首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian serine-arginine (SR) protein, ASF/SF2, contains multiple contiguous RS dipeptides at the C terminus, and approximately 12 of these serines are processively phosphorylated by the SR protein kinase 1 (SRPK1). We have recently shown that a docking motif in ASF/SF2 specifically interacts with a groove in SRPK1, and this interaction is necessary for processive phosphorylation. We previously showed that SRPK1 and its yeast ortholog Sky1p maintain their active conformations using diverse structural strategies. Here we tested if the mechanism of ASF/SF2 phosphorylation by SRPK is evolutionarily conserved. We show that Sky1p forms a stable complex with its heterologous mammalian substrate ASF/SF2 and processively phosphorylates the same sites as SRPK1. We further show that Sky1p utilizes the same docking groove to bind yeast SR-like protein Gbp2p and phosphorylates all three serines present in a contiguous RS dipeptide stretch. However, the mechanism of Gbp2p phosphorylation appears to be non-processive. Thus, there are physical attributes of SR and SR-like substrates that dictate the mechanism of phosphorylation, whereas the ability to processively phosphorylate substrates is inherent to SR protein kinases.  相似文献   

2.
Yeast phosphorylase is phosphorylated and activated by a cyclic AMP-independent protein kinase (called phosphorylase kinase) and a cyclic AMP-dependent protein kinase. Only in the presence of both kinases is phosphorylase fully activated and phosphorylated. No evidence was found for the presence of two phosphorylation sites as an identical phosphopeptide pattern of phosphorylase is obtained after phosphorylation by either one or both kinases. The kinases probably phosphorylate identical sites but recognize different subunits of phosphorylase. Phosphorylase kinase phosphorylates the high-Mr subunit while cAMP-dependent protein kinase phosphorylates the low-Mr subunit.  相似文献   

3.
Phosphorylation of neurofilament proteins by protein kinase C   总被引:9,自引:0,他引:9  
R K Sihag  A Y Jeng  R A Nixon 《FEBS letters》1988,233(1):181-185
The low molecular mass (70 kDa) subunit of neurofilaments (NF-L) contains at least three phosphorylation sites in vivo and is phosphorylated by multiple kinases in a site-specific manner [(1987) J. Neurochem. 48, S101; Sihag, R.K. and Nixon, R.A. submitted]. In this study, we observed that the three subunits of neurofilament proteins from retinal ganglion cell neurons are substrates for purified mouse brain protein kinase C. Two-dimensional alpha-chymotryptic phosphopeptide map analyses of the NF-L subunit demonstrated that protein kinase C phosphorylates four polypeptide sites, two of which incorporate phosphate when retinal ganglion cells are pulse-radiolabeled with [32P]orthophosphate in vivo.  相似文献   

4.
Scott MP  Miller WT 《Biochemistry》2000,39(47):14531-14537
The Src homology 2 (SH2) and Src homology 3 (SH3) domains of Src family kinases are involved in substrate recognition in vivo. Many cellular substrates of Src kinases contain a large number of potential phosphorylation sites, and the SH2 and SH3 domains of Src are known to be required for phosphorylation of these substrates. In principle, Src could phosphorylate these substrates by either a processive mechanism, in which the enzyme remains bound to the peptide substrate during multiple phosphorylation events, or a nonprocessive (distributive) mechanism, where each phosphorylation requires a separate binding interaction between enzyme and substrate. Here we use a synthetic peptide system to demonstrate that Hck, a Src family kinase, can phosphorylate substrates containing an SH2 domain ligand by a processive mechanism. Hck catalyzes the phosphorylation of these sites in a defined order. Furthermore, we show that addition of an SH3 domain to a peptide can enhance its phosphorylation both by activating Hck and by increasing the affinity of the substrate. On the basis of our observations on the role of the SH2 and SH3 domains in substrate recognition, we present a model for substrate targeting in vivo.  相似文献   

