首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sliding filament model of muscle contraction, put forward by Hugh Huxley and Jean Hanson in 1954, is 60 years old in 2014. Formulation of the model and subsequent proof was driven by the pioneering work of Hugh Huxley (1924–2013). We celebrate Huxley’s integrative approach to the study of muscle contraction; how he persevered throughout his career, to the end of his life at 89 years, to understand at the molecular level how muscle contracts and develops force. Here we show how his life and work, with its focus on a single scientific problem, had impact far beyond the field of muscle contraction to the benefit of multiple fields of cellular and structural biology. Huxley introduced the use of x-ray diffraction to study the contraction in living striated muscle, taking advantage of the paracrystalline lattice that would ultimately allow understanding contraction in terms of single molecules. Progress required design of instrumentation with ever-increasing spatial and temporal resolution, providing the impetus for the development of synchrotron facilities used for most protein crystallography and muscle studies today. From the time of his early work, Huxley combined electron microscopy and biochemistry to understand and interpret the changes in x-ray patterns. He developed improved electron-microscopy techniques, thin sections and negative staining, that enabled answering major questions relating to the structure and organization of thick and thin filaments in muscle and the interaction of myosin with actin and its regulation. Huxley established that the ATPase domain of myosin forms the crossbridges of thick filaments that bind actin, and introduced the idea that myosin makes discrete steps on actin. These concepts form the underpinning of cellular motility, in particular the study of how myosin, kinesin, and dynein motors move on their actin and tubulin tracks, making Huxley a founder of the field of cellular motility.  相似文献   

2.
The sliding filament model of muscle contraction, put forward by Hugh Huxley and Jean Hanson in 1954, is 60 years old in 2014. Formulation of the model and subsequent proof was driven by the pioneering work of Hugh Huxley (1924–2013). We celebrate Huxley’s integrative approach to the study of muscle contraction; how he persevered throughout his career, to the end of his life at 89 years, to understand at the molecular level how muscle contracts and develops force. Here we show how his life and work, with its focus on a single scientific problem, had impact far beyond the field of muscle contraction to the benefit of multiple fields of cellular and structural biology. Huxley introduced the use of x-ray diffraction to study the contraction in living striated muscle, taking advantage of the paracrystalline lattice that would ultimately allow understanding contraction in terms of single molecules. Progress required design of instrumentation with ever-increasing spatial and temporal resolution, providing the impetus for the development of synchrotron facilities used for most protein crystallography and muscle studies today. From the time of his early work, Huxley combined electron microscopy and biochemistry to understand and interpret the changes in x-ray patterns. He developed improved electron-microscopy techniques, thin sections and negative staining, that enabled answering major questions relating to the structure and organization of thick and thin filaments in muscle and the interaction of myosin with actin and its regulation. Huxley established that the ATPase domain of myosin forms the crossbridges of thick filaments that bind actin, and introduced the idea that myosin makes discrete steps on actin. These concepts form the underpinning of cellular motility, in particular the study of how myosin, kinesin, and dynein motors move on their actin and tubulin tracks, making Huxley a founder of the field of cellular motility.  相似文献   

3.
A hallmark of cellular processes is the spatio-temporally regulated interplay of biochemical components. Assessing spatial information of molecular interactions within living cells is difficult using traditional biochemical methods. Developments in green fluorescent protein technology in combination with advances in fluorescence microscopy have revolutionised this field of research by providing the genetic tools to investigate the spatio-temporal dynamics of biomolecules in live cells. In particular, fluorescence lifetime imaging microscopy (FLIM) has become an inevitable technique for spatially resolving cellular processes and physical interactions of cellular components in real time based on the detection of Förster resonance energy transfer (FRET). In this review, we provide a theoretical background of FLIM as well as FRET-FLIM analysis. Furthermore, we show two cases in which advanced microscopy applications revealed many new insights of cellular processes in living plant cells as well as in whole plants.  相似文献   

4.
In 1853, the British physiologist Thomas Henry Huxley roundly criticized German cell theory. Historians have had difficulty explaining how such a 'progressive' biologist could have rejected cellular autonomy and the central role of the nucleus in cell life. The key to Huxley's thinking is provided by understanding his 'epigenetic' philosophy of biology.  相似文献   

