首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Donepezil is an acetylcholinesterase inhibitor used in Alzheimer's disease therapy. The neuroprotective effect of donepezil has been demonstrated in a number of different models of neurodegeneration including beta-amyloid toxicity. Since the mechanisms of neurodegeneration involve the activation of both Ca(2+)- and K(+)-channels, the study of donepezil action on voltage-gated ionic currents looked advisable. In the present study, the action of donepezil on voltage-gated Ca(2+)- and K(+)-channels was investigated on isolated neurons of the edible snail (Helix pomatia) using the two-microelectrodes voltage-clamp technique. Donepezil rapidly and reversibly inhibited voltage activated Ca(2+)-current (I(Ca)) (IC(50)=7.9 microM) and three types of high threshold K(+)-current: Ca(2+)-dependent K(+)-current (I(C)) (IC(50)=6.4 microM), delayed rectifier K(+)-current (I(DR)) (IC(50)=8.0 microM) and fast transient K(+)-current (I(Adepol)) (IC(50)=9.1 microM). The drug caused a dual effect on low-threshold fast transient K(+)-current (I(A)), potentiating it at low (5 microM) concentration, but inhibiting at higher (7 microM and above) concentration. Donepezil also caused a significant hyperpolarizing shift of the voltage-current relationship of I(Ca) (but not of any type of K(+)-current). Results suggest the possible contribution of the blocking effect of donepezil on the voltage-gated Ca(2+)- and K(+)-channels to the neuroprotective effect of the drug.  相似文献   

2.
Xu J  Clancy CE 《PloS one》2008,3(4):e2056
A critical property of some neurons is burst firing, which in the hippocampus plays a primary role in reliable transmission of electrical signals. However, bursting may also contribute to synchronization of electrical activity in networks of neurons, a hallmark of epilepsy. Understanding the ionic mechanisms of bursting in a single neuron, and how mutations associated with epilepsy modify these mechanisms, is an important building block for understanding the emergent network behaviors. We present a single-compartment model of a CA3 hippocampal pyramidal neuron based on recent experimental data. We then use the model to determine the roles of primary depolarizing currents in burst generation. The single compartment model incorporates accurate representations of sodium (Na(+)) channels (Na(V)1.1) and T-type calcium (Ca(2+)) channel subtypes (Ca(V)3.1, Ca(V)3.2, and Ca(V)3.3). Our simulations predict the importance of Na(+) and T-type Ca(2+) channels in hippocampal pyramidal cell bursting and reveal the distinct contribution of each subtype to burst morphology. We also performed fast-slow analysis in a reduced comparable model, which shows that our model burst is generated as a result of the interaction of two slow variables, the T-type Ca(2+) channel activation gate and the Ca(2+)-dependent potassium (K(+)) channel activation gate. The model reproduces a range of experimentally observed phenomena including afterdepolarizing potentials, spike widening at the end of the burst, and rebound. Finally, we use the model to simulate the effects of two epilepsy-linked mutations: R1648H in Na(V)1.1 and C456S in Ca(V)3.2, both of which result in increased cellular excitability.  相似文献   

3.
We developed an improved mathematical model for a single primary pacemaker cell of the rabbit sinoatrial node. Original features of our model include 1) incorporation of the sustained inward current (I(st)) recently identified in primary pacemaker cells, 2) reformulation of voltage- and Ca(2+)-dependent inactivation of the L-type Ca(2+) channel current (I(Ca,L)), 3) new expressions for activation kinetics of the rapidly activating delayed rectifier K(+) channel current (I(Kr)), and 4) incorporation of the subsarcolemmal space as a diffusion barrier for Ca(2+). We compared the simulated dynamics of our model with those of previous models, as well as with experimental data, and examined whether the models could accurately simulate the effects of modulating sarcolemmal ionic currents or intracellular Ca(2+) dynamics on pacemaker activity. Our model represents significant improvements over the previous models, because it can 1) simulate whole cell voltage-clamp data for I(Ca,L), I(Kr), and I(st); 2) reproduce the waveshapes of spontaneous action potentials and ionic currents during action potential clamp recordings; and 3) mimic the effects of channel blockers or Ca(2+) buffers on pacemaker activity more accurately than the previous models.  相似文献   