5.
6.
MLK3 (mixed lineage kinase 3) is a widely expressed, mammalian serine/threonine protein kinase that activates multiple MAPK pathways. Previously our laboratory used in vivo labeling/mass spectrometry to identify phosphorylation sites of activated MLK3. Seven of 11 identified sites correspond to the consensus motif for phosphorylation by proline-directed kinases. Based on these results, we hypothesized that JNK, or another proline-directed kinase, phosphorylates MLK3 as part of a feedback loop. Herein we provide evidence that MLK3 can be phosphorylated by JNK in vitro and in vivo. Blockade of JNK results in dephosphorylation of MLK3. The hypophosphorylated form of MLK3 is inactive and redistributes to a Triton-insoluble fraction. Recovery from JNK inhibition restores MLK3 solubility and activity, indicating that the redistribution process is reversible. This work describes a novel mode of regulation of MLK3, by which JNK-mediated feedback phosphorylation of MLK3 regulates its activation and deactivation states by cycling between Triton-soluble and Triton-insoluble forms.  相似文献   

7.
This study characterizes the insulin-activated serine/threonine protein kinases in H4 hepatoma cells active on a 37-residue synthetic peptide (called the SKAIPS peptide) corresponding to a putative autoinhibitory domain in the carboxyl-terminal tail of the p70 S6 kinase as well as on recombinant p70 S6 kinase. Three peaks of insulin-stimulated protein kinase active on both these substrates are identified as two (possibly three) isoforms of the 40-45-kDa erk/microtubule-associated protein (MAP)-2 kinase family and a 150-kDa form of cdc2. Although distinguishable in their substrate specificity, these protein kinases together with the p54 MAP-2 kinase share a major common specificity determinant reflected in the SKAIPS peptide: the requirement for a proline residue immediately carboxyl-terminal to the site of Ser/Thr phosphorylation. In addition, however, at least one peak of insulin-stimulated protein kinase active on recombinant p70, but not on the SKAIPS peptide, is present although not yet identified. MFP/cdc2 phosphorylates both rat liver p70 S6 kinase and recombinant p70 S6 kinase exclusively at a set of Ser/Thr residues within the putative autoinhibitory (SKAIPS peptide) domain. erk/MAP kinase does not phosphorylate rat liver p70 S6 kinase, but readily phosphorylates recombinant p70 S6 kinase at sites both within and in addition to those encompassed by the SKAIPS peptide sequences. Although the tryptic 32P-peptides bearing the cdc2 and erk/MAP kinase phosphorylation sites co-migrate with a subset of the sites phosphorylated in situ in insulin-stimulated cells, phosphorylation of the p70 S6 kinase by these proline-directed protein kinases in vitro does not reproducibly activate p70 S6 kinase activity. Thus, one or more erk/MAP kinases and cdc2 are likely to participate in the insulin-induced phosphorylation of the p70 S6 kinase. In addition to these kinases, however, phosphorylation of the p70 S6 kinase by other as yet unidentified protein kinases is necessary to recapitulate the multisite phosphorylation required for activation of the p70 S6 kinase.  相似文献   

