首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The enzymatic properties of NADH:quinone oxidoreductase were examined in Triton X-100 extracts of Bacillus cereus membranes by using the artificial electron acceptors ubiquinone-1 and menadione. Membranes were prepared from B. cereus KCTC 3674 grown aerobically on a complex medium and oxidized with NADH exclusively, whereas deamino-NADH was determined to be poorly oxidized. The NADH oxidase activity was lost completely by solubilization of the membranes with Triton X-100. However, by using the artificial electron acceptors ubiquinone-1 and menadione, NADH oxidation could be observed. The activities of NADH:ubiquinone-1 and NADH:menadione oxidoreductase were enhanced approximately 8-fold and 4-fold, respectively, from the Triton X-100 extracted membranes. The maximum activity of FAD-dependent NADH:ubiquinone-1 oxidoreductase was obtained at about pH 6.0 in the presence of 0.1M NaCl, while the maximum activity of FAD-dependent NADH:menadione oxidoreductase was obtained at about pH 8.0 in the presence of 0.1 M NaCl. The activities of the NADH:ubiquinone-1 and NADH:menadione oxidoreductase were very resistant to such respiratory chain inhibitors as rotenone, capsaicin, and AgNO(3), whereas these activities were sensitive to 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). Based on these results, we suggest that the aerobic respiratory chain-linked NADH oxidase system of B. cereus KCTC 3674 possesses an HQNO-sensitive NADH:quinone oxidoreductase that lacks an energy coupling site containing FAD as a cofactor.  相似文献   

2.
The possible role of quinones in the electron transport system of Aerobacter aerogenes was investigated. The only quinone found in measurable amounts in bacteria grown in minimal media under both aerobic and anaerobic conditions was ubiquinone-8. Membrane-bound ubiquinone-8 could be removed by extraction with pentane, or destroyed by ultraviolet irradiation, with a concomitant loss of both reduced nicotinamide adenine dinucleotide (NADH) oxidase and NADH-linked respiratory nitrate reductase activity. In the extracted membrane preparations, these enzymatic activities could be restored, both to the same degree, by incorporation of ubiquinone-6, -8, or -10, but not by incorporation of menaquinones. The NADH oxidation and the nitrate reduction were sensitive to the respiratory inhibitors dicoumarol, lapachol, and cyanide. The results obtained indicate that ubiquinone-8 mediates the electron transport between NADH and oxygen as well as between NADH and nitrate. Branching of the electron transport chain to oxygen and nitrate occurs after an initial common pathway.  相似文献   

3.
External NADH and succinate were oxidized at similar rates by soybean (Glycine max) cotyledon and leaf mitochondria when the cytochrome chain was operating, but the rate of NADH oxidation via the alternative oxidase was only half that of succinate. However, measurements of the redox poise of the endogenous quinone pool and reduction of added quinones revealed that external NADH reduced them to the same, or greater, extent than did succinate. A kinetic analysis of the relationship between alternative oxidase activity and the redox state of ubiquinone indicated that the degree of ubiquinone reduction during external NADH oxidation was sufficient to fully engage the alternative oxidase. Measurements of NADH oxidation in the presence of succinate showed that the two substrates competed for cytochrome chain activity but not for alternative oxidase activity. Both reduced Q-1 and duroquinone were readily oxidized by the cytochrome oxidase pathway but only slowly by the alternative oxidase pathway in soybean mitochondria. In mitochondria isolated from the thermogenic spadix of Philodendron selloum, on the other hand, quinol oxidation via the alternative oxidase was relatively rapid; in these mitochondria, external NADH was also oxidized readily by the alternative oxidase. Antibodies raised against alternative oxidase proteins from Sauromatum guttatum cross-reacted with proteins of similar molecular size from soybean mitochondria, indicating similarities between the two alternative oxidases. However, it appears that the organization of the respiratory chain in soybean is different, and we suggest that some segregation of electron transport chain components may exist in mitochondria from nonthermogenic plant tissues.  相似文献   

