As the modulus was increased (E=1.3 MPa), more force was required to detach the pseudobarnacle from the coatings, but thickness and rate dependence on shear stress became less important.  相似文献   

16.
Physical and mechanical properties of calf lumbosacral trabecular bone.   总被引:5,自引:0,他引:5  
The physical and mechanical properties of calf lumbar and sacral trabecular bone were determined and compared with those of human trabecular bone. The mean tissue density (1.66 +/- 0.12 g cm-3), equivalent mineral density (169 +/- 36 mg cm-3), apparent density (453 +/- 89 mg cm-3), ash density (194 +/- 59 mg cm-3), ash content (0.6 +/- 0.05%), compressive strength (7.1 +/- 3.0 MPa) and compressive modulus (173 +/- 97 MPa) of calf trabecular bone are similar to those of young human. There were moderate, positive linear correlations between apparent density and equivalent mineral density, ash density, and compressive strength; and between compressive strength and equivalent mineral density (R2 ranging from 0.35 to 0.48, p less than 0.001). Apparent density, ash density, and equivalent mineral density did not differ significantly in different regions. In contrast to humans, the compressive strength increased from posterior, near the facet, to the anterior vertebral body. These comparisons of physical and mechanical properties, as well as anatomical comparisons by others, indicate that the calf spine is a good model of the young non-osteoporotic human spine and thus useful for the testing of spinal instrumentation.  相似文献   

17.
This study was designed to compare the compressive mechanical properties of filler materials, Wood's metal, dental stone, and polymethylmethacrylate (PMMA), which are widely used for performing structural testing of whole vertebrae. The effect of strain rate and specimen size on the mechanical properties of the filler materials was examined using standardized specimens and mechanical testing. Because Wood's metal can be reused after remelting, the effect of remelting on the mechanical properties was tested by comparing them before and after remelting. Finite element (FE) models were built to simulate the effect of filler material size and properties on the stiffness of vertebral body construct in compression. Modulus, yield strain, and yield strength were not different between batches (melt-remelt) of Wood's metal. Strain rate had no effect on the modulus of Wood's metal, however, Young's modulus decreased with increasing strain rate in dental stone whereas increased in PMMA. Both Wood's metal and dental stone were significantly stiffer than PMMA (12.7 +/- 1.8 GPa, 10.4 +/- 3.4 GPa, and 2.9 +/- 0.4 GPa, respectively). PMMA had greater yield strength than Wood's metal (62.9 +/- 8.7 MPa and 26.2 +/- 2.6 MPa). All materials exhibited size-dependent modulus values. The FE results indicated that filler materials, if not accounted for, could cause more than 9% variation in vertebral body stiffness. We conclude that Wood's metal is a superior moldable bonding material for biomechanical testing of whole bones, especially whole vertebrae, compared to the other candidate materials.  相似文献   

18.
Failure to restore the mechanical properties of tissue at the repair site and its interface with host cartilage is a common problem in tissue engineering procedures to repair cartilage defects. Quantitative in vitro studies have helped elucidate mechanisms underlying processes leading to functional biomechanical changes. However, biomechanical assessment of tissue retrieved from in vivo studies of cartilage defect repair has been limited to compressive tests. Analysis of integration following in vivo repair has relied on qualitative histological methods. The objectives of this study were to develop a quantitative biomechanical method to assess (1) the tensile modulus of repair tissue and (2) its integration in vivo, as well as determine whether supplementation of transplanted chondrocytes with IGF-I affected these mechanical properties. Osteochondral blocks were obtained from a previous 8 month study on the effects of IGF-I on chondrocyte transplantation in the equine model. Tapered test specimens were prepared from osteochondral blocks containing the repair/native tissue interface and adjacently located blocks of intact native tissue. Specimens were then tested in uniaxial tension. The tensile modulus of repair tissue averaged 0.65 MPa, compared to the average of 5.2 MPa measured in intact control samples. Integration strength averaged 1.2 MPa, nearly half the failure strength of intact cartilage samples, 2.7 MPa. IGF-I treatment had no detectable effects on these mechanical properties. This represents the first quantitative biomechanical investigation of the tensile properties of repair tissue and its integration strength in an in vivo joint defect environment.  相似文献   

