首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gene pool structure of aboriginal Siberian populations has been described based on the polymorphism of the ZFX gene located on the chromosome X. In the ten populations studied, 49 haplotypes were present, three of them with high frequencies. Comparison of the obtained results with the available data from the HapMap project revealed unique African haplotypes that occurred in the Yoruba with the frequency of 3–7% and were not found in other populations. The genetic differentiation coefficient of the Siberian ethnic groups studied was 0.0486. Correlation analysis using Mantel’s test did not detect significant correlations between the genetic distance matrix and the matrices of geographic, linguistic, and anthropological differences, although the correlation with the anthropological matrix was the highest. Phylogenetic analysis proved strong isolation of the African population from the other ethnic groups investigated. The Siberian populations were divided into two separate clusters: the first one included Yakuts, Buryats, and Kets, while the second cluster included Altaians, Tuvinians, and Khanty. Using the principal component analysis, the populations were combined into three groups clearly differing by manifestation of Caucasoid and Mongoloid components. The first group included residents of Europe and one of Khanty populations, the second group included populations of South Siberia and residents of China. Mongoloid populations of East Siberia, the Japanese, and Kets were combined into the third group. Barrier analysis revealed a similar structure of genetic differentiation of Siberian populations. Linkage disequilibrium structure was obtained for six ethnic groups of Siberia. In five of them (except for the Ket population), ten ZFX SNPs formed a single linkage block.  相似文献   

2.
Autosomal gene pools of 27 populations representing 12 ethnic groups of Siberia, Central Asia, and the Far East have been characterized for the first time using a set of eight polymorphic Alu insertions. The results of our analysis indicate a significant level of genetic diversity in populations of northern Eurasian and the considerable differentiation of their gene pool. It was shown that the frequency of the Alu (?) allele at the CD4 locus was inversely related to the magnitude of the Mongoloid component of the gene pool: the lowest and highest frequencies of the CD4 Alu deletion were recorded in Eskimos (0.012) and in Russians and Ukrainians (0.35), respectively. A gene flow analysis showed that Caucasoid populations (Russians, Tajiks, and Uzbeks), as well as Turkic ethnic groups of southern Siberia (Altaians and Tuvans), Khanty, and Mansi populations, in contrast to ethnic groups of eastern Siberia and the Far East, have been recipients of a considerable gene flow. A correlation analysis showed that genetic distances determined using polymorphic Alu insertions were correlated with the anthropological characteristics of the populations studied.  相似文献   

3.
The level of T174M polymorphism of the angiotensinogen gene (AGT) was studied for the first time in Siberian populations. The frequency of allele M was found to be 7% in Russians, 6% in Tuvinians, and 4% in Buryats. In the Mongoloid population of Siberia (Tuvinians and Buryats), the genotypic frequencies deviated from Hardy-Weinberg equilibrium (P < 0.05). The studied polymorphism of the AGT gene determined in Siberian populations was compared with that of other ethnic groups in the world population, and genetic distinctions were estimated. Only the Buryat population was found to differ significantly from the French, English, and Chinese in the frequency of allele M. No association between the T174M polymorphism of the AGT gene and pathological pregnancy (gestosis) was revealed in Buryat women.  相似文献   

4.
The first data are presented on mtDNA diversity in Besermyans, the Finno-Ugric ethnic group related to Udmurts. An analysis of mtDNA polymorphism showed that Besermyans stood out from the other populations of Volga-Ural region due to the presence of a large proportion of the Mongoloid component. The sample of Besermyans contained East Eurasian haplotypes not detected in ethnic populations of the Volga region and Cisurals, while they were detected in South Siberia, mostly among Turkic-speaking populations. An analysis of the genetic distances between Besermyans and the neighboring ethnic groups showed that Besermyans were distant from other populations of Volga-Ural region and close to Turkic-speaking populations of South Siberia. Thus, the data obtained favor the suggestion on the mixed Udmurto-Turkic origin of Besermyans.  相似文献   

