共查询到20条相似文献,搜索用时 0 毫秒
1.
Pericentrin and γ-Tubulin Form a Protein Complex and Are Organized into a Novel Lattice at the Centrosome 下载免费PDF全文
Jason B. Dictenberg Wendy Zimmerman Cynthia A. Sparks Aaron Young Charles Vidair Yixian Zheng Walter Carrington Fredric S. Fay Stephen J. Doxsey 《The Journal of cell biology》1998,141(1):163-174
Pericentrin and γ-tubulin are integral centrosome proteins that play a role in microtubule nucleation and organization. In this study, we examined the relationship between these proteins in the cytoplasm and at the centrosome. In extracts prepared from Xenopus eggs, the proteins were part of a large complex as demonstrated by sucrose gradient sedimentation, gel filtration and coimmunoprecipitation analysis. The pericentrin–γ-tubulin complex was distinct from the previously described γ-tubulin ring complex (γ-TuRC) as purified γ-TuRC fractions did not contain detectable pericentrin. When assembled at the centrosome, the two proteins remained in close proximity as shown by fluorescence resonance energy transfer. The three- dimensional organization of the centrosome-associated fraction of these proteins was determined using an improved immunofluorescence method. This analysis revealed a novel reticular lattice that was conserved from mammals to amphibians, and was organized independent of centrioles. The lattice changed dramatically during the cell cycle, enlarging from G1 until mitosis, then rapidly disassembling as cells exited mitosis. In cells colabeled to detect centrosomes and nucleated microtubules, lattice elements appeared to contact the minus ends of nucleated microtubules. Our results indicate that pericentrin and γ-tubulin assemble into a unique centrosome lattice that represents the higher-order organization of microtubule nucleating sites at the centrosome. 相似文献
2.
Function of the Tetraspanin CD151–α6β1 Integrin
Complex during Cellular Morphogenesis 总被引:5,自引:0,他引:5 下载免费PDF全文
Xin A. Zhang Alexander R. Kazarov Xiuwei Yang Alexa L. Bontrager Christopher S. Stipp Martin E. Hemler 《Molecular biology of the cell》2002,13(1):1-11
Upon plating on basement membrane Matrigel, NIH3T3 cells formed an anastomosing network of cord-like structures, inhibitable by anti-alpha6beta1 integrin antibodies. For NIH3T3 cells transfected with human CD151 protein, the formation of a cord-like network was also inhibitable by anti-CD151 antibodies. Furthermore, CD151 and alpha6beta1 were physically associated within NIH3T3 cells. On removal of the short 8-amino acid C-terminal CD151 tail (by deletion or exchange), exogenous CD151 exerted a dominant negative effect, as it almost completely suppressed alpha6beta1-dependent cell network formation and NIH3T3 cell spreading on laminin-1 (an alpha6beta1 ligand). Importantly, mutant CD151 retained alpha6beta1 association and did not alter alpha6beta1-mediated cell adhesion to Matrigel. In conclusion, the CD151-alpha6beta1 integrin complex acts as a functional unit that markedly influences cellular morphogenesis, with the CD151 tail being of particular importance in determining the "outside-in" functions of alpha6beta1-integrin that follow ligand engagement. Also, antibodies to alpha6beta1 and CD151 inhibited formation of endothelial cell cord-like networks, thus pointing to possible relevance of CD151-alpha6beta1 complexes during angiogenesis. 相似文献
3.
Julie E. Archer Margaret Magendantz Leticia R. Vega Frank Solomon 《Molecular and cellular biology》1998,18(3):1757-1762
The yeast protein Rbl2p suppresses the deleterious effects of excess β-tubulin as efficiently as does α-tubulin. Both in vivo and in vitro, Rbl2p forms a complex with β-tubulin that does not contain α-tubulin, thus defining a second pool of β-tubulin in the cell. Formation of the complex depends upon the conformation of β-tubulin. Newly synthesized β-tubulin can bind to Rbl2p before it binds to α-tubulin. Rbl2p can also bind β-tubulin from the α/β-tubulin heterodimer, apparently by competing with α-tubulin. The Rbl2p–β-tubulin complex has a half-life of ~2.5 h and is less stable than the α/β-tubulin heterodimer. The results of our experiments explain both how excess Rbl2p can rescue cells overexpressing β-tubulin and how it can be deleterious in a wild-type background. They also suggest that the Rbl2p–β-tubulin complex is part of a cellular mechanism for regulating the levels and dimerization of tubulin chains. 相似文献
4.