4.
The plasma membrane NADH oxidase activity partially purified from the surface of HeLa cells exhibited hydroquinone oxidase activity. The preparations completely lacked NADH:ubiquinone reductase activity. However, in the absence of NADH, reduced coenzyme Q10 (Q10H2=ubiquinol) was oxidized at a rate of 15+/-6 nmol min-1 mg protein-1 depending on degree of purification. The apparent Km for Q10H2 oxidation was 33 microM. Activities were inhibited competitively by the cancer cell-specific NADH oxidase inhibitors, capsaicin and the antitumor sulfonylurea N-(4-methylphenylsulfonyl)-N'-(4-chlorophenyl)urea (LY181984). With coenzyme Q0, where the preparations were unable to carry out either NADH:quinone reduction or reduced quinone oxidation, quinol oxidation was observed with an equal mixture of the Q0 and Q0H2 forms. With the mixture, a rate of Q0H2 oxidation of 8-17 nmol min-1 mg protein-1 was observed with an apparent Km of 0.22 mM. The rate of Q10H2 oxidation was not stimulated by addition of equal amounts of Q10 and Q10H2. However, addition of Q0 to the Q10H2 did stimulate. The oxidation of Q10H2 proceeded with what appeared to be a two-electron transfer. The oxidation of Q0H2 may involve Q0, but the mechanism was not clear. The findings suggest the potential participation of the plasma membrane NADH oxidase as a terminal oxidase of plasma membrane electron transport from cytosolic NAD(P)H via naturally occurring hydroquinones to acceptors at the cell surface.  相似文献   

5.
The rate of reduction of ferricyanide in the presence and absence of antimycin and ubiquinone-1 was measured using liver mitochondria from control and glucagon treated rats. Glucagon treatment was shown to increase electron flow from both NADH and succinate to ubiquinone, and from ubiquinone to cytochrome c. 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) was shown to inhibit the oxidation of glutamate + malate to a much greater extent than that of succinate or duroquinol. Spectral and kinetic studies confirmed that electron flow between NADH and ubiquinone was the primary site of action but that the interaction of the ubiquinone pool with complex 3 was also affected. The effects of various respiratory chain inhibitors on the rate of uncoupled oxidation of succinate and glutamate + malate by control and glucagon treated mitochondria were studied. The stimulation of respiration seen in the mitochondria from glucagon treated rats was maintained or increased as respiration was progressively inhibited with DCMU, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), 2-heptyl-4-hydroxyquinoline-n-oxide (HQNO) and colletotrichin, but greatly reduced when inhibition was produced with malonate or antimycin. These data were also shown to support the conclusion that glucagon treatment may cause some stimulation of electron flow through NADH dehydrogenase, succinate dehydrogenase and through the bc1 complex, probably at the point of interaction of the complexes with the ubiquinone pool. The effects of glucagon treatment on duroquinol oxidation and the inhibitor titrations could not be mimicked by increasing the matrix volume, nor totally reversed by aging of mitochondria. These are both processes that have been suggested as the means by which glucagon exerts its effects on the respiratory chain (Armston, A.E., Halestrap, A.P. and Scott, R.D., 1982, Biochim. Biophys. Acta 681, 429-439). It is concluded that an additional mechanism for regulating electron flow must exist and a change in lipid peroxidation of the inner mitochondrial membrane is suggested.  相似文献   

6.
NADPH-dependent ubiquinone-1 reductase activity was present in the phagocytic vesicles of pig polymorphonuclear leucocytes. The apparent Km-value of the reductase for NADPH was 29 microM which is similar to that of the NADPH-dependent superoxide formation. Increase of the quinone-reductase activity by increasing the concentrations of ubiquinone-1 was associated with the decrease of the superoxide forming activity, the rate of the NADPH oxidation being constant independent of the quinone concentration. p-Chloromercuribenzoate inhibited both superoxide formation and reduction of the quinone, whereas low concentrations of cetyltrimethylammonium bromide which inhibit the superoxide formation did not inhibit the reduction of the quinone. The reduction of 2,6-dichlorophenolindophenol which has been shown not to be inhibited by both inhibitors. The quinone-reductase activity could be extracted with a mixture of deoxycholate and Tween 20 which extracts the superoxide forming activity. The observations indicate that a region of the superoxide-forming NADPH oxidase between a mercurial-sensitive site and a site sensitive to the cationic detergent is responsible for the reduction of ubiquinone.  相似文献   