4.
Arachidonic acid and prostaglandin E2 decreased the frequency of miniature endplate currents without changing their amplitude-temporary parameters. They also reduced the evoked transmitter release and the amplitude of the 3rd phase of nerve ending response corresponding to the voltage-dependent K(+)-current. Using perineural recording, It was shown that arachidonic acid and prostaglandin E2 decreased the Ca2+ currents of nerve endings. Indometacin: inhibitor of cyclooxygenase, enhanced the evoked transmitter release and decreased the 3rd phase of nerve ending response. Indometacin prevented the effects of arachidonic acid on evoked transmitter release, whereas the effects of arachidonic acid on the 3rd phase was preserved. Prostaglandin E2 seems to mediate the effects of arachidonic acid on spontaneous and evoked transmitter release, Ca(2+)- and Ca(2+)-activated K(+)-currents. Moreover, the arachidonic acid and prostaglandin E2 exerted their own effects upon voltage-dependent potassium current of motor nerve ending.  相似文献   

5.
To clarify the mechanisms underlying the pancreatic β-cell response to varying glucose concentrations ([G]), electrophysiological findings were integrated into a mathematical cell model. The Ca(2+) dynamics of the endoplasmic reticulum (ER) were also improved. The model was validated by demonstrating quiescent potential, burst-interburst electrical events accompanied by Ca(2+) transients, and continuous firing of action potentials over [G] ranges of 0-6, 7-18, and >19 mM, respectively. These responses to glucose were completely reversible. The action potential, input impedance, and Ca(2+) transients were in good agreement with experimental measurements. The ionic mechanisms underlying the burst-interburst rhythm were investigated by lead potential analysis, which quantified the contributions of individual current components. This analysis demonstrated that slow potential changes during the interburst period were attributable to modifications of ion channels or transporters by intracellular ions and/or metabolites to different degrees depending on [G]. The predominant role of adenosine triphosphate-sensitive K(+) current in switching on and off the repetitive firing of action potentials at 8 mM [G] was taken over at a higher [G] by Ca(2+)- or Na(+)-dependent currents, which were generated by the plasma membrane Ca(2+) pump, Na(+)/K(+) pump, Na(+)/Ca(2+) exchanger, and TRPM channel. Accumulation and release of Ca(2+) by the ER also had a strong influence on the slow electrical rhythm. We conclude that the present mathematical model is useful for quantifying the role of individual functional components in the whole cell responses based on experimental findings.  相似文献   

6.
Diabetic retinopathy is an important cause of visual loss. Functional abnormalities including vasoconstriction precede structural changes. Using the streptozotocin-model of diabetes in rats, we have identified downregulation of the beta1 subunit of the BK channel in arteriole myocytes as a possible molecular mechanism underlying these early changes. BKbeta1 mRNA levels were reduced as early as one month after induction of diabetes, and BK Ca(2+)-sensitivity and caffeine-evoked BK currents were reduced at three months. This effect appears to be selective for the regulatory subunit, as BKalpha subunit expression was not altered at the mRNA level, and voltage-activated BK currents were unaltered. No changes were seen in voltage activated Ca(2+)-current, Ca(2+)-activated Cl(-)current, or A-type voltage activated K(+)-currents. Reduced Ca(2+)-activated BK activity may promote depolarization, Ca(2+)-channel activation and increased contraction under resting conditions or in response to Ca(2+)-mobilizing agonists.  相似文献   

7.
Neurons in the suprachiasmatic nucleus (SCN) function as part of a central timing circuit that drives daily changes in our behaviour and underlying physiology. A hallmark feature of SCN neuronal populations is that they are mostly electrically silent during the night, start to fire action potentials near dawn and then continue to generate action potentials with a slow and steady pace all day long. Sets of currents are responsible for this daily rhythm, with the strongest evidence for persistent Na(+) currents, L-type Ca(2+) currents, hyperpolarization-activated currents (I(H)), large-conductance Ca(2+) activated K(+) (BK) currents and fast delayed rectifier (FDR) K(+) currents. These rhythms in electrical activity are crucial for the function of the circadian timing system, including the expression of clock genes, and decline with ageing and disease. This article reviews our current understanding of the ionic and molecular mechanisms that drive the rhythmic firing patterns in the SCN.  相似文献   

