首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five different artificial associations of cyanobacterial cells with the cells or tissues of nightshade and rauwolfia were studied. The associations grown on nitrogen-containing media produced heterocysts. Cyanobacterial cells in the associations retained their ability to take up bound nitrogen from the medium, to store it in the form of cyanophycin granules, and to use them in the process of symbiotic growth. The synthesis and degradation of cyanophycin granules in cyanobacterial cells were more active in the associations than in monocultures. In the symbiotic associations of Chlorogloeopsis fritschii ATCC 27193 with Solanum laciniatum cells and of Nostoc muscorum CALU 304 with the Rauwolfia serpentina callus, heterocysts were produced at 3- to 30-fold higher cyanophycin contents than in cyanobacterial monocultures. In contrast, in the association of N. muscorum CALU 304 with the Solanum dulcamara callus, heterocysts were produced at lower cyanophycin contents than in the N. muscorum CALU 304 monoculture. The degradation of cyanophycin granules in N. muscorum CALU 304 cells grown in associations with plant tissues or cells was subjected to mathematical analysis. The activation of cyanophycin degradation and heterocyst production in the associations N. muscorum CALU 304-R. serpentina and C. fritschii-S. laciniatum was accompanied by an enhanced synthesis of the nitrogen-containing alkaloids in plant cells. The data obtained suggest that an integrated system of nitrogen homeostasis can be formed in symbiotic associations. Depending on the growth stage of an association, its plant member can either stimulate the accumulation of bound nitrogen in vegetative cyanobacterial cells in the form of cyanophycin granules, or activate their degradation, or initiate the formation of heterocysts independently of the cyanobacterial sensory-signalling system.  相似文献   

2.
The ultrastructure of the heteromorphic cells (HMCs) of the cyanobacterium Nostoc muscorumCALU 304 grown in pure culture, monoculture, and a mixed culture with the Rauwolfiacallus tissue was studied. The comparative analysis of the cell surface of HMCs, the frequency of the generation of cell forms with defective cell walls (DCWFs), including protoplasts and spheroplasts, and the peculiarities of their ultrastructure under different growth conditions showed that, in the early terms of mixed incubation, the callus tissue acts to preserve the existing cyanobacterial DCWFs, but begins to promote their formation in the later incubation terms. DCWFs exhibited an integrity of their protoplasm and were metabolically active. It is suggested that structural alterations in the rigid layer of the cell wall may be due to the activation of the murolytic enzymes of cyanobacteria and the profound rearrangement of their peptidoglycan metabolism caused by the Rauwolfiametabolites diffused through the medium. These metabolites may also interfere with the functioning of the universal cell division protein of bacteria, FtsZ. In general, the Rauwolfiacallus tissue promoted the unbalanced growth of the cyanobacterium N. muscorumCALU 304 and favored its viability in the mixed culture. The long-term mixed cultivation substantially augmented the probability of the formation of L-forms of N. muscorumCALU 304.  相似文献   

3.
A comparative morphological study was conducted ofNostoc muscorum CALU 304 grown either as a pure culture on standard media or as a mixed culture withRauwolfia callus tissue on a medium for plant tissue cultivation. The interaction of the cyanobacterial and plant partners results in their spatial integration into aggregates of specific anatomy, which arise periodically during the mixed culture growth. The morphology of the cyanobacterial cells varies depending on their localization in the mixed aggregate. The degree of cyanobacterial heteromorphism increases with the time of growth of the association. Evidence of the plant origin of the factors inducing heteromorphic changes inN. muscorum was obtained, as well as evidence indicating that these factors can rapidly diffuse in agarized medium. A conclusion is inferred that the heteromorphic cells correspond to bacterial forms that appear during unbalanced growth as an adaptation to altered environmental conditions.  相似文献   