7.
1. Whole cells of Methylomonas Pl1 contained ubiquinone, identified as ubiquinone-8. No naphthaquinone was detected. Ubiquinone was located predominantly in the particulate fraction, which also contained most of the NADH oxidase activity. 2. Aerobic incubation of cells with formaldehyde or methanol resulted in about 20% reduction of ubiquinone, irrespective of the presence or absence of dinitrophenol. On inhibition of the respiration by cyanide, ubiquinone became partly reduced by endogenous substrates (15--25%), and a further reduction occurred only in the presence of formaldehyde (up to 60%). When endogenous substrates were completely exhausted, then 44 and 23% of ubiquinone was reduced by formaldehyde or methanol respectively. 3. The difference spectra at room and liquid-N2 temperatures revealed the presence of cytochrome b and two cytochromes c (c-552.5 and c-549) all tightly bound to the membrane. Cytochrome c-552.5 was also found in the soluble fraction. 4. Redox changes of cytochromes b and c, with methanol or formaldehyde as substrates, respond to the aerobic and anaerobic states of the cell and to KCN inhibition in a manner characteristic of the electron carriers of the respiratory chain. 5. The merging point for electron transport from NADH dehydrogenase and formaldehyde dehydrogenase is suggested to be at the level of ubiquinone.  相似文献   

8.
Y J Kim  K B Song    S K Rhee 《Journal of bacteriology》1995,177(17):5176-5178
Membrane vesicles prepared from Zymomonas mobilis oxidized NADH exclusively, whereas deamino-NADH was little oxidized. In addition, the respiratory chain-linked NADH oxidase system exhibited only a single apparent Km value of approximately 66 microM for NADH. The NADH oxidase was highly sensitive to the respiratory chain inhibitor 2-heptyl-4-hydroxyquinoline-N-oxide. However, the NADH:quinone oxidoreductase was not sensitive to 2-heptyl-4-hydroxyquinoline-N-oxide and was highly resistant to another respiratory chain inhibitor, rotenone. Electron transfer from NADH to oxygen generated a proton electrochemical gradient (inside positive) in inside-out membrane vesicles. In contrast, electron transfer from NADH to ubiquinone-1 generated no electrochemical gradient. These findings indicate that Z. mobilis possesses only NADH:quinone oxidoreductase lacking the energy coupling site.  相似文献   

9.
Intact pigeon heart mitochondria showed 10-30% ubiquinone reduction in the absence of substrates. This reduction could not be ascribed to endogenous substrates, as judged by lack of effect of inhibitors and uncouplers and by the very low endogenous respiratory rate. Addition of NADH in the presence of antimycin caused further reduction of about 10% ubiquinone, apparently coupled to the rotenone- and antimycin-sensitive exo-NADH oxidase system [Rasmussen (1969) FEBS Lett. 2, 157-162]. Citric acid cycle substrates reduced most of the remaining ubiquinone in the presence of antimycin; 15-20% of the total ubiquinone content was still in the oxidized form under the most reducing conditions. Three pools of ubiquinone therefore appeared to be present in heart mitochondria: a metabolically inactive pool consisting of reduced as well as oxidized ubiquinone, a pool coupled to oxidation of added (cytoplasmic) NADH, and the well-known pool coupled to citric acid cycle oxidations. Ferricyanide selectively oxidized the ubiquinol reduced by added NADH, indicating that this pool is situated on the outer surface of the mitochondrial inner membrane. Ubiquinone reduction levels were determined with a new method, which is described in detail.  相似文献   

10.
D-Glucose dehydrogenase is a pyrroloquinoline quinone-dependent oxidoreductase linked to the respiratory chain of a wide variety of bacteria. There is a controversy as to whether the glucose dehydrogenase is linked to the respiratory chain via ubiquinone or cytochrome b. In this study, it was shown that the glucose dehydrogenase of Gluconobacter suboxydans has the ability to react directly with ubiquinone. The enzyme purified from the membranes of G. suboxydans was able to react with ubiquinone homologues such as ubiquinone-1, -2, or -6 in detergent solution. Furthermore, in order to demonstrate the reactivity of the enzyme with native ubiquinone, ubiquinone-10, in the native membranous environment, the dehydrogenase was reconstituted together with cytochrome o, the terminal oxidase of the respiratory chain, into a phospholipid bilayer containing ubiquinone-10. The proteoliposomes thus reconstituted exhibited a reasonable glucose oxidase activity, the electron transfer reaction of which was able to generate a membrane potential and a pH gradient. Thus, D-glucose dehydrogenase of G. suboxydans has been demonstrated to donate electrons directly to ubiquinone in the respiratory chain.  相似文献   