5.
Gene pool structure of Sakha Republic (Yakutia) native population has been studied: we defined composition and frequencies of Y-chromosome haplogroups for Yakuts. Six haplogroups: C3 x M77, C3c, N*, N2, N3a and R1a1 have been revealed in Yakut gene pool. A greater part of Y-chromosome in Yakut population belongs to N3a haplogroup (89%). All investigated Yakut population samples have low values of gene diversity, calculated based on haplogroup frequencies. Gene differentiation of the investigated samples estimated using the analysis of molecular variance (AMOVA) by two marker systems (haplogroup frequencies and microsatellite haplotypes of Y-chromosome) revealed a portion of interpopulation differences amounting to 0.24 and 2.85%, respectively. Frequencies and molecular phylogeny of YSTR-haplotypes were revealed for N3a haplogroup of Y-chromosome. Altogether forty haplotypes were found in Yakuts. Evenks and Yakuts are characterized by overlapping and very specific spectrum of N3a haplotypes, which is not typical for other Siberian ethnic groups. Cluster analysis of populations by N3a YSTR-haplotypes shows Yakut isolation from Turkic-speaking populations in the South Siberia. Genetic diversity generation time for a specific spectrum of Yakut haplotypes was estimated as 4.45 +/- 1.96 thousand years. As opposed to the data on mtDNA, the obtained results give an evidence for significant contribution of a local palaeolithic component into Y-chromosomal Yakut gene pool. Ethnogenetic reconstruction of the present picture of genetic diversity in N3a haplogroup in the territory of Siberia is under consideration.  相似文献   

6.
HLA-B27 gene frequencies and allelic polymorphism were studied in two Siberian ethnic groups: Russians from Novosibirsk (western Siberia) and Tuvinians from Kyzyl (southern Siberia). The HLA-B27 frequencies were determined by means of serologic typing of HLA antigens in 198 Tuvinians and 288 Russians. Molecular typing was performed via hybridization of oligonucleotide probes with amplified DNAs obtained from 30 HLA-B27-positive Russians and 11 HLA-B27-positive Tuvinians. The HLA-B27 gene frequencies in Tuvinians and Russians were 5.5 and 10.4%, respectively. Molecular variants of the HLA-B27 gene were studied in Tuvinians for the first time. The proportions of the HLA-B2705 and HLA-B2704 alleles were found to be 64 and 36%, respectively, in the population studied. The presence of the HLA-B2704 allele indicates a Mongoloid origin of Tuvinians. In the Russian population of Novosibirsk, the HLA-B2704 allele was not found, whereas the proportions of the HLA-B2705 and HLA-B2702 alleles were 76.2 and 23.8%, respectively, which is characteristic of Caucasoid populations.  相似文献   

7.
Using the data on mitochondrial DNA (mtDNA) polymorphism, genetic structures of the ethnic groups inhabiting South and East Siberia, including Altaians, Buryats, Tuvinians, Todjins, Tofalars, Yakuts, and Evenks were described. Mitochondrial gene pools of the populations examined were characterized by different ratios between Mongoloid (M*, C, D, E/G, G, A, B, and F) and Caucasoid (H, HV, I, J, K, T, U, and X) mtDNA lineages. All the populations studied carried a marked Mongoloid component, maximum frequency of which was observed in Evenks (92.4%) and Buryats (90.1%). Maximum frequencies of Caucasoid mtDNA lineages were detected in Tofalars (20.7%) and Yakuts (14.5%). Statistically significant interpopulation differences regarding the frequencies of mtDNA haplogroups were observed between all populations examined, excluding the pairs of Evenks–Yakuts, Evenks–Tuvinians, and Tuvinians-Todjins. Differentiation of the ethnic groups inhabiting South and East Siberia, as well as Central and Middle Asia, is discussed based on genetic, linguistic, and anthropological data.  相似文献   

8.
Using the data on mitochondrial DNA (mtDNA) polymorphism, genetic structures of the ethnic groups inhabiting South and East Siberia, including Altaians, Buryats, Tuvinians, Todjins, Tofalars, Yakuts, and Evenks were described. Mitochondrial gene pools of the populations examined were characterized by different ratios between Mongoloid (M*, C, D, E/G, G, A, B, and F) and Caucasoid (H, HV, I, J, K, T, U, and X) mtDNA lineages. All the populations studied carried a marked Mongoloid component, maximum frequency of which was observed in Evenks (92.4%) and Buryats (90.1%). Maximum frequencies of Caucasoid mtDNA lineages were detected in Tofalars (20.7%) and Yakuts (14.5%). Statistically significant interpopulation differences regarding the frequencies of mtDNA haplogroups were observed between all populations examined, excluding the pairs of Evenks-Yakuts, Evenks-Tuvinians, and Tuvinians-Todjins. Differentiation of the ethnic groups inhabiting South and East Siberia, as well as Central and Middle Asia, is discussed based on genetic, linguistic, and anthropological data.  相似文献   