4.
Developmental patterns related to nitrogen fixation in the heterocystous cyanobacteriumNostoc harboured in distinct colonies along the stem ofGunnera magellanica Lam. plantlets were examined using successive plant sections. Pronounced morphological, physiological and biochemical alterations in the cyanobacterium were demonstrated. Close to the growing apex the cyanobacterial biomass, contained in smallGunnera cells, was low and consisted mostly of vegetative cells showing a high density of different storage structures except for cyanophycin granules. In contrast, both the total and specific nitrogenase activity and the relative nitrogenase protein level were at maximum within this part; while the frequency of heterocysts increased from zero to 30% within the same area. The nitrogenase protein was localized only in the heterocysts throughout the plant. Further down theGunnera stem there was a progressive increase in both the cyanobacterial biomass and the heterocyst frequency, which finally constituted about 60% of the cyanobacterial cell population. Throughout this part of the stem, cyanophycin granules were frequent in the vegetativeNostoc cells. At the base of the stem, degeneratedNostoc cells dominated and the nitrogenase activity was close to zero, although the nitrogenase protein remained. Degeneration of theNostoc cells and leaf shedding coincided. Both intact plants (approx. 20 mm in height) and plant stem sections (2 mm in length) showed substantial nitrogenase activity, although sectioning caused a 30% reduction in total nitrogenase activity.  相似文献   

5.
The subcellular localization of calcium in cells of symbiotic partners located within leaf cavities of Azolla was investigated by using chlorotetracycline, ESI and EELS analysis. Loosely membrane-bound calcium was evidenced by using CTC or EGTA and CTC, in cytoplasmic regions of Azolla hair cells and in cytoplasm of the cyanobiont. Tightly membrane-bound calcium revealed by CTC, and ESI and EELS analysis, was observed in cyanophycin granules and carboxysomes of the cyanobiont. A third calcium type, revealed by ESI and EELS analysis, was localized at the level of cell walls of simple and branched Azolla hairs, in the envelope of heterocysts, and in the cell walls of the cyanobiont.  相似文献   

6.
Summary Trichodesmium is the first described example of a filamentous cyanobacterium without heterocysts that contains cells specialised for nitrogen fixation. The ultrastructure of cells with and without nitrogenase were compared using primarilyTrichodesmium tenue Wille, but alsoT. thiebautii Gomont andT. erythraeum Ehrenberg et Gomont. Immunohistochemistry demonstrated that the cytoplasm of certain cells was densely labelled with antibodies against Fe-protein (dinitrogenase reductase). Comparative TEM-image analysis revealed that these cells were also distinguished by a denser thylakoid network, dividing the vacuole-like space into smaller units. The nitrogenase-containing cells also exhibited less extensive gas vacuoles as well as fewer and smaller cyanophycin granules compared to cells which lacked nitrogenase. Carboxysomes were present in both cell types in equal proportion. Longitudinal sections showed that cells with nitrogenase were arranged adjacent to each other, and that groups of cells with and without nitrogenase may coexist in the same trichome. The correlation between modifications in ultrastructure and the presence of nitrogenase suggests a new type of cyanobacterial cell specialisation related to nitrogen fixation. The results obtained also question the systematic affiliation of the genusTrichodesmium.  相似文献   

7.
Element analysis using electron spectroscopic imaging (ESI) and electron energy loss spectroscopy (EELS) was performed in a symbiotic Nostoc sp. strain found in the upper stem tissue of Gunnera manicata, and in Nostoc PCC 9229, a free-living heterocyst-forming cyanobacterium able to enter into symbiosis with the angiosperm Gunnera in reconstitution experiments. ESI and EELS unequivocally identified the four elements nitrogen (N), sulphur (S), phosphorus (P) and oxygen (O) in different inclusion bodies of these biological specimens. High amounts of nitrogen were solely detected in huge cyanophycin granules in vegetative cells of the symbiotic Nostoc strain, whereas large polyphosphate bodies, containing high amounts of phosphorus, sulphur and oxygen, could be seen in the free-living Nostoc PCC 9229. The latter were usually not present or, when found, very small in vegetative cells of the cyanobiont.  相似文献   

8.
Nitrogen limitation and recovery in the cyanobacterium Aphanocapsa 6308   总被引:1,自引:0,他引:1  
The effects of nitrogen limitation and recovery on nitrogen-containing macromolecules were followed in the cyanobacterium Aphanocapsa 6308. Removal of nitrogen from growth media triggers the degradation of the endogenous nitrogen reserves phycocyanin and cyanophycin granule polypeptide in the cyanobacterium Aphanocapsa 6308. Nitrogen recovery involves immediate synthesis of cyanophycin granule polypeptide with peak levels of 5–12% of cell dry weight found 8–12 h after a utilizable nitrogen source is added. A rapid decrease in cyanophycin granule polypeptide level then occurs and the level remains low even in light-limited stationary growth with all nitrogen sources tested except nitrate and ammonia. Protein and phycocyanin recoveries began 3 h after a utilizable nitrogen source was added. Data suggest continuous activity of the enzyme system synthesizing cyanophycin granule polypeptide in nitrogen-limited cells, but synthesis of a degrading system only after nitrogen recovery begins.Nonstandard Abbreviations CGP Cyanophycin granule polypeptide - CAP chloramphenicol - PC phycocyanin To whom offprint requests should be sent  相似文献   

