首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of 3-alkyl-7-substituted-1,2,3,4-tetrahydroisoquinolines was synthesized and these compounds were evaluated for their PNMT inhibitory potency and affinity for the alpha2-adrenoceptor. 7-Nitro-, 7-bromo-, 7-aminosulfonyl-, or 7-N-2,2,2-trifluoroethylaminosulfonyl-THIQs that possess a 3-alkyl substituent that is longer than a methyl group showed decreased PNMT inhibitory potency, except for 3-propyl-7-aminosulfonyl-THIQ, which displayed excellent PNMT inhibitory potency. The rank order for selectivity (PNMT vs the alpha2-adrenoceptor) is 3-alkyl-7-aminosulfonyl-THIQs congruent with 3-alkyl-7-N-2,2,2-trifluoroethylaminosulfonyl-THIQs>3-alkyl-7-nitro-THIQs>3-alkyl-7-bromo-THIQs.  相似文献   

2.
A series of 3-trifluoromethyl-1,2,3,4-tetrahydroisoquinolines was synthesized and evaluated for their phenylethanolamine N-methyltransferase (PNMT) inhibitory potency and affinity for the alpha(2)-adrenoceptor. Although their PNMT inhibitory potency decreased compared with corresponding 3-methyl-, 3-hydroxymethyl- or 3-unsubstituted-THIQs, some of them showed good selectivity due to their extremely low alpha(2)-adrenoceptor affinity.  相似文献   

3.
2,3,4,5-Tetrahydro-1H-2-benzazepine (THBA; 1) is nearly 100-fold more selective an inhibitor of phenylethanolamine N-methyltransferase (PNMT, EC 2.1.1.28) versus the alpha2-adrenoceptor than is 1,2,3,4-tetrahydroisoquinoline (THIQ; 2) (1: PNMT K(i)= 3.3 microM, alpha2-adrenoceptor K(i) = 11 microM, selectivity [alpha2 K(i)/PNMT K(i)] = 3.3; 2: PNMT K(i) = 9.7 microM, alpha2 K(i) = 0.35 microM, selectivity=0.036;). Since the PNMT inhibitory activity and selectivity of THIQ were enhanced by the introduction of a hydrophilic electron-withdrawing 7-substituent and a 3-alkyl-substituent, a similar study was conducted on THBA. 8-Nitro-THBA (3) was found to be as potent an inhibitor of PNMT as its THIQ analogue (21) and to be more selective due to its reduced alpha2-adrenoceptor affinity (3: PNMT K(i) = 0.39 microM, alpha2 K(i) = 66 microM, selectivity = 170; 21: PNMT K(i) = 0.41 microM, alpha2 K(i) = 4.3 microM, selectivity = 10). Introduction of a 3-alkyl substituent on the THBA nucleus decreased both the alpha2-adrenoceptor affinity and the PNMT inhibitory activity, suggesting an area of steric bulk intolerance at both sites. 4-Hydroxy-THBA (15), which can be considered a conformationally-restricted analogue of 3-hydroxymethyl-THIQ (30), exhibited poorer PNMT inhibitory activity and less selectivity than 30 (15: PNMT K(i) = 58 microM, alpha2 K(i) = 100 microM, selectivity = 1.7; 30: PNMT K(i) = 1.1 microM, alpha2 K(i) = 6.6 microM, selectivity = 6.0). While the addition of an 8-nitro group to 15 increased the selectivity of 16 as compared to its THIQ analogue (31), it was not as potent at PNMT nor as selective as 8-nitro-THBA (3) (16, PNMT K(i) = 5.3 microM, alpha2 K(i) = 680 microM, selectivity = 130; 31: PNMT K(i) = 0.29 microM, alpha2 K(i) = 19 microM, selectivity = 66). Compound 3 is the most selective (PNMT/alpha2) and one of the more potent at PNMT compounds yet reported in the benzazepine series, and should have sufficient lipophilicity to penetrate the blood-brain barrier (CLogP = 1.8).  相似文献   