8.
Ribosomal protein S6 kinase (S6K) is activated by an array of mitogenic stimuli and is a key player in the regulation of cell growth. The activation process of S6 kinase involves a complex and sequential series of multiple Ser/Thr phosphorylations and is mainly mediated via phosphatidylinositol 3-kinase (PI3K)-3-phosphoinositide-dependent protein kinase-1 (PDK1) and mTor-dependent pathways. Upstream regulators of S6K, such as PDK1 and protein kinase B (PKB/Akt), are recruited to the membrane via their pleckstrin homology (PH) or protein-protein interaction domains. However, the mechanism of integration of S6K into a multi-enzyme complex around activated receptor tyrosine kinases is not clear. In the present study, we describe a specific interaction between S6K with receptor tyrosine kinases, such as platelet-derived growth factor receptor (PDGFR). The interaction with PDGFR is mediated via the kinase or the kinase extension domain of S6K. Complex formation is inducible by growth factors and leads to S6K tyrosine phosphorylation. Using PDGFR mutants, we have shown that the phosphorylation is exerted via a PDGFR-src pathway. Furthermore, src kinase phosphorylates and coimmunoprecipitates with S6K in vivo. Inhibitors towards tyrosine kinases, such as genistein and PP1, or src-specific SU6656, but not PI3K and mTor inhibitors, lead to a reduction in tyrosine phosphorylation of S6K. In addition, we mapped the sites of tyrosine phosphorylation in S6K1 and S6K2 to Y39 and Y45, respectively. Mutational and immunofluorescent analysis indicated that phosphorylation of S6Ks at these sites does not affect their activity or subcellular localization. Our data indicate that S6 kinase is recruited into a complex with RTKs and src and becomes phosphorylated on tyrosine/s in response to PDGF or serum.  相似文献   

9.
Previously, we showed that Abl kinases (c-Abl, Arg) are activated downstream of PDGF in a manner dependent on Src kinases and PLC-γ1, and promote PDGF-mediated proliferation and migration of fibroblasts. We additionally demonstrated that Abl kinases bind directly to PDGFR-β via their SH2 domains. In this study, we extend these findings by demonstrating that Abl kinases also are activated downstream of a PDGF autocrine growth loop in glioblastoma cells, indicating that the PDGFR-Abl signaling pathway also is likely to be important in glioblastoma development and/or progression. We recently showed that Abl kinases are highly active in many breast cancer cell lines, and the Her-2 receptor tyrosine kinase contributes to c-Abl and Arg kinase activation. In this study, we show that Abl kinase SH2 domains bind directly to Her-2, and like PDGFR-β, Her-2 directly phosphorylates c-Abl. Previously, we demonstrated that PDGFR-β directly phosphorylates Abl kinases in vitro, and Abl kinases reciprocally phosphorylate PDGFR-β. Here, we show that PDGFR-β-phosphorylation of Abl kinases has functional consequences as PDGFR-β phosphorylates Abl kinases on Y245 and Y412, sites known to be required for activation of Abl kinases. Moreover, PDGFR-β phosphorylates Arg on two additional unique sites whose function is unknown. Importantly, we also show that Abl-dependent phosphorylation of PDGFR-β has functional and biological significances. c-Abl phosphorylates three tyrosine residues on PDGFR-β (Y686, Y934, Y970), while Arg only phosphorylates Y686. Y686 and Y934 reside in PDGFR-β catalytic domains, while Y970 is in the C-terminal tail. Using site-directed mutagenesis, we show that Abl-dependent phosphorylation of PDGFR-β activates PDGFR-β activity, in vitro, but serves to downregulate PDGFR-mediated chemotaxis. These data are exciting as they indicate that Abl kinases not only are activated by PDGFR and promote PDGFR-mediated proliferation and migration, but also act in an intricate negative feedback loop to turn-off PDGFR-mediated chemotaxis.  相似文献   