Assembly of the α-Globin mRNA Stability Complex Reflects Binary Interaction between the Pyrimidine-Rich 3′ Untranslated Region Determinant and Poly(C) Binding Protein αCP 下载免费PDF全文
Alexander N. Chkheidze Dmitry L. Lyakhov Alexander V. Makeyev Julia Morales Jian Kong Stephen A. Liebhaber 《Molecular and cellular biology》1999,19(7):4572-4581
Globin mRNAs accumulate to 95% of total cellular mRNA during terminal erythroid differentiation, reflecting their extraordinary stability. The stability of human alpha-globin mRNA is paralleled by formation of a sequence-specific RNA-protein (RNP) complex at a pyrimidine-rich site within its 3' untranslated region (3'UTR), the alpha-complex. The proteins of the alpha-complex are widely expressed. The alpha-complex or a closely related complex also assembles at pyrimidine-rich 3'UTR segments of other stable mRNAs. These data suggest that the alpha-complex may constitute a general determinant of mRNA stability. One or more alphaCPs, members of a family of hnRNP K-homology domain poly(C) binding proteins, are essential constituents of the alpha-complex. The ability of alphaCPs to homodimerize and their reported association with additional RNA binding proteins such as AU-rich binding factor 1 (AUF1) and hnRNP K have suggested that the alpha-complex is a multisubunit structure. In the present study, we have addressed the composition of the alpha-complex. An RNA titration recruitment assay revealed that alphaCPs were quantitatively incorporated into the alpha-complex in the absence of associated AUF1 and hnRNP K. A high-affinity direct interaction between each of the three major alphaCP isoforms and the alpha-globin 3'UTR was detected, suggesting that each of these proteins might be sufficient for alpha-complex assembly. This sufficiency was further supported by the sequence-specific binding of recombinant alphaCPs to a spectrum of RNA targets. Finally, density sedimentation analysis demonstrated that the alpha-complex could accommodate only a single alphaCP. These data established that a single alphaCP molecule binds directly to the alpha-globin 3'UTR, resulting in a simple binary structure for the alpha-complex. 相似文献
5.
6.
Nancy A. Eckardt 《The Plant cell》2006,18(6):1327-1329
7.
A Function for Phosphatidylinositol 3-Kinase β (p85α-p110β) in Fibroblasts during Mitogenesis: Requirement for Insulin- and Lysophosphatidic Acid-Mediated Signal Transduction 下载免费PDF全文
Serge Roche J. Downward Patrick Raynal Sara A. Courtneidge 《Molecular and cellular biology》1998,18(12):7119-7129
We have previously shown that phosphatidylinositol 3-kinase α (PI 3-Kα) (p85α-p110α) is required for DNA synthesis induced by various growth factors (S. Roche, M. Koegl, and S. A. Courtneidge, Proc. Natl. Acad. Sci. USA 91:9185–9189, 1994) in fibroblasts. In the present study, we have investigated the function of PI 3-Kβ (p85α-p110β) during mitogenesis. By using antibodies specific to p110β we showed that PI 3-Kβ is expressed in NIH 3T3 cells. PI 3-Kβ and PI 3-Kα have common features: PI 3-Kβ is tightly associated with a protein serine kinase that phosphorylates p85α, it interacts with the Src-middle T antigen complex and the activated platelet-derived growth factor (PDGF) receptor in fibroblasts in vivo, and it becomes tyrosine phosphorylated after PDGF stimulation. PI 3-Kβ was also activated in Swiss 3T3 and Cos7 cells stimulated with lysophosphatidic acid (LPA), a mitogen that interacts with a heterotrimeric G protein-coupled receptor. In contrast PI 3-Kα was activated to a lesser extent in these cells. Microinjection of neutralizing antibodies specific for p110β into quiescent fibroblasts inhibited DNA synthesis induced by both insulin and LPA but poorly affected PDGF receptor signaling. Therefore, PI 3-Kβ plays an important role in transmitting the mitogenic response induced by some, but not all, growth factors. Finally, we show that while oncogenic V12Ras interacts with type I PI 3-Ks, it could induce DNA synthesis in the absence of active PI 3-Kα and PI 3-Kβ, suggesting that Ras uses other effectors for DNA synthesis. 相似文献
8.
9.