4.
In order to determine the function of epinephrine (Epi) in the central nervous system, we have targeted the enzyme that catalyzes the final step in the biosynthesis of Epi, phenylethanolamine N-methyltransferase (PNMT; EC 2.1.1.28). 1,2,3,4-Tetrahydroisoquinolines (THIQs) are inhibitors of this enzyme, but also display affinity for the alpha2-adrenoceptor. To gain further understanding about how THIQs bind at the PNMT active site and in an attempt to further increase the selectivity of THIQ-type inhibitors versus the alpha2-adrenoceptor, a series of cis- and trans-1,3-dimethyl-7-substituted-THIQs were synthesized. Evaluation of these compounds suggests that THIQs bind in two different orientations at the PNMT active site, based on the lipophilicity of the 7-substituent. However, no significant increases in selectivity versus the alpha2-adrenoceptor were observed for these compounds.  相似文献   

5.
A series of substituted 4,5,6,7-tetrahydrothieno[3,2-c]pyridines (THTPs) was synthesized and evaluated for their human phenylethanolamine N-methyltransferase (hPNMT) inhibitory potency and affinity for the alpha(2)-adrenoceptor. The THTP nucleus was suggested as an isosteric replacement for the 1,2,3,4-tetrahydroisoquinoline (THIQ) ring system on the basis that 3-thienylmethylamine (18) was more potent as an inhibitor of hPNMT and more selective toward the alpha(2)-adrenoceptor than benzylamine (15). Although the isosterism was confirmed, with similar influence of functional groups and chirality in both systems on hPNMT inhibitory potency and selectivity, the THTP compounds proved, in general, to be less potent as inhibitors of hPNMT than their THIQ counterparts, with the drop in potency being primarily attributed to the electronic properties of the thiophene ring. A hypothesis for the reduced hPNMT inhibitory potency of these compounds has been formed on the basis of molecular modeling and docking studies using the X-ray crystal structures of hPNMT co-crystallized with THIQ-type inhibitors and S-adenosyl-L-homocysteine as a template.  相似文献   

6.
The effects of aging on alpha 1-adrenoceptor mechanisms in aortic preparations isolated from 3-, 6-, 10-, 18-, and 40-week-old rats were studied and compared with serotonin receptor mechanisms in the same preparations. The potency (pD2 value) of noradrenaline increased with age from 3 to 10 weeks, but decreased thereafter with age from 10 to 40 weeks. The affinity (pKA value) of noradrenaline and of prazosin (pA2 value) did not alter with aging. The change in potency or the pD2 value of noradrenaline was proportional to receptor reserve (pD2-pKA value) for noradrenaline, suggesting that the change of potency of noradrenaline with age was due to a change of receptor reserve, but not to change of drug affinity to alpha 1-adrenoceptors. The potency (pD2 value) and affinity (pKA value) of serotonin, and the affinity (pA2 value) of ketanserin, did not alter with aging, suggesting that serotonin receptor mechanisms in rat aorta did not change with age. The inhibitory effect of diltiazem on noradrenaline maximum response decreased with age from 3 to 10 weeks, but increased with age from 10 to 40 weeks. An inverse relationship between changes of diltiazem inhibition and receptor reserve of noradrenaline was found. Diltiazem's inhibitory effect on serotonin maximum response did not alter with aging.  相似文献   