10.
We have examined the sites phosphorylated on acetyl-CoA carboxylase by three protein kinases which have been shown to inactivate the enzyme, i.e. cyclic-AMP-dependent protein kinase, acetyl-CoA carboxylase kinase-2 (ACK2, purified from rat mammary gland) and the AMP-activated protein kinase (formerly called acetyl-CoA carboxylase kinase-3, purified from rat liver). Each protein kinase phosphorylates two out of three sites (termed 1-3) which have been established by amino acid sequencing. The two sites phosphorylated by each kinase can be recovered on separate peptides, TC1 and TC2, derived by combined digestion of the native enzyme by trypsin and chymotrypsin: TC1 = Ser-2Ser(P)-Met-3Ser(P)-Gly-Leu; TC2 = Arg-Met-1Ser(P)-Phe- Cyclic-AMP-dependent protein kinase phosphorylates sites 1 and 2 exclusively, whereas the AMP-activated protein kinase phosphorylates sites 1 and 3, plus at least one other minor site. ACK2 phosphorylates site 1 and, more slowly, an unidentified site(s) within TC1. We have also established the structures of the single major phosphopeptides (T1 and C1 respectively) which are recovered by HPLC after acetyl-CoA carboxylase phosphorylated by cyclic-AMP-dependent protein kinase is digested with trypsin or chymotrypsin alone. T1 is related to TC1, and has the structure: Ser-Ser(P)-Met-Ser-Gly-Leu-His-Leu-Val-Lys. C1 is identical with TC2. We have carried out studies on the correlation of the activity of acetyl-CoA carboxylase with the occupancy of sites 1, 2 and 3 during phosphorylation by each of the three protein kinases. The results suggest that phosphorylation of site 3 is primarily responsible for the large decrease in Vmax produced by the AMP-activated protein kinase, while phosphorylation of site 1 may be primarily responsible for the increase in A0.5 for citrate and more modest depression of Vmax produced by cyclic-AMP-dependent protein kinase and ACK2. Our results emphasize that amino acid sequence information is essential in the unequivocal interpretation of data from phosphopeptide mapping experiments and allow a more complete interpretation of previous data on phosphorylation of acetyl-CoA carboxylase in intact cells. They also open the way to experiments which could establish the physiological roles of these protein kinases in the control of fatty acid synthesis.  相似文献   

11.
A novel peptide with multiple phosphorylation sites, which we designated as multide, was developed to detect a wide variety of protein kinases in crude cell extracts. Multide, KKRKSSLRRWSPLTPRQMSFDC, has been designed to contain consensus sequences for various Ser/Thr protein kinases including cAMP-dependent protein kinase, protein kinase C, MAP kinases, and Ca(2+)/calmodulin-dependent protein kinases in a single peptide. In-gel protein kinase assay using multide was found to be very useful for analyzing the activities of protein kinases that are altered in response to various extracellular stimuli. The substrate specificities of the protein kinases thus detected were further determined by using five multide analogs with different phosphorylation sites.  相似文献   

12.
C M O'Callahan  M M Hosey 《Biochemistry》1988,27(16):6071-6077
Evidence from electrophysiological and ion flux studies has established that dihydropyridine-sensitive calcium channels are subject to regulation by neurotransmitter-mediated phosphorylation and dephosphorylation reactions. In the present study, we have further characterized the phosphorylation by cAMP-dependent protein kinase and a multifunctional Ca/calmodulin-dependent protein kinase of the membrane-associated form of the 165-kDa polypeptide identified as the skeletal muscle dihydropyridine receptor. The initial rates of phosphorylation of the 165-kDa peptide by both protein kinases were found to be relatively good compared to the rates of phosphorylation of established substrates of the enzymes. Phosphorylation of the 165-kDa peptide by both protein kinases was additive. Prior phosphorylation by either one of the kinases alone did not preclude phosphorylation by the second kinase. The cAMP-dependent protein kinase phosphorylated the 165-kDa peptide preferentially at serine residues, although a small amount of phosphothreonine was also formed. In contrast, after phosphorylation of the 165-kDa peptide by the Ca/calmodulin-dependent protein kinase, slightly more phosphothreonine than phosphoserine was recovered. Phosphopeptide mapping indicated that the two kinases phosphorylated the peptide at distinct as well as similar sites. Notably, one major site phosphorylated by the cAMP-dependent protein kinase was not phosphorylated by the Ca/calmodulin-dependent protein kinase, while other sites were phosphorylated to a high degree by the Ca/calmodulin-dependent protein kinase, but to a much lesser degree by the cAMP-dependent protein kinase. The results show that the 165-kDa dihydropyridine receptor from skeletal muscle can be multiply phosphorylated at distinct sites by the cAMP- and Ca/calmodulin-dependent protein kinases. As the 165-kDa peptide may be the major functional unit of the dihydropyridine-sensitive Ca channel, the results suggest that the phosphorylation-dependent modulation of Ca channel activity by neurotransmitters may involve phosphorylation of the 165-kDa peptide at multiple sites.  相似文献   