11.
The coupling of the quinoprotein glucose dehydrogenase to the electron transport chain has been investigated in Acinetobacter calcoaceticus. No evidence was obtained to support a previous suggestion that the soluble form of the dehydrogenase and the soluble cytochrome b associated with it are involved in the oxidation of glucose. Analysis of cytochrome content, and of reduction of cytochromes in membranes by substrates, and of sensitivity to cyanide indicated that glucose, succinate and NADH are all oxidized by way of the same b-type cytochrome(s) and cytochrome oxidases (cytochrome o and cytochrome d). Mixed inhibition studies [with KCN and hydroxyquinoline N-oxide (HQNO)] showed that the b-type cytochrome(s) formed a binary complex with the o-type oxidase and that there was thus no communication between the electron transport chains at the cytochrome level. Measurements of the reduction of ubiquinone-9 by glucose and NADH, and inhibitor studies using HQNO, indicated that the ubiquinone mediates electron transport from both the glucose and NADH dehydrogenases. In some conditions the quinone pool facilitated communication between the 'glucose oxidase' and 'NADH oxidase' electron transport chains, but in normal conditions these chains were kinetically distinct.  相似文献   

12.
The NADH-ubiquinone reductase activity of the respiratory chains of several organisms was inhibited by capsaicin and dihydrocapsaicin, which are the pungent principles of red pepper. This inhibition was correlated with the presence of an energy transducing site in this segment of the respiratory chain. Where the NADH-quinone oxidoreductase segment involved an energy coupling site (e.g., in Paracoccus denitrificans, Escherichia coli, and Thermus thermophilus HB-8 membranes and bovine heart mitochondria), capsaicin acted as an inhibitor of ubiquinone reduction by NADH. In contrast, where this energy coupling site was absent (e.g., in Saccharomyces cerevisiae mitochondria and Bacillus subtilis membranes), there was no inhibition of NADH-ubiquinone reductase activity by capsaicin. The capsaicin inhibition of Paracoccus membranes was reversed by washing the membranes with medium containing bovine serum albumin. In the E. coli and Paracoccus membranes and bovine submitochondrial particles, capsaicin acted as a noncompetitive inhibitor for ubiquinone-1 at lower concentrations of ubiquinone-1 (less than 20 microM) and as a competitive inhibitor at higher concentrations of ubiquinone-1 (greater than 50 microM). In addition, the concentrations of capsaicin required for 50% inhibition of NADH oxidase activity of bovine submitochondrial particles were increased when ubiquinone-10 was added to the particles. The mechanism by which capsaicin inhibits the energy-transducing NADH-quinone oxidoreductase is discussed.  相似文献   

13.
Membranes of Klebsiella pneumoniae, grown anaerobically on citrate, contain a NADH oxidase activity that is activated specifically by Na+ or Li+ ions and effectively inhibited by 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). Cytochromes b and d were present in the membranes, and the steady state reduction level of cytochrome b increased on NaCl addition. Inverted bacterial membrane vesicles accumulated Na+ ions upon NADH oxidation. Na+ uptake was completely inhibited by monensin and by HQNO and slightly stimulated by carbonylcyanide-p-trifluoromethoxy phenylhydrazone (FCCP), thus indicating the operation of a primary Na+ pump. A Triton extract of the bacterial membranes did not catalyze NADH oxidation by O2, but by ferricyanide or menadione in a Na+-independent manner. The Na+-dependent NADH oxidation by O2 was restored by adding ubiquinone-1 in micromolar concentrations. After inhibition of the terminal oxidase with KCN, ubiquinol was formed from ubiquinone-1 and NADH. The reaction was stimulated about 6-fold by 10 mM NaCl and was severely inhibited by low amounts of HQNO. Superoxide radicals were formed during electron transfer from NADH to ubiquinone-1. These radicals disappeared by adding NaCl, but not with NaCl and HQNO. It is suggested that the superoxide radicals arise from semiquinone radicals which are formed by one electron reduction of quinone in a Na+-independent reaction sequence and then dismutate in a Na+ and HQNO sensitive reaction to quinone and quinol. The mechanism of the respiratory Na+ pump of K. pneumoniae appears to be quite similar to that of Vibrio alginolyticus.  相似文献   