Mithila Tennakoon Kanishka Senarath Dinesh Kankanamge Deborah N. Chadee Ajith Karunarathne 《Molecular biology of the cell》2021,32(16):1446
G protein beta-gamma (Gβγ) subunits anchor to the plasma membrane (PM) through the carboxy-terminal (CT) prenyl group in Gγ. This interaction is crucial for the PM localization and functioning of Gβγ, allowing GPCR-G protein signaling to proceed. The diverse Gγ family has 12 members, and we have recently shown that the signaling efficacies of major Gβγ effectors are Gγ-type dependent. This dependency is due to the distinct series of membrane-interacting abilities of Gγ. However, the molecular process allowing for Gβγ subunits to exhibit a discrete and diverse range of Gγ-type–dependent membrane affinities is unclear and cannot be explained using only the type of prenylation. The present work explores the unique designs of membrane-interacting CT residues in Gγ as a major source for this Gγ-type–dependent Gβγ signaling. Despite the type of prenylation, the results show signaling efficacy at the PM, and associated cell behaviors of Gβγ are governed by crucially located specific amino acids in the five to six residue preprenylation region of Gγ. The provided molecular picture of Gγ–membrane interactions may explain how cells gain Gγ-type–dependent G protein-GPCR signaling as well as how Gβγ elicits selective signaling at various subcellular compartments. 相似文献
10.
A Three-dimensional Collagen Lattice Induces Protein Kinase C-ζ Activity: Role in α2 Integrin and Collagenase mRNA Expression 下载免费PDF全文
A three-dimensional collagen lattice can provide skin fibroblasts with a cell culture environment that simulates normal dermis. Such a collagen matrix environment regulates interstitial collagenase (type I metalloproteinase [MMP-1], collagenase-1) and collagen receptor α2 subunit mRNA expression in both unstimulated or platelet-derived growth factor–stimulated dermal fibroblasts (Xu, J., and R.A.F. Clark. 1996. J. Cell Biol. 132:239–249). Here we report that the collagen gel can signal protein kinase C (PKC)-ζ activation in human dermal fibroblasts. An in vitro kinase assay demonstrated that autophosphorylation of PKC-ζ immunoprecipitates was markedly increased by a collagen matrix. In contrast, no alteration in PKC-ζ protein levels or intracellular location was observed. DNA binding activity of nuclear factor κB (NF-κB), a downstream regulatory target of PKC-ζ, was also increased by fibroblasts grown in collagen gel. The composition of the NF-κB/Rel complexes that contained p50, was not changed. The potential role of PKC-ζ in collagen gel–induced mRNA expression of collagen receptor α2 subunit and human fibroblast MMP-1 was assessed by the following evidence. Increased levels of α2 and MMP-1 mRNA in collagen gel–stimulated fibroblasts were abrogated by bisindolylmaleimide GF 109203X and calphostin C, chemical inhibitors for PKC, but retained when cells were depleted of 12-myristate 13-acetate (PMA)–inducible PKC isoforms by 24 h of pretreatment with phorbol PMA. Antisense oligonucleotides complementary to the 5′ end of PKC-ζ mRNA sequences significantly reduced the collagen lattice–stimulated α2 and MMP-1 mRNA levels. Taken together, these data indicate that PKC-ζ, a PKC isoform not inducible by PMA or diacylglycerol, is a component of collagen matrix stimulatory pathway for α2 and MMP-1 mRNA expression. Thus, a three-dimensional collagen lattice maintains the dermal fibroblast phenotype, in part, through the activation of PKC-ζ. 相似文献
11.
Degradation of Starch–Poly(β-Hydroxybutyrate-Co-β-Hydroxyvalerate) Bioplastic in Tropical Coastal Waters 下载免费PDF全文
S. H. Imam S. H. Gordon R. L. Shogren T. R. Tosteson N. S. Govind R. V. Greene 《Applied microbiology》1999,65(2):431-437
Extruded bioplastic was prepared from cornstarch or poly(β-hydroxybutyrate-co-β-hydroxyvalerate) (PHBV) or blends of cornstarch and PHBV. The blended formulations contained 30 or 50% starch in the presence or absence of polyethylene oxide (PEO), which enhances adherence of starch granules to PHBV. Degradation of these formulations was monitored for 1 year at four stations in coastal water southwest of Puerto Rico. Two stations were within a mangrove stand. The other two were offshore; one of these stations was on a shallow shoulder of a reef, and the other was at a location in deeper water. Microbial enumeration at the four stations revealed considerable flux in the populations over the course of the year. However, in general, the overall population densities were 1 order of magnitude less at the deeper-water station than at the other stations. Starch degraders were 10- to 50-fold more prevalent than PHBV degraders at all of the stations. Accordingly, degradation of the bioplastic, as determined by weight loss and deterioration of tensile properties, correlated with the amount of starch present (100% starch >50% starch > 30% starch > 100% PHBV). Incorporation of PEO into blends slightly retarded the rate of degradation. The rate of loss of starch from the 100% starch samples was about 2%/day, while the rate of loss of PHBV from the 100% PHBV samples was about 0.1%/day. Biphasic weight loss was observed for the starch-PHBV blends at all of the stations. A predictive mathematical model for loss of individual polymers from a 30% starch–70% PHBV formulation was developed and experimentally validated. The model showed that PHBV degradation was delayed 50 days until more than 80% of the starch was consumed and predicted that starch and PHBV in the blend had half-lives of 19 and 158 days, respectively. Consistent with the relatively low microbial populations, bioplastic degradation at the deeper-water station exhibited an initial lag period, after which degradation rates comparable to the degradation rates at the other stations were observed. Presumably, significant biodegradation occurred only after colonization of the plastic, a parameter that was dependent on the resident microbial populations. Therefore, it can be reasonably inferred that extended degradation lags would occur in open ocean water where microbes are sparse. 相似文献
12.