9.
The study of heteromorphic Nostoc muscorum CALU 304 cells, whose formation was induced by 6- to 7-week cocultivation with the Rauwolfia callus tissues under unfavorable conditions, revealed the occurrence of giant cell forms (GCFs) with a volume which was 35–210 times greater than that of standard cyanobacterial cells. Some GCFs had an impaired structure of the murein layer of the cell wall, which resulted in a degree of impairment of the cell wall ranging from the mere loss of its rigidity to its profound degeneration with the retention of only small peptidoglycan fragments. An analysis of thin sections showed that all GCFs had enlarged nucleoids. The photosynthetic membranes of spheroplast-like GCFs formed vesicles with contents analogous to that of nucleoids (DNA strands and ribosomes). About 60% of the vesicles had a size exceeding 300 nm. With the degradation of GCFs, the vesicles appeared in the intercellular slimy matrix. It is suggested that the vesicles are analogous to elementary bodies, which are the minimal and likely primary reproductive elements of L-forms. The data obtained in this study indicate that such L-forms may be produced in the populations of the cyanobionts of natural and model syncyanoses. Along with the other known cyanobacterial forms induced by macrosymbionts, L-forms may represent specific adaptive cell forms generated in response to the action of plant symbionts.  相似文献   

10.
The gene cphA encoding cyanophycin synthetase was interrupted in Anabaena variabilis ATCC 29413 by insertional mutagenesis. The mutant lacked cyanophycin granules and the polar nodules of heterocysts. The mutant grew as fast as the wild-type irrespective of the nitrogen source at low light intensity whereas growth on N(2) was somewhat reduced in high light. It is concluded that cyanophycin metabolism and polar nodules are not essential for aerobic N(2) fixation.  相似文献   

11.
Localization of glutamine synthetase in thin sections of nitrogen-fixing Anabaena cylindrica was performed using immuno-gold/transmission electronmicroscopy. The enzyme was present in all of the three cell types possible; vegetative cells, heterocysts and akinetes. The specific gold label was always more pronounced in heterocysts compared with vegetative cells, and showed a uniform distribution in all three types. No specific label was associated with subcellular inclusions such as carboxysomes, cyanophycin granules and polyphosphate granules. When anti-glutamine synthetase antiserum was omitted, no label was observed.Abbreviation GS glutamine synthetase  相似文献   

12.
Addition of the arginine analogue, canavanine, to cultures of nitrogen-fixing Anabaena cylindrica at the onset of akinete formation, resulted in the development of akinetes randomly distributed within the filament, in addition to those adjacent to heterocysts. The total frequency of akinetes increased up to five-fold. A feature of akinetes is their increased content of cyanophycin granules (an arginine-aspartic acid polymer) and addition of canavanine to cultures at an earlier stage resulted in entire filaments becoming agranular and containing agranular akinetes. The effects on akinete pattern appeared to be specific for canavanine since other amino acid analogues, although increasing the frequency of akinetes (approximately two-fold), had no effect on their position relative to heterocysts. In ammonia-grown, stationary phase cultures of A. cylindrica, akinetes were observed adjacent to proheterocysts and in positions more than 20 cells from any heterocyst. These observations indicate that nitrogen fixation and heterocysts are not essential for akinete formation in A. cylindrica, although the availability of a source of fixed nitrogen does appear to be a requirement.These results suggest that during exponential growth some aspect of the physiology of vegetative cells suppresses their development into akinetes and that the role of the heterocyst may not be one of direct stimulation of adjacent vegetative cells to form akinetes, but the removal or negation of the inhibition within them. A model for akinete formation and the involvement of canavanine is given.  相似文献   

13.
Summary Granules isolated from the blue-green alga Anabaena cylindrica and composed of copolymers of arginine and aspartic acid have the electron microscopic aspects of structured granules and the solubility and certain of the staining properties of cyanophycin granules. Material which accumulates at the poles of heterocysts may have a similar composition.  相似文献   