7.
1,2,3,4-Tetrahydrobenz[h]isoquinoline (THBQ, 11) is a potent, inhibitor of phenylethanolamine N-methyltransferase (PNMT). Docking studies indicated that the enhanced PNMT inhibitory potency of 11 (hPNMT K(i)=0.49microM) versus 1,2,3,4-tetrahydroisoquinoline (5, hPNMT K(i)=5.8microM) was likely due to hydrophobic interactions with Val53, Met258, Val272, and Val269 in the PNMT active site. These studies also suggested that the addition of substituents to the 7-position of 11 that are capable of forming hydrogen bonds to the enzyme could lead to compounds (14-18) having enhanced PNMT inhibitory potency. However, these compounds are in fact less potent at PNMT than 11. Furthermore, 7-bromo-THBQ (19, hPNMT K(i)=0.22mM), which has a lipophilic 7-substituent that cannot hydrogen bond to the enzyme, is twice as potent at PNMT than 11. This once again illustrates the limitations of docking studies for lead optimization.  相似文献   

8.
The synthesis of a series of novel 3-piperazinylmethyl-3a,4-dihydro-3H-[1]benzopyrano[4,3-c]isoxazoles as novel dual 5-HT reuptake inhibitors and alpha(2)-adrenoceptor antagonists is described. Their affinity at the three different human alpha(2)-adrenoceptor subtypes and the 5-HT transporter site is reported. The in vivo activity of the compounds was measured in two different assays: (1). inhibition of pCA-induced excitation, which evaluates the ability to block the central 5-HT transporter, and (2). inhibition of xylazine-induced loss of righting, which evaluates the ability to block central alpha(2)-adrenoceptors.  相似文献   

9.
A series of beta-chloroethylamines 5--18, structurally related to the irreversible alpha(1)-adrenoceptor antagonist phenoxybenzamine [PB, N-benzyl-N-(2-chloroethyl)-N-(1-methyl-2-phenoxyethyl)amine hydrochloride, 1] and the competitive antagonist WB4101 [N-(2,3-dihydro-1,4-benzodioxin-2-ylmethyl)-N-[2-(2,6-dimethoxyphenoxy)ethyl]amine hydrochloride, 2], were synthesized and evaluated for their activity at alpha-adrenoceptors of the epididymal and the prostatic portion of young CD rat vas deferens. All compounds displayed irreversible antagonist activity. Most of them showed similar antagonism at both alpha(1)- and alpha(2)-adrenoceptors, whereas compounds 13 and 18, lacking substituents on both the phenoxy group and the oxyamino carbon chain, displayed a moderate alpha(1)-adrenoceptor selectivity (10--35 times), which was comparable to that of PB. Compounds 14 and 15, belonging to the benzyl series and bearing, respectively, a 2-ethoxyphenoxy and a 2-i-propoxyphenoxy moiety, were the most potent alpha(1)-adrenoceptor antagonists with an affinity value similar to that of PB (pIC(50) values of 7.17 and 7.06 versus 7.27). Interestingly, several compounds were able to distinguish two alpha(1)-adrenoceptor subtypes in the epididymal tissue, as revealed by the discontinuity of their inhibition curves. A mean ratio of 24:76 for these alpha(1)-adrenoceptors was determined from compounds 8--10, 12, and 15--17. Furthermore, compounds 9, 10, 12, 16a, and 16b showed higher affinity towards the minor population of receptors, whereas compounds 8, 15, and 17 preferentially inhibited the major population of alpha(1)-adrenoceptors. In addition, selected pharmacological experiments demonstrated the complementary antagonism of the two series of compounds and their different, preferential affinity for one of the two alpha(1)-adrenoceptor subtypes. In conclusion, we found beta-chloroethylamines that demonstrate a multiplicity of alpha(1)-adrenoceptors in the epididymal portion of young CD rat vas deferens and, as a consequence, they are possible useful tools for alpha(1)-adrenoceptor characterization.  相似文献   