9.
Using the data on mitochondrial DNA (mtDNA) polymorphism, genetic structures of the four Turkic-speaking ethnic groups of Altai-Sayan highlands, Southern Altaians (Altai-Kizhi), Khakassians, Shorians, and Sojots, were described. Mitochondrial gene pools of the populations examined were characterized by different ratios between Mongoloid (M*, C, D, E, G, A, B, and F) and Caucasoid (H, U, T, J, and K) mtDNA lineages. All the populations studied had a strongly pronounced Mongoloid component, the frequency of which was 88.2% in Sojots, 75.9% in Khakassians, 67.4% in Altaians, and 64.3% in Shorians. Maximum frequency of the Caucasoid component (35.7%) was observed in Shorians. Phylogenetic and statistical analyses of the mtDNA group frequency distribution patterns in the gene pools of the ethnic populations of Altai-Sayan highlands and the adjacent territories showed that the populations of the region fell into three groups. The first group included Khakassians, Tuvinians and Altaians, the second group consisted of Sojots, Buryats, and Mongols, while the third group was composed of Uigurs, Kazakhs, and Kyrgyzes. The isolated position of Shorians among the populations examined can be explained by their different anthropological composition and their presumptive relatedness to Finno-Ugric populations of Siberia.  相似文献   

10.
A population genetic study of the polymorphism in the first hypervariable segment (HVSI) of mitochondrial DNA control region was carried out for three ethnic populations of the Volga-Ural region, Bashkirs, Russians, and Komi-Permyaks. This analysis showed that most of the mtDNA HVSI haplotypes detected in the populations of Bashkirs, Russians and Komi-Permyaks contained the combinations of nucleotide substitutions detected earlier in Asian, European, and Finno-Ugric populations. These findings are consistent with historical, anthropological, and ethnographical data suggesting the presence of European and Mongoloid components of different geographical descent in the gene pool of the contemporary population of the Volga-Ural region. The data on the genetic structure and the phylogenetic relationships between populations of the Volga-Ural region based on modern molecular genetic methods of mitochondrial genome investigation would be a substantial addition to the already existing information for some other regions of Europe and Asia. These data would provide more complete examination of the development of interethnic diversity of mitochondrial gene pools of contemporary ethnic populations with the purpose of reconstructing the genetic demographic processes that accompanied peopling of the Middle Ural and Volga region.  相似文献   

11.
Using the data on mitochondrial DNA (mtDNA) polymorphism, genetic structures of the four Turkic-speaking ethnic groups of Altai–Sayan highlands, Southern Altaians (Altai- Kizhi), Khakassians, Shorians, and Sojots, were described. Mitochondrial gene pools of the populations examined were characterized by different ratios between Mongoloid (M*, C, D, E, G, A, B, and F) and Caucasoid (H, U, T, J, and K) mtDNA lineages. All the populations studied had a strongly pronounced Mongoloid component, the frequency of which was 88.2% in Sojots, 75.9% in Khakassians, 67.4% in Altaians, and 64.3% in Shorians. Maximum frequency of the Caucasoid component (35.7%) was observed in Shorians. Phylogenetic and statistical analyses of the mtDNA group frequency distribution patterns in the gene pools of the ethnic populations of Altai–Sayan highlands and the adjacent territories showed that the populations of the region fell into three groups. The first group included Khakassians, Tuvinians and Altaians, the second group consisted of Sojots, Buryats, and Mongols, while the third group was composed of Uigurs, Kazakhs, and Kyrgyzes. The isolated position of Shorians among the populations examined can be explained by their different anthropological composition and their presumptive relatedness to Finno-Ugric populations of Siberia.  相似文献   