8.
The developmental expression of macroscopic Ca(2+)-activated K(+) currents in chick ciliary ganglion neurons is dependent on an avian ortholog of TGFbeta1, known as TGFbeta4, secreted from target tissues in the eye. Here we report that a different isoform, TGFbeta3, is also expressed in a target tissue of ciliary ganglion neurons. Application of TGFbeta3 inhibits the functional expression of whole-cell Ca(2+)-activated K(+) currents evoked by 12 hour treatment with either TGFbeta1 or beta-neuregulin-1 in ciliary ganglion neurons developing in vitro. TGFbeta3 had no effect on voltage-activated Ca(2+) currents. A neutralizing antiserum specific for TGFbeta3 potentiates stimulation of Ca(2+)-activated K(+) currents evoked by a target tissue (iris) extract in cultured ciliary ganglion neurons, indicating that TGFbeta3 is an inhibitory component of these extracts. Intraocular injection of TGFbeta3 causes a modest but significant inhibition of the expression of Ca(2+)-activated K(+) currents in ciliary ganglion neurons developing in vivo. Further, intraocular injection of a TGFbeta3-neutralizing antiserum stimulates expression of Ca(2+)-activated K(+) currents in ciliary ganglion neurons developing in vivo, indicating that endogenous TGFbeta3 regulates the functional expression of this current. The normal developmental expression of functional Ca(2+)-activated K(+) currents in ciliary ganglion neurons developing in vivo is therefore regulated by two different target-derived isoforms of TGFbeta, which produce opposing effects on the electrophysiological differentiation of these neurons.  相似文献   

9.
Prokineticin 2 (PK2) is a neuropeptide that acts as a signaling molecule regulating circadian rhythms in mammals. We have previously reported PK2 actions on subfornical organ (SFO) neurons, identifying this circumventricular organ as a target at which PK2 acts to influence autonomic control (Cottrell GT, and Ferguson AV. J. Neurosci. 24: 2375-2379, 2004). In this study, we have examined the cellular mechanisms by which PK2 increases the excitability of SFO neurons. Whole cell patch recordings from dissociated rat SFO neurons demonstrated that the mitogen-activated protein (MAP) kinase inhibitor PD-98059 prevented PK2-induced depolarization and decreases in delayed rectifier K(+) current. PK2 also increased intracellular Ca(2+) concentration ([Ca(2+)](i)) in 39% of dissociated SFO neurons (mean increase = 20.8 +/- 5.5%), effects that were maintained in the presence of thapsigargin but abolished by both nifedipine, or the absence of extracellular Ca(2+), suggesting that PK2-induced [Ca(2+)](i) transients resulted from Ca(2+) entry through voltage-gated Ca(2+) channels. Voltage-clamp recordings showed that PK2 was without effects on Ca(2+) currents evoked by voltage ramps, suggesting that PK2-induced Ca(2+) influx was secondary to PK2-induced increases in action potential frequency, an hypothesis supported by data showing that tetrodotoxin abolished effects of PK2 on [Ca(2+)](i). These observations suggested PK2 modulation of voltage-gated Na(+) currents, a possibility confirmed by voltage-clamp experiments showing that PK2 increased the amplitude of both transient and persistent Na(+) currents in 29% of SFO neurons (by 34 and 38%, respectively). These data indicate that PK2 influences SFO neurons through the activation of a MAP kinase cascade, which, in turn, modulates Na(+) and K(+) conductances.  相似文献   