14.
D-Glucose dehydrogenase is a pyrroloquinoline quinone-dependent primary dehydrogenase linked to the respiratory chain of a wide variety of bacteria. The enzyme exists in the membranes of Escherichia coli, mainly as an apoenzyme which can be activated by the addition of pyrroloquinoline quinone and magnesium. Thus, membrane vesicles of E. coli can oxidize D-glucose to gluconate and generate an electrochemical proton gradient in the presence of pyrroloquinoline quinone. The D-glucose oxidase-respiratory chain was reconstituted into proteoliposomes, which consisted of two proteins purified from E. coli membranes, D-glucose dehydrogenase and cytochrome o oxidase, and E. coli phospholipids containing ubiquinone 8. The electron transfer rate during D-glucose oxidation and the membrane potential generation in the reconstituted proteoliposomes were almost the same as those observed in the membrane vesicles when pyrroloquinoline quinone was added. The results demonstrate that the quinoprotein, D-glucose dehydrogenase, can reduce ubiquinone 8 directly within phospholipid bilayer and that the D-glucose oxidase system of E. coli has a relatively simple respiratory chain consisting of primary dehydrogenase, ubiquinone 8, and a terminal oxidase.  相似文献   

15.
Beyer RE  Peters GA  Ikuma H 《Plant physiology》1968,43(9):1395-1400
A procedure for the isolation of submitochondrial particles in quantity from etiolated Mung bean (Phaseolus aureus) seedlings is described. Using a combination of acetone extraction and 2 systems of thin layer chromatography ubiquinone has been isolated. The isolated ubiquinone migrates coincident with authentic ubiquinone-10 in reversed phase thin layer partition chromatography, gives a positive Craven's test, and has oxidized and reduced spectra characteristic of ubiquinone. The quinone is partially reduced under steady-state electron transfer conditions with both succinate and NADH as substrates and is almost completely reduced under anaerobic conditions with either substrate. The concentration of ubiquinone in the particle is of the order of 4.4 mμmoles per mg particle protein, approximately equal to that found in similar submitochondrial particles from beef heart. It is tentatively concluded that ubiquinone-10 is a functional member of the mitochondrial electron transfer chain of Phaseolus aureus.  相似文献   

16.
In Acanthamoeba castellanii mitochondria, the apparent affinity values of alternative oxidase for oxygen were much lower than those for cytochrome c oxidase. For unstimulated alternative oxidase, the K(Mox) values were around 4-5 microM both in mitochondria oxidizing 1 mM external NADH or 10 mM succinate. For alternative oxidase fully stimulated by 1 mM GMP, the KK(Mox) values were markedly different when compared to those in the absence of GMP and they varied when different respiratory substrates were oxidized (K(Mox) was around 1.2 microM for succinate and around 11 microM for NADH). Thus, with succinate as a reducing substrate, the activation of alternative oxidase (with GMP) resulted in the oxidation of the ubiquinone pool, and a corresponding decrease in K(Mox). However, when external NADH was oxidized, the ubiquinone pool was further reduced (albeit slightly) with alternative oxidase activation, and the K(Mox) increased dramatically. Thus, the apparent affinity of alternative oxidase for oxygen decreased when the ubiquinone reduction level increased either by changing the activator or the respiratory substrate availability.  相似文献   

17.
Na(+) is the second major coupling ion at membranes after protons, and many pathogenic bacteria use the sodium-motive force to their advantage. A prominent example is Vibrio cholerae, which relies on the Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR) as the first complex in its respiratory chain. The Na(+)-NQR is a multisubunit, membrane-embedded NADH dehydrogenase that oxidizes NADH and reduces quinone to quinol. Existing models describing redox-driven Na(+) translocation by the Na(+)-NQR are based on the assumption that the pump contains four flavins and one FeS cluster. Here we show that the large, peripheral NqrA subunit of the Na(+)-NQR binds one molecule of ubiquinone-8. Investigations of the dynamic interaction of NqrA with quinones by surface plasmon resonance and saturation transfer difference NMR reveal a high affinity, which is determined by the methoxy groups at the C-2 and C-3 positions of the quinone headgroup. Using photoactivatable quinone derivatives, it is demonstrated that ubiquinone-8 bound to NqrA occupies a functional site. A novel scheme of electron transfer in Na(+)-NQR is proposed that is initiated by NADH oxidation on subunit NqrF and leads to quinol formation on subunit NqrA.  相似文献   