12.
The gene pool structure was studied for the indigenous population of the Sakha Republic (Yakutia). The composition and frequencies of Y-chromosome haplotypes in Yakuts were characterized. Six haplogroups were observed: C3×M77, C3c, N*, N2, N3a, and R1a1, N3a being the most common (89%). The gene diversity computed from the haplogroup frequencies was low in all samples examined. Gene differentiation was analyzed by AMOVA with two marker systems (haplogroup frequencies and Y-chromosomal microsatellite haplotypes) and was estimated at 0.24 and 2.85%, respectively. The frequencies and molecular phylogeny of the YSTR haplotypes were studied for the N3a haplogroup. In total, 40 haplotypes were found in Yakuts. Evenks and Yakuts displayed highly specific overlapping N3a haplotype spectra, atypical for other Siberian ethnic groups. Cluster analysis with N3a YSTR haplotypes showed that Yakuts are isolated from other Turkic-speaking populations of Southern Siberia. The genetic diversity generation time was estimated at 4450 ± 1960 years for the Yakut haplotype spectrum. In contrast to mtDNA data, the results suggest a significant contribution of the local Paleolithic component to the Y-chromosome gene pool of Yakuts. Ethnogenetic reconstructions were inferred from the diversity and phylogeography of the N3a haplogroup in Siberia.  相似文献   

13.
中国人群遗传结构分析   总被引:1,自引:0,他引:1  
本文根据红细胞血型基因频率,用Harpending和Jenkins(1973)方法计算了中国22个人群间的遗传距离,同时在国内首次运用主坐标分析及其排序方法展示了中华民族的遗传结构,反映出中国东西人群与南北人群间的基因流。  相似文献   

14.
Pecularities of distribution of 40 HLA antigens within the Uzbek population of the Ferghana Valley have been studied. The frequencies of these antigens are subdivided into three main groups having frequencies characteristic of the following populations: Caucasoid population (A9, B40, Bw22 etc.); Mongoloid population (B8, B7, B12); Middle Asian population (Aw31, B13, B16, Bw35), probably. The Uzbek population contains haplotypes both of Europeoid (Aw30, B13; A3, Bw35) and Mongoloid origin (A9, B40) and, probably, of the local origin (A1, B14; A1, Bw53; Aw32, B40). The data on the HLA genetics of the Uzbeks confirm the historical, linguistic and anthropological information concerning the role of inhabitants of the Central Asia in ethnogenesis and formation of the modern Uzbek population.  相似文献   

15.
Siberian Tatars form the largest Turkic-speaking ethnic group in Western Siberia. The group has a complex hierarchical system of ethnographically diverse populations. Five subethnic groups of Tobol–Irtysh Siberian Tatars (N = 388 samples) have been analyzed for 50 informative Y-chromosomal SNPs. The subethnic groups have been found to be extremely genetically diverse (F ST = 21%), so the Siberian Tatars form one of the strongly differentiated ethnic gene pools in Siberia and Central Asia. Every method employed in our studies indicates that different subethnic groups formed in different ways. The gene pool of Isker–Tobol Tatars descended from the local Siberian indigenous population and an intense, albeit relatively recent gene influx from Northeastern Europe. The gene pool of Yalutorovsky Tatars is determined by the Western Asian genetic component. The subethnic group of Siberian Bukhar Tatars is the closest to the gene pool of the Western Caucasus population. Ishtyak–Tokuz Tatars have preserved the genetic legacy of Paleo-Siberians, which connects them with populations from Southern, Western, and Central Siberia. The gene pool of the most isolated Zabolotny (Yaskolbinsky) Tatars is closest to Ugric peoples of Western Siberia and Samoyeds of the Northern Urals. Only two out of five Siberian Tatar groups studied show partial genetic similarity to other populations calling themselves Tatars: Isker–Tobol Siberian Tatars are slightly similar to Kazan Tatars, and Yalutorovsky Siberian Tatars, to Crimean Tatars. The approach based on the full sequencing of the Y chromosome reveals only a weak (2%) Central Asian genetic trace in the Siberian Tatar gene pool, dated to 900 years ago. Hence, the Mongolian hypothesis of the origin of Siberian Tatars is not supported in genetic perspective.  相似文献   