10.
K(+) currents in Drosophila muscles have been resolved into two voltage-activated currents (I(A) and I(K)) and two Ca(2+)-activated currents (I(CF) and I(CS)). Mutations that affect I(A) (Shaker) and I(CF) (slowpoke) have helped greatly in the analysis of these currents and their role in membrane excitability. Lack of mutations that specifically affect channels for the delayed rectifier current (I(K)) has made their genetic and functional identity difficult to elucidate. With the help of mutations in the Shab K(+) channel gene, we show that this gene encodes the delayed rectifier K(+) channels in Drosophila. Three mutant alleles with a temperature-sensitive paralytic phenotype were analyzed. Analysis of the ionic currents from mutant larval body wall muscles showed a specific effect on delayed rectifier K(+) current (I(K)). Two of the mutant alleles contain missense mutations, one in the amino-terminal region of the channel protein and the other in the pore region of the channel. The third allele contains two deletions in the amino-terminal region and is a null allele. These observations identity the channels that carry the delayed rectifier current and provide an in vivo physiological role for the Shab-encoded K(+) channels in Drosophila. The availability of mutations that affect I(K) opens up possibilities for studying I(K) and its role in larval muscle excitability.  相似文献   

11.
12.
We studied electrophysiological and morphological properties of astrocytes in the dentate gyrus of the rat hippocampus in slices. Intracellular application of Lucifer yellow revealed two types of morphology: one with a long process extruding from the cell body, and the other with numerous short processes surrounding the cell body. Their electrophysiological properties were either passive, that is, no detectable voltage-dependent conductance, or complex, with Na+/K+ currents similar to those reported in the Ammon's horn astrocytes. We did not find any morphological correlate to the types of electrophysiological profile or dye coupling. Chelation of cytoplasmic calcium ([Ca2+]i) by BAPTA increased the incidence of detecting a low Na+) conductance and transient outward K+ currents. However, an inwardly rectifying K+ current (Kir), a hallmark of differentiated CA1/3 astrocytes, was not a representative K+-current in the complex dentate astrocytes, suggesting that these astrocytes could retain an immature form of K-currents. Dentate astrocytes may possess a distinct current profile that is different from those in CA1/3 Ammon's horn.  相似文献   

13.
14.
Changes in cytosolic free Mg(2+) and adenosine nucleotide phosphates affect cardiac excitability and contractility. To investigate how modulation by Mg(2+), ATP, and ADP of K(ATP) and L-type Ca(2+) channels influences excitation-contraction coupling, we incorporated equations for intracellular ATP and MgADP regulation of the K(ATP) current and MgATP regulation of the L-type Ca(2+) current in an ionic-metabolic model of the canine ventricular myocyte. The new model: 1), quantitatively reproduces a dose-response relationship for the effects of changes in ATP on K(ATP) current, 2), simulates effects of ADP in modulating ATP sensitivity of K(ATP) channel, 3), predicts activation of Ca(2+) current during rapid increase in MgATP, and 4), demonstrates that decreased ATP/ADP ratio with normal total Mg(2+) or increased free Mg(2+) with normal ATP and ADP activate K(ATP) current, shorten action potential, and alter ionic currents and intracellular Ca(2+) signals. The model predictions are in agreement with experimental data measured under normal and a variety of pathological conditions.  相似文献   

15.
Zhou HY  Han CY  Wang XL 《生理学报》2006,58(2):136-140
心肌缺血损伤过程中,胞内Na^+、ATP及pH都出现明显变化。钠/钙交换对心肌细胞的钙平衡起重要的调节作用。本实验采用膜片钳全细胞记录豚鼠心室肌细胞钠/钙交换电流,研究温度和胞内Na^+、ATP及pH对钠/钙交换双向电流的影响。结果表明,温度从22℃升至34℃,钠/钙交换电流增大约4倍,而pH值的改变对钠/钙交换双向电流没有明显的影响。在22~24℃时,同时耗竭胞内ATP和胞内酸化对钠/钙交换双向转运功能影响程度小;而在34—37℃时,同时耗竭胞内ATP和胞内酸化能抑制钠/钙交换双向电流的外向和内向成分,且内向成分抑制程度高于外向成分抑制程度。表明同时耗竭胞内ATP和胞内酸化对钠/钙交换的作用具有温度依赖性。胞内Na^+超载能使钠/钙交换电流的外向成分增加,但不增加或减少内向电流(即正向转运)成分。因此,胞内酸化及耗竭胞内ATP损伤细胞排钙机制和胞内钠超载通过钠/钙反向交换引起钙内流是引起心肌细胞钙超载的两个独立的重要因素。  相似文献   