13.
Capsids of hepatitis B virus and other hepadnaviruses contain a cellular protein kinase, which phosphorylates the capsid protein. Some phosphorylation sites are shown to be essential for distinct steps of viral replication as pregenome packaging or plus strand DNA synthesis. Although different protein kinases have been reported to phosphorylate the capsid protein, varying experimental approaches do not allow direct comparison. Furthermore, the activity of a specific protein kinase has not yet been correlated to steps in the hepadnaviral life cycle. In this study we show that capsids from various sources encapsidate active protein kinase Cα, irrespective of hepatitis B virus genotype and host cell. Treatment of a virion expressing cell line with a pseudosubstrate inhibitor showed that inhibition of protein kinase C phosphorylation did not affect genome maturation but resulted in capsid accumulation and inhibited virion release to the medium. Our results imply that different protein kinases have distinct functions within the hepadnaviral life cycle.  相似文献   

14.
SR protein kinase 1 (SRPK1) is a constitutively active kinase, which processively phosphorylates multiple serines within its substrates, ASF/SF2. We describe crystallographic, molecular dynamics, and biochemical results that shed light on how SRPK1 preserves its constitutive active conformation. Our structure reveals that unlike other known active kinase structures, the activation loop remains in an active state without any specific intraprotein interactions. Moreover, SRPK1 remains active despite extensive mutation to the activation segment. Molecular dynamics simulations reveal that SRPK1 partially absorbs the effect of mutations by forming compensatory interactions that maintain a catalytically competent chemical environment. Furthermore, SRPK1 is similarly resistant to deletion of its spacer loop region. Based upon a model of SRPK1 bound to a segment encompassing the docking motif and active-site peptide of ASF/SF2, we suggest a mechanism for processive phosphorylation and propose that the atypical resiliency we observed is critical for SRPK1's processive activity.  相似文献   

15.
Yeast piD261/Bud32 and its homologues are present in eukaryotes and in archaea but not in bacteria and are believed to make up a primordial branch of the eukaryotic protein kinase superfamily. Here, we show that, at variance with the majority of Ser/Thr protein kinases which recognize phosphoacceptor sites specified by basic and/or proline residues, piD261 phosphorylates in vitro a number of acidic proteins and peptides, and it recognizes seryl residues specified by carboxylic side chains. These data suggest that recognition of acidic sites might have been a primordial trait of protein kinases, which was modified during evolution to cope with the increasing complexity of protein phosphorylation in eukaryotes.  相似文献   

16.
The SR (arginine-serine rich) protein ASF/SF2 (also called human alternative splicing factor), an essential splicing factor, contains two functional modules consisting of tandem RNA recognition motifs (RRMs; RRM1-RRM2) and a C-terminal arginine-serine repeat region (RS domain, a domain rich in arginine-serine repeats). The SR-specific protein kinase (SRPK) 1 phosphorylates the RS domain at multiple serines using a directional (C-terminal-to-N-terminal) and processive mechanism—a process that directs the SR protein to the nucleus and influences protein-protein interactions associated with splicing function. To investigate how SRPK1 accomplishes this feat, the enzyme-substrate complex was analyzed using single-turnover and multiturnover kinetic methods. Deletion studies revealed that while recognition of the RS domain by a docking groove on SRPK1 is sufficient to initiate the processive and directional mechanism, continued processive phosphorylation in the presence of building repulsive charge relies on the fine-tuning of contacts with the RRM1-RRM2 module. An electropositive pocket in SRPK1 that stabilizes newly phosphorylated serines enhanced processive phosphorylation of later serines. These data indicate that SRPK1 uses stable, yet highly flexible protein-protein interactions to facilitate both early and late phases of the processive phosphorylation of SR proteins.  相似文献   