10.
1. The effects of some synthetic alpha 2-adrenoceptor agonists on the mechanical activity and on contractile responses to catecholamines were examined in smooth muscle strips isolated from rainbow trout stomach. 2. Contractile responses to noradrenaline and adrenaline in the rainbow trout stomach strips were due to alpha 2-adrenoceptor activation. 3. Clonidine, p-aminoclonidine, naphazoline and guanabenz caused no mechanical response but concentration-dependently inhibited the contractile responses to noradrenaline and adrenaline without affecting the responses to acetylcholine, carbachol, 5-hydroxytryptamine and methionine-enkephalin. The order of potency was naphazoline greater than p-aminoclonidine greater than clonidine greater than guanabenz. 4. It is suggested that in the smooth muscle preparation of the trout stomach, some synthetic compounds (clonidine, p-aminoclonidine, naphazoline and guanabenz), which act on mammalian preparations as alpha 2-adrenoceptor agonists, show an antinoradrenaline (-adrenaline) effect; those compounds can be classified as alpha 2-adrenoceptor antagonists.  相似文献   

11.
The discovery of a new series of selective and high-affinity alpha(1)-adrenoceptor (alpha(1)-AR) ligands, characterized by a 1H-pyrrolo[2,3-d]-pyrimidine-2,4(3H,7H)-dione system, is described in this paper. Some synthesized compounds, including 20, 22, and 30, displayed affinity in the nanomolar range for alpha(1)-ARs and substantial selectivity with respect to 5-HT(1A) and dopaminergic D(1) and D(2) receptors. Functional assays, performed on selected derivatives, showed antagonistic properties.  相似文献   

12.
In the search for new antiarrhythmic agents, some active 2-methoxyphenylpiperazine derivatives of phenytoin were obtained as a chemical modification of compound AZ-99 (3-ethyl-1-[2-hydroxy-3-(4-phenylpiperazin-1-yl)-propyl]-2,4-dioxo-5,5-diphenylimidazolidine). These compounds possessed structural properties similar to those of alpha(1)-adrenoceptor antagonists. In the present study, the affinities of the 2-methoxyphenylpiperazine derivatives (1a-3a) for alpha(1)- and alpha(2)-adrenoceptors were evaluated using radioligand ([(3)H]prazosin, [(3)H]clonidine) binding assays. In the next step, a new series of phenylpiperazine derivatives of phenytoin (4a-16a) containing 2-methoxyphenyl-, 2-ethoxyphenyl-, 2-pyridyl- or 2-furoylpiperazine moiety, as well as, various ester or alkyl substituents at 3-position of hydantoin ring were synthesized. The newly synthesized compounds were tested for their affinity to alpha(1)- and alpha(2)-adrenoceptors. They have shown affinities for alpha(1)-adrenoceptors at nanomolar to submicromolar range. Some compounds were moderately selective ligands of alpha(1)-adrenoceptors. Selected compounds (3a-5a, 7a, 13a, 14a) were also evaluated for their alpha(1)-adrenoceptor antagonistic properties in functional bioassays. A SAR study indicated that the most active compounds contain 2-alkoxyphenylpiperazine moieties and methyl or 2-methylpropionate substituent at 3-N position in hydantoin. The exchange of 2-alkoxyphenyl moiety into 2-furoyl or 2-pyridyl group significantly decreased affinities for alpha(1)-adrenoceptors. Molecular modelling results obtained using conformational analysis CONFLEX and PM5 method for geometry optimization, allowed for comparison of the spatial properties of tested compounds with pharmacophore model created by Barbaro et al. for the ideal alpha(1)-adrenoceptor antagonist.  相似文献   

13.
Phenyl-piperazines were designed and synthesized based on pharmacophore for uro-selective alpha(1)-adrenoceptor antagonists and 3D chemical database searching. Within this series, three compounds, 2, 3, and 13, showed similar or better alpha(1)-AR antagonistic activity compared with prazosin. The 3D-QSAR study of these compounds may provide useful information for the development of novel aryl-piperazines as uro-selective alpha(1)-adrenoceptor antagonists, which can be used for the treatment of BPH with fewer side effects.  相似文献   

14.
As a guide to the development of new and more selective inhibitors of phenylethanolamine N-methyltransferase (PNMT) vs the alpha2-adrenoceptor, we have performed a comparative molecular field analysis (CoMFA) on a series of 80 benzylamine analogues. Using the models obtained, we have proposed a series of 3-trifluoromethyl-1,2,3,4-tetrahydroisoquinolines and predicted the activity of other analogues.  相似文献   