16.
A population genetic study of the polymorphism in the first hypervariable segment (HVSI) of mitochondrial DNA control region was carried out for three ethnic populations of the Volga–Ural region, Bashkirs, Russians, and Komi-Permyaks. This analysis showed that most of the mtDNA HVSI haplotypes detected in the populations of Bashkirs, Russians and Komi-Permyaks contained the combinations of nucleotide substitutions detected earlier in European, and, to a lesser extent, Asian. These findings are consistent with historical, anthropological, and ethnographical data suggesting the presence of European and Mongoloid components of different geographical descent in the gene pool of the contemporary population of the Volga–Ural region. The data on the genetic structure and the phylogenetic relationships between populations of the Volga– Ural region based on modern molecular genetic methods of mitochondrial genome investigation would be a substantial addition to the already existing information for some other regions of Europe and Asia. These data would provide more complete examination of the development of interethnic diversity of mitochondrial gene pools of contemporary ethnic populations with the purpose of reconstructing the genetic demographic processes that accompanied peopling of the Middle Ural and Volga region.  相似文献   

17.
Data on the first examination of the CYP1A1 and CYP2D6 genes' polymorphism in the populations of Tundra Nentsis (Yamalo-Nenetskii Autonomous District) and migrant population of Western Siberia (Novosibirsk oblast and Altaiskii krai) are presented. The frequency of the 2D6*4 mutant allele in Tundra Nentsis, characterized by a two-component Caucasoid and Mongoloid origin, was shown to be intermediate in Caucasoid and Mongoloid populations. The frequencies of the 2D6*4 and 1A1Val* mutant alleles across migrant inhabitants of Western Siberia (Caucasoid populations) were similar to that reported for the Caucasoid populations overall. Distribution of the CYP1A1 genotypes (Ile/Ile, Ile/Val*, and Val*/Val*) in Tundra Nentsis was similar to that found in Mongoloid groups. However, the frequency of the 1A1Val* allele in Tundra Nentsis was 1.5 times higher than that in the Southern Mongoloid populations (Chinese, Koreans, and Japanese).  相似文献   

18.
Genetic relationships among eighth Siberian and Central Asian ethnic groups were examined using autosomal microsatellite loci. Genetic similarity of Buryats and Evenks, as well as close relationships between Tuvinians and Kyrgyzes, most likely resulting from the Altai-Slavic co-ancestry of their gene pools, was demonstrated. Studies of gene flow in these populations demonstrated that, in general, Turkic ethnic groups of Southern Siberia (Altaians and Tuvinians) were the recipients of more intense gene flow compared to Eastern Siberian populations belonging to Altaic family. The local Buryat populations displayed substantial differences in the direction and the level of deviation of the observed gene diversity from the expected one, which was probably caused by the differences in the degree of isolation and/or in effective population sizes.  相似文献   

19.
Genetic relationships among eight Siberian and Central Asian ethnic groups were examined using autosomal microsatellite loci. Genetic similarity of Buryats and Evenks, as well as close relationships between Tuvinians and Kyrgyzes, most likely resulting from the Altai-Slavic co-ancestry of their gene pools, was demonstrated. Studies of gene flow in these populations demonstrated that, in general, Turkic ethnic groups of Southern Siberia (Altaians and Tuvinians) were the recipients of more intense gene flow compared to Eastern Siberian populations belonging to Altaic family. The local Buryat populations displayed substantial differences in the direction and the level of deviation of the observed gene diversity from the expected one, which was probably caused by the differences in the degree of isolation and/or in effective population sizes.  相似文献   

20.
With 10 segregating sites (simple nucleotide polymorphisms) in the last intron (1089 bp) of the ZFX gene we have observed 11 haplotypes in 336 chromosomes representing a worldwide array of 15 human populations. Two haplotypes representing 77% of all chromosomes were distributed almost evenly among four continents. Five of the remaining haplotypes were detected in Africa and 4 others were restricted to Eurasia and the Americas. Using the information about the ancestral state of the segregating positions (inferred from human-great ape comparisons), we applied coalescent analysis to estimate the age of the polymorphisms and the resulting haplotypes. The oldest haplotype, with the ancestral alleles at all the sites, was observed at low frequency only in two groups of African origin. Its estimated age of 740 to 1100 kyr corresponded to the time to the most recent common ancestor. The two most frequent worldwide distributed haplotypes were estimated at 550 to 840 and 260 to 400 kyr, respectively, while the age of the continentally restricted polymorphisms was 120 to 180 kyr and smaller. Comparison of spatial and temporal distribution of the ZFX haplotypes suggests that modern humans diverged from the common ancestral stock in the Middle Paleolithic era. Subsequent range expansion prevented substantial gene flow among continents, separating African groups from populations that colonized Eurasia and the New World.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号