19.
Tendons are exposed to complex loading scenarios that can only be quantified by mathematical models, requiring a full knowledge of tendon mechanical properties. This study measured the anisotropic, nonlinear, elastic material properties of tendon. Previous studies have primarily used constant strain-rate tensile tests to determine elastic modulus in the fiber direction. Data for Poisson's ratio aligned with the fiber direction and all material properties transverse to the fiber direction are sparse. Additionally, it is not known whether quasi-static constant strain-rate tests represent equilibrium elastic tissue behavior. Incremental stress-relaxation and constant strain-rate tensile tests were performed on sheep flexor tendon samples aligned with the tendon fiber direction or transverse to the fiber direction to determine the anisotropic properties of toe-region modulus (E0), linear-region modulus (E), and Poisson's ratio (v). Among the modulus values calculated, only fiber-aligned linear-region modulus (E1) was found to be strain-rate dependent. The E1 calculated from the constant strain-rate tests were significantly greater than the value calculated from incremental stress-relaxation testing. Fiber-aligned toe-region modulus (E(1)0 = 10.5 +/- 4.7 MPa) and linear-region modulus (E1 = 34.0 +/- 15.5 MPa) were consistently 2 orders of magnitude greater than transverse moduli (E(2)0 = 0.055 +/- 0.044 MPa, E2 = 0.157 +/- 0.154 MPa). Poisson's ratio values were not found to be rate-dependent in either the fiber-aligned (v12 = 2.98 +/- 2.59, n = 24) or transverse (v21 = 0.488 +/- 0.653, n = 22) directions, and average Poisson's ratio values in the fiber-aligned direction were six times greater than in the transverse direction. The lack of strain-rate dependence of transverse properties demonstrates that slow constant strain-rate tests represent elastic properties in the transverse direction. However, the strain-rate dependence demonstrated by the fiber-aligned linear-region modulus suggests that incremental stress-relaxation tests are necessary to determine the equilibrium elastic properties of tendon, and may be more appropriate for determining the properties to be used in elastic mathematical models.  相似文献   

20.
To analyze the effects of decellularization on the biomechanical properties of porcine common carotid arteries, decellularization was performed by a detergent-enzymatic procedure that preserves extracellular matrix scaffold. Internal diameter, external diameter, and wall thickness were measured by optical microscopy on neighboring histological sections before and after decellularization. Rupture tests were conducted. Inner diameter and wall thickness were measured by echo tracking during pressure inflation from 10 to 145 mmHg. Distensibility and incremental elastic modulus were computed. At 10 mmHg, mean diameter of decellularized arteries was 5.38 mm, substantially higher than controls (4.1 mm), whereas decellularized and control arteries reached the same internal diameter (6.7 mm) at 145 mmHg. Wall thickness decreased 16% for decellularized and 32% for normal arteries after pressure was increased from 10 to 145 mmHg. Decellularized arteries withstood pressure >2,200 mmHg before rupture. At 145 mmHg, decellularization reduced compliance by 66% and increased incremental elastic modulus by 54%. Removal of cellular elements from media led to changes in arterial dimensions. Collagen fibers engaged more rapidly during inflation, yielding a stiffer vessel. Distensibility was therefore significantly lower (by a factor of 3) in decellularized than in normal vessels: reduced in the physiological range of pressures. In conclusion, decellularization yields vessels that can withstand high inflation pressures with, however, markedly different geometrical and biomechanical properties. This may mean that the potential use of a decellularized artery as a scaffold for the creation of xenografts may be compromised because of geometrical and compliance mismatch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号