16.
The activity of the cardiac Na(+)/Ca(2+) exchanger (NCX1.1) undergoes continuous modulation during the contraction-relaxation cycle because of the accompanying changes in the electrochemical gradients for Na(+) and Ca(2+). In addition, NCX1.1 activity is also modulated via secondary, ionic regulatory mechanisms mediated by Na(+) and Ca(2+). In an effort to evaluate how ionic regulation influences exchange activity under pulsatile conditions, we studied the behavior of the cloned NCX1.1 during frequency-controlled changes in intracellular Na(+) and Ca(+) (Na(i)(+) and Ca(i)(2+)). Na(+)/Ca(2+) exchange activity was measured by the giant excised patch-clamp technique with conditions chosen to maximize the extent of Na(+)- and Ca(2+)-dependent ionic regulation so that the effects of variables such as pulse frequency and duration could be optimally discerned. We demonstrate that increasing the frequency or duration of solution pulses leads to a progressive decline in pure outward, but not pure inward, Na(+)/Ca(2+) exchange current. However, when the exchanger is permitted to alternate between inward and outward transport modes, both current modes exhibit substantial levels of inactivation. Changes in regulatory Ca(2+), or exposure of patches to limited proteolysis by alpha-chymotrypsin, reveal that this "coupling" is due to Na(+)-dependent inactivation originating from the outward current mode. Under physiological ionic conditions, however, evidence for modulation of exchange currents by Na(i)(+)-dependent inactivation was not apparent. The current approach provides a novel means for assessment of Na(+)/Ca(2+) exchange ionic regulation that may ultimately prove useful in understanding its role under physiological and pathophysiological conditions.  相似文献   

17.
The properties of several components of outward K(+) currents, including the pharmacological and kinetics profiles as well as the respective molecular correlates, have been identified in mouse cardiac myocytes. Surprisingly little is known with regard to the Ca(2+)-activated ionic currents. We studied the Ca(2+)-activated transient outward currents in mouse ventricular myocytes. We have identified a 4-aminopyridine (4-AP)- and tetraethyl ammonium-resistant transient outward current that is Ca(2+) dependent. The current is carried by Cl(-) and is critically dependent on Ca(2+) influx via voltage-gated Ca(2+) channels and the sarcoplasmic reticulum Ca(2+) store. The current can be blocked by the anion transport blockers niflumic acid and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. Single channel recordings reveal small conductance channels (approximately 1 pS in 140 mM Cl(-)) that can be blocked by anion transport blockers. Ensemble-averaged current faithfully mirrors the transient kinetics observed at the whole level. Niflumic acid (in the presence of 4-AP) leads to prolongation of the early repolarization. Thus this current may contribute to early repolarization of action potentials in mouse ventricular myocytes.  相似文献   

18.
The recent discoveries of Stim1 and Orai proteins have shed light on the molecular makeup of both the endoplasmic reticulum Ca(2+) sensor and the calcium release-activated calcium (CRAC) channel, respectively. In this study, we investigated the regulation of CRAC channel function by extracellular Ca(2+) for channels composed primarily of Orai1, Orai2, and Orai3, by co-expressing these proteins together with Stim1, as well as the endogenous channels in HEK293 cells. As reported previously, Orai1 or Orai2 resulted in a substantial increase in CRAC current (I(crac)), but Orai3 failed to produce any detectable Ca(2+)-selective currents. However, sodium currents measured in the Orai3-expressing HEK293 cells were significantly larger in current density than Stim1-expressing cells. Moreover, upon switching to divalent free external solutions, Orai3 currents were considerably more stable than Orai1 or Orai2, indicating that Orai3 channels undergo a lesser degree of depotentiation. Additionally, the difference between depotentiation from Ca(2+) and Ba(2+) or Mg(2+) solutions was significantly less for Orai3 than for Orai1 or -2. Nonetheless, the Na(+) currents through Orai1, Orai2, and Orai3, as well as the endogenous store-operated Na(+) currents in HEK293 cells, were all inhibited by extracellular Ca(2+) with a half-maximal concentration of approximately 20 mum. We conclude that Orai1, -2, and -3 channels are similarly inhibited by extracellular Ca(2+), indicating similar affinities for Ca(2+) within the selectivity filter. Orai3 channels appeared to differ from Orai1 and -2 in being somewhat resistant to the process of Ca(2+) depotentiation.  相似文献   