14.
Nitrogen starvation, effected by incubating a culture ofAnabaena cylindrica in a medium free from combined nitrogen and under an atmosphere of 1% CO2 in argon, leads to rapid and characteristic changes in the appearance, structure and function of the alga. Change of colour, due apparently to a decrease in the amounts of nitrogenous pigments, is accompanied by a structural transformation of vegetative cells: cyanophycin granules and polyhedral bodies disintegrate, lipid and glycogen accumulate, and large membrane-bound spaces form by means of thylakoid swelling and vesiculation. The rate of heterocyst differentiation and nitrogenase activity is increased. These changes are fully reversed on addition of ammonia to the culture. It appears that thylakoids reform by coalescence of small vesicles assembled in the intrathylakoidal space. Rapid ammonia assimilation is indicated by ample formation of cyanophycin granules in vegetative cells and of “plugs” in the heterocysts.  相似文献   

15.
Cyanobacteria have evolved mechanisms to adapt to environmental stress and nutrient availability, including accumulation of storage compounds in inclusions and granules. As arginine is a key building block of cyanophycin, a dynamic nitrogen reservoir in many cyanobacteria, arginine metabolism plays a key role in cyanobacterial nitrogen storage and remobilization. Recently, an arginine dihydrolase AgrE/ArgZ was identified as a major arginine‐degrading enzyme in nondiazotrophic Synechocystis, which catalyzes the conversion of arginine into ornithine and ammonia. The N‐terminal domain of AgrE/ArgZ is responsible for arginine dihydrolase activity. Burnat et al. (2019) identified the arginine catabolic pathway in diazotrophic Anabaena, which starts with the reaction catalyzed by AgrE/ArgZ. Moreover, this study identified the C‐terminal domain of AgrE/ArgZ as an ornithine cyclodeaminase that catalyze the conversion of ornithine to proline. The results demonstrated that arginine is catabolized to generate glutamate by the concerted action of AgrE/ArgZ and bifunctional proline oxidase PutA in the vegetative cells of Anabaena. These findings expand our knowledge on nitrogen mobilization and redistribution in Anabaena under nitrogen‐fixation conditions. AgrE/ArgZ is widely present in many diazotrophic cyanobacteria and may be important for their contribution to marine nitrogen fixation. AgrE/ArgZ may have potential applications in metabolic engineering and biotechnology.  相似文献   

16.
Summary All of the three blue-green algae, Anabaena cylindrica, Mastigocladus laminosus and Nostoc muscorum are characterized by the presence of multi-layered envelopes (sheath, wall and plasma membrane), photosynthetic lamellae and a variety of intracellular granules. Sections of heterocysts of Anabaena cylindrica showed the presence of an internal membrane system as well as lamellae. An unusual feature of the structure of Nostoc muscorum was the presence of densely stained intracellular membranes or lamellae. The results emphasize the variability in appearance of the internal structure of the blue-green algae and point to the need for detailed investigations of the influence of change in physiological environment on the anatomy of these organisms.  相似文献   

17.
Nostoc punctiforme is a phenotypically complex, filamentous, nitrogen-fixing cyanobacterium, whose vegetative cells can mature in four developmental directions. The particular developmental direction is determined by environmental signals. The vegetative cell cycle is maintained when nutrients are sufficient. Limitation for combined nitrogen induces the terminal differentiation of heterocysts, cells specialized for nitrogen fixation in an oxic environment. A number of unique regulatory events and genes have been identified and integrated into a working model of heterocyst differentiation. Phosphate limitation induces the transient differentiation of akinetes, spore-like cells resistant to cold and desiccation. A variety of environmental changes, both positive and negative for growth, induce the transient differentiation of hormogonia, motile filaments that function in dispersal. Initiation of the differentiation of heterocysts, akinetes and hormogonia are hypothesized to depart from the vegetative cell cycle, following separate and distinct events. N. punctiforme also forms nitrogen-fixing symbiotic associations; its plant partners influence the differentiation and behavior of hormogonia and heterocysts. N. punctiforme is genetically tractable and its genome sequence is nearly complete. Thus, the regulatory circuits of three cellular differentiation events and symbiotic interactions of N. punctiforme can be experimentally analyzed by functional genomics.  相似文献   