13.
Vinculin Is Part of the Cadherin–Catenin Junctional Complex: Complex Formation between α-Catenin and Vinculin 下载免费PDF全文
Elisabeth E. Weiss Martina Kroemker Angelika-H. Rüdiger Brigitte M. Jockusch Manfred Rüdiger 《The Journal of cell biology》1998,141(3):755-764
In epithelial cells, α-, β-, and γ-catenin are involved in linking the peripheral microfilament belt to the transmembrane protein E-cadherin. α-Catenin exhibits sequence homologies over three regions to vinculin, another adherens junction protein. While vinculin is found in cell–matrix and cell–cell contacts, α-catenin is restricted to the latter. To elucidate, whether vinculin is part of the cell–cell junctional complex, we investigated complex formation and intracellular targeting of vinculin and α-catenin. We show that α-catenin colocalizes at cell–cell contacts with endogenous vinculin and also with the transfected vinculin head domain forming immunoprecipitable complexes. In vitro, the vinculin NH2-terminal head binds to α-catenin, as seen by immunoprecipitation, dot overlay, cosedimentation, and surface plasmon resonance measurements. The Kd of the complex was determined to 2–4 × 10−7 M. As seen by overlays and affinity mass spectrometry, the COOH-terminal region of α-catenin is involved in this interaction. 相似文献
14.
15.
Assembly and Kinetic Folding Pathways of a Tetrameric β-Sheet Complex: Molecular Dynamics Simulations on Simplified Off-Lattice Protein Models 下载免费PDF全文
We have performed discontinuous molecular dynamic simulations of the assembly and folding kinetics of a tetrameric β-sheet complex that contains four identical four-stranded antiparallel β-sheet peptides. The potential used in the simulation is a hybrid Go-type potential characterized by the bias gap parameter g, an artificial measure of a model protein's preference for its native state, and the intermolecular contact parameter η, which measures the ratio of intermolecular to intramolecular native attractions. The formation of the β-sheet complex and its equilibrium properties strongly depend on the size of the intermolecular contact parameter η. The ordered β-sheet complex in the folded state and nonaligned β-sheets or tangled chains in the misfolded state are distinguished by measuring the squared radius of gyration and the fraction of native contacts Q. The folding yield for the folded state is high at intermediate values of η, but is low at both small and large values of η. The folded state at small η is liquid-like, but is solid-like at both intermediate and large η. The misfolded state at small η contains nonaligned β-sheets and tangled chains with poor secondary structure at large η. Various folding pathways via dimeric and trimeric intermediates are observed, depending on η. Comparison with experimental results on protein aggregation indicates that intermediate η values are most appropriate for modeling fibril formation and small η values are most appropriate for modeling the formation of amorphous aggregates. 相似文献
16.
γ Subunit of the AP-1 Adaptor Complex Binds Clathrin:
Implications for Cooperative Binding in Coated Vesicle Assembly 下载免费PDF全文
The heterotetrameric AP-1 adaptor complex is involved in the assembly of clathrin-coated vesicles originating from the trans-Golgi network (TGN). The beta 1 subunit of AP-1 is known to contain a consensus clathrin binding sequence, LLNLD (the so-called clathrin box motif), in its hinge segment through which the beta chain interacts with the N-terminal domains of clathrin trimers. Here, we report that the hinge region of the gamma subunit of human and mouse AP-1 contains two copies of a new variant, LLDLL, of the clathrin box motif that also bind to the terminal domain of the clathrin heavy chain. High-affinity binding of the gamma hinge to clathrin trimers requires both LLDLL sequences to be present and the spacing between them to be maintained. We also identify an independent clathrin-binding site within the appendage domain of the gamma subunit that interacts with a region of clathrin other than the N-terminal domain. Clathrin polymerization is promoted by glutathione S-transferase (GST)-gamma hinge, but not by GST-gamma appendage. However, the hinge and appendage domains of gamma function in a cooperative manner to recruit and polymerize clathrin, suggesting that clathrin lattice assembly at the TGN involves multivalent binding of clathrin by the gamma and beta1 subunits of AP-1. 相似文献
17.
18.
19.