15.
A series of new 4-amino-3-[3-[4-(2-methoxy or nitro phenyl)-1-piperazinyl] propyl]thio]-5-(substitutedphenyl)[1,2,4]triazoles 11a-t was synthesized in order to obtain compounds with high affinity and selectivity for 5-HT(1A) receptor over the alpha(1)-adrenoceptor. A series of isomeric 4-amino-2-[3-[4-(2-methoxy or nitro phenyl)-1-piperazinyl]propyl]-5-(substitutedphenyl)-2,4-dihydro-3H[1,2,4]triazole-3-thiones 12a-r was also isolated and characterized. New compounds were tested to evaluate their affinity for 5-HT(1A) receptor and alpha(1)-adrenoceptor in radioligand binding experiments. As a general trend, triazoles 11a-t showed a preferential affinity for the 5-HT(1A) receptor whereas isomeric 2,4-dihydro-3H[1,2,4]triazole-3-thiones 12a-r preferentially bind to the alpha(1)-adrenoceptor site. Several molecules showed affinities in the nanomolar range and 4-amino-3-[3-[4-(2-methoxyphenyl)-1-piperazinyl]propyl]thio]-5-(4-propyloxy-phenyl)[1,2,4]triazole (11o) was the most selective derivative for the 5-HT(1A) receptor (K(i) alpha(1)/K(i) 5-HT(1A)=55). The decrease in 5-HT(1A) receptor selectivity in 3-[3-[4-(2-methoxyphenyl)-1-piperazinyl]propyl]thio]-5-(substitutedphenyl)[1,2,4] triazole 14a-b, lacking in the amino group in 4-position of the triazole ring, in comparison with their analogues in the series 11a-t, suggest that the amino function represents a critical structural feature in determining 5-HT(1A) receptor selectivity in this class of compounds.  相似文献   

16.
Experiments were undertaken to determine whether the steroid-dependent lordosis response of female guinea pigs is under adrenergic control. In initial experiments, treatment with the centrally active phenylethanolomine N-methyltransferase (PNMT; the enzyme catalyzing methylation of norepinephrine to epinephrine) inhibitor SKF-64139 inhibited lordosis behavior induced by estradiol-17 beta benzoate plus progesterone. SKF-29661, a PNMT inhibitor that does not cross the blood-brain barrier, did not affect lordosis. However, no detectable epinephrine was found in brain or spinal cord of drug- or vehicle-treated guinea pigs. This suggests that epinephrine neuronal systems do not exist in the guinea pig CNS. In agreement with this idea, the inhibitory effects of SKF-64139 on lordosis were found to be primarily attributable to the blockade of alpha noradrenergic receptors rather than to PNMT inhibition. Two lines of evidence support this conclusion. First, using in vitro receptor binding techniques, SKF-64139 was found to have a relatively high affinity for alpha 1 and particularly alpha 2 receptors in guinea pig forebrain. Second, presumably through competitive inhibition of SKF-64139 binding to alpha receptors, treatment with clonidine (an alpha receptor agonist) overrode the inhibitory effects of SKF-64139 on lordosis. Taken together, these findings indicate the possible absence of epinephrine neuronal systems in guinea pig brain and reemphasize the importance of alpha receptors in regulating steroid-dependent lordosis behavior in this species.  相似文献   

17.
A series of 3-pyrrol-3-yl-3H-isobenzofuran-1-ones was synthesized and assessed for the ability to inhibit cytosolic phospholipase A(2)alpha (cPLA(2)alpha). Several of these compounds were found to be active in both a cell based assay and an isolated enzyme assay. The most potent inhibitor was the thiazolidine-2,4-dione substituted derivative 35. With IC(50)-values of 0.7 muM and 7.3 muM in the cellular and isolated enzyme assay, respectively, it possesses similar inhibitory potency as the known cPLA(2)alpha inhibitor arachidonyltrifluoromethyl ketone (AACOCF(3)). Structure-activity relationship studies revealed that the evaluated isobenzofuran-1-ones seem to exert their cellular activities not only by a direct interaction with the enzyme but also by other as yet unknown mechanisms.  相似文献   