18.
19.
Karni  Leah  Moss  Stephen J.  Tel-Or  Elisha 《Archives of microbiology》1984,140(2-3):215-217
Glutathione reductase activity was detected and characterized in heterocysts and vegetative cells of the cyanobacterium Nostoc muscorum. The activity of the enzyme varied between 50 and 150 nmol reduced glutathione· min-1·mg protein-1, and the apparent Km for NADPH was 0.125 and 0.200 mM for heterocysts and vegetative cells, respectively. The enzyme was found to be sensitive to Zn+2 ions, however, preincubation with oxidized glutathione rendered its resistance to Zn+2 inhibition. Nostoc muscorum filaments were found to contain 0.6–0.7mM glutathione, and it is suggested that glutathione reductase can regenerate reduced glutathione in both cell types. The combined activity of glutathione reductase and isocitrate dehydrogenase in heterocysts was as high as 18 nmol reduced glutathione·min-1·mg protein-1. A relatively high superoxide dismutase activity was found in the two cell types; 34.2 and 64.3 enzyme units·min-1·mg protein-1 in heterocysts and vegetative cells, respectively.We suggest that glutathione reductase plays a role in the protection mechanism which removes oxygen radicals in the N2-fixing cyanobacterium Nostoc muscorum.Abbreviations DTNB 5-5-dithiobis-(2-nitrobenzoic acid) - EDTA ethylenediaminetetra-acetic acid - GR glutathione reductase (EC1.6.4.2) - GSH reduced glutathione - GSSG oxidized glutathione - OPT O-phtaldialdehyde - SOD superoxide dismutase (EC 1.15.1.1)  相似文献   

20.
Summary The symbiotic heterocystous cyanobacteriumAnabaena azollae present in the leaf cavities of the water fernAzolla spp. was studied. The cyanobacteria extracted from the leaf cavities showed differences in pigment composition in three species ofAzolla, i.e A.pinnata var.pinnata, A.caroliniana and A.filiculoides, as observed by pigment absorption and epifluorescence tests. These differences suggest that of these species the cyanobiont ofA. pinnata is the most actively nitrogenfixing form. This has been confirmed by nitrogen fixation (acetylene reduction) tests. Heterocysts of the symbiont ofA. pinnata were characterized by high chlorophylla and low phycocyanin content, a low fluorescence yield of chlorophyll in the heterocysts compared to vegetative cells and a gradient of phycocyanin concentration in the vegetative cells adjacent to heterocysts. This indicates that only photosystem I is present in the heterocyst. In the two otherAzolla species quantitative shifts in the pigment composition occurred suggesting a lower nitrogen fixation activity.In the cyanobiontAnabaena azollae the heterocyst frequency could reach a value of 44–45%. It is argued that there are two generations of heterocysts in a matureAzolla plant, which are concomitant with two peaks of nitrogen fixation activity correlated with leaf age,i.e. leaf number along the main axis of the plant. At both peaks of maximal N2-ase activity, only 20–25% of the heterocysts present are metabolically active as demonstrated by the reduction of Neotetrazolium chloride (NTC) in the heterocysts and darkening of nuclear emulsions by silver salt reduction. Vegetative cells of the cyanobiont reduce Neotetrazolium chloride (NTC) to formazan more rapidly than has been observed in the free-living heterocystous cyanobacteriumAnabaena cylindrica tested in parallel experiments. This feature may be due to a more permeable cell wall of the vegetative cells of the cyanobiont compared to the free-living form, since the vegetative cells of the symbiont play a role in cross-feeding of the host (Azolla).Evidence is obtained that only the heterocysts of the cyanobiont ofAzolla are involved in the nitrogen fixation process as in free-living heterocystous cyanobacterium species. This situation is different from other cyanobacterial symbioses such as inGunnera, Blasia andAnthoceros, where physiological modifications are reported in the symbiosis with another photosynthetic partner such as the absence of O2 evolution and the absence of photo-fixation of CO2 in the cyanobionts.Pigment composition and N2-ase activity in the symbiotic cyanobacteria of three Azolla species have indicated the superiority of theA. pinnata symbiont.A. pinnata var.pinnata is a semidomesticated form used in S.E. Asia for agricultural purposes (irrigated rice culture) to increase soil fertility.It is suggested that by selection (domestication) more efficient strains (clones) can be obtained, and further that with more advanced techniques such as gene mutation and genetic manipulation even more efficient and for agriculture more beneficial clones can be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号