18.
H A Dailey  Jr 《Journal of bacteriology》1976,127(3):1286-1291
The membrane-bound respiratory system of the gram-negative bacterium Spirillum itersonii was investigated. It contains cytochromes b (558), c (550), and o (558) and beta-dihydro-nicotinamide adenine dinucleotide (NADH) and succinate oxidase activities under all growth conditions. It is also capable of producing D-lactate and alpha-glycerophosphate dehydrogenases when grown with lactate or glycerol as sole carbon source. Membrane-bound malate dehydrogenase was not detectable under any conditions, although there is high activity of soluble nicotinamide adenine dinucleotide: malate dehydrogenase. When grown with oxygen as the sole terminal electron acceptor, approximately 60% of the total b-type cytochrome is present as cytochrome o, whereas only 40% is present as cytochrome o in cells grown with nitrate in the presence of oxygen. Both NADH and succinate oxidase are inhibited by azide, cyanide, antimycin A, and 2-n-heptyl-4-hydroxyquinoline-N-oxidase at low concentrations. The ability of these inhibitors to completely inhibit oxidase activity at low concentrations and their effects upon the aerobic steady-state reduction levels of b- and c-type cytochromes as well as the aerobic steady-state reduction levels obtained with NADH, succinate, and ascorbate-dichlorophenolindophenol suggest that presence of an unbranched respiratory chain in S. itersonii with the order ubiquinone leads to b leads to c leads to c leads to oxygen.  相似文献   

19.
Shi H  Noguchi N  Xu Y  Niki E 《FEBS letters》1999,461(3):196-200
We have studied the interaction of coenzyme Q with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its metabolites, 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP(+)) and 1-methyl-4-phenylpyridinium (MPP(+)), the real neurotoxin to cause Parkinson's disease. Incubation of MPTP or MPDP(+) with rat brain synaptosomes induced complete reduction of endogenous ubiquinone-9 and ubiquinone-10 to corresponding ubiquinols. The reduction occurred in a time- and MPTP/MPDP(+) concentration-dependent manner. The reduction of ubiquinone induced by MPDP(+) went much faster than that by MPTP. MPTP did not reduce liposome-trapped ubiquinone-10, but MPDP(+) did. The real toxin MPP(+) did not reduce ubiquinone in either of the systems. The reduction by MPTP but not MPDP(+) was completely prevented by pargyline, a type B monoamine oxidase (MAO-B) inhibitor, in the synaptosomes. The results indicate that involvement of MAO-B is critical for the reduction of ubiquinone by MPTP but that MPDP(+) is a reductant of ubiquinone per se. It is suggested that ubiquinone could be an electron acceptor from MPDP(+) and promote the conversion from MPDP(+) to MPP(+) in vivo, thus accelerating the neurotoxicity of MPTP.  相似文献   

20.
The effects of ubiquinol and vitamin E on ascorbate- and ADP-Fe3+-induced lipid peroxidation were investigated by measuring oxygen consumption and malondialdehyde formation in beef heart submitochondrial particles. In the native particles, lipid peroxidation showed an initial lag phase, which was prolonged by increasing concentrations of ascorbate. Lipid peroxidation in these particles was almost completely inhibited by conditions leading to a reduction of endogenous ubiquinone, such as the addition of succinate or NADH in the presence of antimycin. Lyophilization of the particles followed by three or four consecutive extractions with pentane resulted in a complete removal of vitamin E and a virtually complete removal of ubiquinone, as revealed by reversed-phase high pressure liquid chromatography. In these particles, lipid peroxidation showed no significant lag phase and was not inhibited by either increasing concentrations of ascorbate or conditions leading to ubiquinone reduction. Treatment of the particles with a pentane solution of vitamin E (alpha-tocopherol) restored the lag phase and its prolongation by increasing ascorbate concentrations. Treatment of the extracted particles with pentane containing ubiquinone-10 resulted in a restoration of the inhibition of lipid peroxidation by succinate or NADH in the presence of antimycin, but not the initial lag phase or its prolongation by increasing concentrations of ascorbate. Malonate and rotenone, which prevent the reduction of ubiquinone by succinate and NADH, respectively, abolished, as expected, the inhibition of the initiation of lipid peroxidation in both native and ubiquinone-10-supplemented particles. Reincorporation of both vitamin E and ubiquinone-10 restored both effects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号