19.
TRPC3 has been suggested as a key component of phospholipase C-dependent Ca(2+) signaling. Here we investigated the role of TRPC3-mediated Na(+) entry as a determinant of plasmalemmal Na(+)/Ca(2+) exchange. Ca(2+) signals generated by TRPC3 overexpression in HEK293 cells were found to be dependent on extracellular Na(+), in that carbachol-stimulated Ca(2+) entry into TRPC3 expressing cells was significantly suppressed when extracellular Na(+) was reduced to 5 mm. Moreover, KB-R9743 (5 microm) an inhibitor of the Na(+)/Ca(2+) exchanger (NCX) strongly suppressed TRPC3-mediated Ca(2+) entry but not TRPC3-mediated Na(+) currents. NCX1 immunoreactivity was detectable in HEK293 as well as in TRPC3-overexpressing HEK293 cells, and reduction of extracellular Na(+) after Na(+) loading with monensin resulted in significant rises in intracellular free Ca(2+) (Ca(2+)(i)) of HEK293 cells. Similar rises in Ca(2+)(i) were recorded in TRPC3-overexpressing cells upon the reduction of extracellular Na(+) subsequent to stimulation with carbachol. These increases in Ca(2+)(i) were associated with outward membrane currents at positive potentials and inhibited by KB-R7943 (5 microm), chelation of extracellular Ca(2+), or dominant negative suppression of TRPC3 channel function. This suggests that Ca(2+) entry into TRPC3-expressing cells involves reversed mode Na(+)/Ca(2+) exchange. Cell fractionation experiments demonstrated co-localization of TRPC3 and NCX1 in low density membrane fractions, and co-immunoprecipitation experiments provided evidence for association of TRPC3 and NCX1. Glutathione S-transferase pull-down experiments revealed that NCX1 interacts with the cytosolic C terminus of TRPC3. We suggest functional and physical interaction of nonselective TRPC cation channels with NCX proteins as a novel principle of TRPC-mediated Ca(2+) signaling.  相似文献   

20.
Ionically based cardiac action potential (AP) models are based on equations with singular Jacobians and display time-dependent AP and ionic changes (transients), which may be due to this mathematical limitation. The present study evaluated transients during long-term simulated activity in a mathematical model of the canine atrial AP. Stimulus current assignment to a specific ionic species contributed to stability. Ionic concentrations were least disturbed with the K(+) stimulus current. All parameters stabilized within 6-7 h. Inward rectifier, Na(+)/Ca(2+) exchanger, L-type Ca(2+), and Na(+)-Cl(-) cotransporter currents made the greatest contributions to stabilization of intracellular [K(+)], [Na(+)], [Ca(2+)], and [Cl(-)], respectively. Time-dependent AP shortening was largely due to the outward shift of Na(+)/Ca(2+) exchange related to intracellular Na(+) (Na) accumulation. AP duration (APD) reached a steady state after approximately 40 min. AP transients also occurred in canine atrial preparations, with the APD decreasing by approximately 10 ms over 35 min, compared with approximately 27 ms in the model. We conclude that model APD and ionic transients stabilize with the appropriate stimulus current assignment and that the mathematical limitation of equation singularity does not preclude meaningful long-term simulations. The model agrees qualitatively with experimental observations, but quantitative discrepancies highlight limitations of long-term model simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号