17.
18.
Phosphorylation of rhodopsin by protein kinase C in vitro   总被引:3,自引:0,他引:3  
Calium/phospholipid-dependent protein kinase (protein kinase C) was purified from bovine retinae rod outer segments (ROS). In the presence of 0.1-2 microM calcium protein kinase C binds tightly to ROS and phosphorylates rhodopsin in the absence or presence of illumination. This property of protein kinase C contrasts with that of rhodopsin kinase, which in vitro phosphorylates only bleached rhodopsin. Peptide maps of rhodopsin phosphorylated by protein kinase C or rhodopsin kinase were compared using limited Staphylococcus aureus V8 protease digestion or complete tryptic digestion. Phosphorylation sites map to serine and threonine residues on the cytoplasmic carboxylterminal domain of rhodopsin for both kinases. The functional consequence of protein kinase C phosphorylation of rhodopsin was a reduced ability to stimulate the light-dependent rhodopsin activation of [35S]guanosine 5'-O-(thiotriphosphate) binding to transducin, the GTP-binding regulatory protein present in ROS. Properties of the calcium-stimulated interaction of protein kinase C with membranes and in vitro phosphorylation of intrinsic proteins are discussed based upon the findings.  相似文献   

19.
Regulation of connexin43 function by activated tyrosine protein kinases   总被引:1,自引:0,他引:1  
Gap junctions are specialized membrane structures that are involved in the normal functioning of numerous mammalian tissues and implicated in several human disease processes. This mini-review focuses on the regulation of gap junctions through phosphorylation of connexin43 induced by the v-Src or epidermal growth factor receptor tyrosine kinases. These tyrosine kinases markedly disrupt gap junctional communication in mammalian cells. Here, we describe work correlating the alteration of connexin43 function with the ability of the v-Src tyrosine kinase to phosphorylate connexin43 directly on two distinct tyrosine sites in mammalian cells (Y247 and Y265). We also present evidence that proline-rich regions and phosphotyrosine sites of connexin43 may mediate interactions with the SH3 and SH2 domains of v-Src. In contrast to v-Src, the activated epidermal growth factor receptor acts indirectly through activated MAP kinase which may stimulate phosphorylation of connexin43 exclusively on serine. This phosphorylation event is complex because MAP kinase phosphorylates three serine sites in connexin43 (S255, S279, and S282). These findings suggest novel interactions between connexin43, the v-Src tyrosine kinase, and activated MAP kinase that set the stage for future investigations into the regulation of gap junctions by protein phosphorylation.  相似文献   

20.
Many in vivo substrates of Src family tyrosine kinases possess sequences conforming to Src homology 2 and 3 (SH2 and SH3) domain-binding motifs. One such substrate is p130Cas, a protein that is hyperphosphorylated in v-Src transformed cells. Cas contains a substrate domain consisting of 15 potential tyrosine phosphorylation sites, C- and N-terminal polyproline regions fitting the consensus sequence for SH3 domain ligands, and a YDYV motif that binds the Src SH2 domain when phosphorylated. In an effort to understand the mechanisms of processive phosphorylation, we have explored the regions of Cas necessary for interaction with Src using the yeast two-hybrid system. Mutations in the SH2 domain-binding region of Cas or the Src SH2 domain have little effect in Cas-Src complex formation or phosphorylation. However, disruption of the C-terminal polyproline region of Cas completely abolishes interaction between the two proteins and results in impaired phosphorylation of Cas. Kinetic analyses using purified proteins indicated that multisite phosphorylation of Cas by Src follows a processive rather than a distributive mechanism. Furthermore, the kinetic studies show that there are two properties of the polyproline region of Cas that are important in enhancing substrate phosphorylation. First, the C-terminal polyproline serves to activate Src kinases through the process of SH3 domain displacement. Second, this region aids in anchoring the kinase to Cas to facilitate processive phosphorylation of the substrate domain. The two processes combine to ensure phosphorylation of Cas with high efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号