18.
Since it is widely distributed into the body, beta(3)-adrenoceptor is becoming an attractive target for the treatment of several pathologies such as obesity, type 2 diabetes, metabolic syndrome, cachexia, overactive bladder, ulcero-inflammatory disorder of the gut, preterm labour, anxiety and depressive disorders, and heart failure. New compounds belonging to the class of arylethanolamines bearing one or two stereogenic centres were prepared in good yields as racemates and optically active forms. They were, then, evaluated for their intrinsic activity towards beta(3)-adrenoceptor and their affinity for beta(1)- and beta(2)-adrenergic receptors. Stereochemical features were found to play a crucial role in determining the behaviour of such compounds. In particular, alpha-racemic, (alphaR)- and (alphaS)-2-{4-[2-(2-hydroxy-2-phenylethylamino)ethyl]phenoxy}-2- methylpropanoic acid, (alpha-rac, beta-rac)-, (alphaR, betaS)- and (alphaR, betaR)- 2-{4-[2-(2-hydroxy-2-phenylethylamino)ethyl]phenoxy}propanoic acid were found to be endowed with beta(3)-adrenoceptor agonistic activity. Whereas, (alphaS, betaS)- and (alphaS, betaR)-2-{4-[2-(2-hydroxy-2-phenylethylamino)ethyl]phenoxy}propanoic acid behaved as beta(3)-adrenoceptor inverse agonists. Such compounds showed no affinity for beta(1)- and beta(2)-adrenergic receptor, respectively. Thus, resulting highly selective beta(3)-adrenoceptor ligands.  相似文献   

19.
We report the synthesis and biological activity of a series of side-chain-constrained RGD peptides containing the (2S,3R) or (2S,3S) beta-methyl aspartic acid within the RGD sequence. These compounds have been assayed for binding to the integrin receptors alpha(IIb)beta3 and alpha(v)beta3 and the results demonstrate the importance of the side-chain orientation of this particular residue within the RGD sequence. Based on our findings, the (2S,3S) beta-methylated analogues of our RGD sequences maintain their binding potency to the integrin receptors while the (2S,3R) beta-methylated analogues exhibit a drastically reduced binding affinity. Our studies demonstrate that the three-dimensional orientation of the aspartyl side chain is a very important parameter for integrin binding and that small changes that affect the side-chain orientations give rise to drastic changes in binding affinity. These results provide important information for the design of more potent RGD mimetics.  相似文献   

20.
L-657,743 (MK-912), a highly potent and selective alpha 2-adrenoceptor antagonist was tritiated to a high specific activity and its binding characteristics to brain tissue were determined. The specific binding of [3H]L-657,743 to rat cerebrocortex was saturable, reversible, and dependent on tissue concentration. In saturation studies, [3H]L-657,743 binding was resolved into two high affinity components exhibiting Kd values of 86 pM and 830 pM with densities of 82 fmol/mg protein and 660 fmol/mg protein, respectively. Based on the binding potencies of a variety of compounds with differing receptor selectivities, the sites labeled by [3H]L-657,743 were characteristic of alpha 2-adrenoceptors. In contrast to alpha 2-antagonists, alpha 2-agonists displayed shallow competition curves. In the presence of 100 microM GTP, Gpp(NH)p or 150 mM NaCl, the competition curve for epinephrine was shifted to the right, whereas that for yohimbine was unaffected. In studies utilizing human cerebrocortical tissue, [3H]L-657,743 also bound with high affinity to sites characteristic of alpha 2-adrenoceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号