5.
Low‐temperature stress during microspore development alters cellular organization in rice anthers. The major cellular damage includes unusual starch accumulation in the plastids of the endothecium in postmeiotic anthers, abnormal vacuolation and hypertrophy of the tapetum, premature callose (1,3‐β‐glucan) breakdown and lack of normal pollen wall formation. These cellular lesions arise from damage to critical biochemical processes that include sugar metabolism in the anthers and its use by the microspores. Failure of utilization of the callose breakdown product and other microspore wall components like sporopollenin can also be considered as critical. In recent years, considerable progress has been made in the understanding of major biochemical processes including the expression of critical genes that are sensitive to low temperature in rice and cause male sterility. This paper combines a discussion of cellular organization and associated biochemical processes that are sensitive to low temperatures and provides an overview of the potential mechanisms of low‐temperature‐induced male sterility in rice.  相似文献   

6.
The movement of ions across cell membranes is essential for a wide variety of fundamental physiological processes, including secretion, muscle contraction, and neuronal excitation. This movement is possible because of the presence in the cell membrane of a class of integral membrane proteins dubbed ion channels. Ion channels, thanks to the presence of aqueous pores in their structure, catalyze the passage of ions across the otherwise ion-impermeable lipid bilayer. Ion conduction across ion channels is highly regulated, and in the case of voltage-dependent K(+) channels, the molecular foundations of the voltage-dependent conformational changes leading to the their open (conducting) configuration have provided most of the driving force for research in ion channel biophysics since the pioneering work of Hodgkin and Huxley (Hodgkin, A. L., and Huxley, A. F. (1952) J. Physiol. 117, 500-544). The voltage-dependent K(+) channels are the prototypical voltage-gated channels and govern the resting membrane potential. They are responsible for returning the membrane potential to its resting state at the termination of each action potential in excitable membranes. The pore-forming subunits (alpha) of many voltage-dependent K(+) channels and modulatory beta-subunits exist in the membrane as one component of macromolecular complexes, able to integrate a myriad of cellular signals that regulate ion channel behavior. In this review, we have focused on the modulatory effects of beta-subunits on the voltage-dependent K(+) (Kv) channel and on the large conductance Ca(2+)- and voltage-dependent (BK(Ca)) channel.  相似文献   

7.
The Hodgkin, Huxley, and Katz theories of resting and action potentials are based on the membrane theory, which holds that cell K+ and water exist in the free state. Reviewed here are these theories of cellular potential along with the results of experimental testings. Reviewed also is Ling's association-induction (AI) hypothesis, which holds that all K+ is absorbed selectively and singly on anionic protein sites and that cell water is absorbed in multilayers on extended chains of "matrix proteins." In the development of the AI model, molecular mechanisms of cell permeation and electric potentials were presented according to which the potentials are surface-adsorption phenomena. Thus they resemble those suggested by Baur rather than the membrane potentials proposed by Ostwald and Bernstein. In the present review it is shown that the AI version of the surface adsorption model can account for evidence supporting the Hodgkin, Huxley, Katz approach as well as evidence against it-including extensive recent confirmation of the absorbed state of K+ in muscle.  相似文献   

8.
NK cells, CD3- large granular lymphocytes, have diverse means by which they lyse targets, including antibody-dependent cellular cytotoxicity. The low affinity receptor for the Fc portion of Ig (Fc gamma RIIIA), like the TCR, is a multimeric receptor complex coupled to a protein tyrosine kinase. In the present study, we observed that inhibition of tyrosine kinase activity by herbimycin A interferes with receptor-mediated phosphorylation of a variety of substrates and mobilization of intracellular calcium. Fc gamma RIIIA induced IL-2R alpha-chain expression was also extremely sensitive to herbimycin A as was antibody-dependent cellular cytotoxicity, in fact more so than receptor-mediated phosphorylation and calcium mobilization. In contrast to Fc gamma RIIIA, the surface molecules and biochemical mechanisms involved in NK cytotoxicity and lymphokine-activated killing are not well characterized. Interestingly, however, herbimycin A also blocks these modes of cytolysis, implicating a role for tyrosine kinase function in these processes. Whether FcR-mediated signaling and receptor-mediated signaling involved in NK activity share specific biochemical intermediates is not known, but the involvement of tyrosine kinase function in the latter means of cytotoxicity may provide novel avenues for understanding the biochemical basis of this perplexing cellular function.  相似文献   

9.
In 1853, the young Thomas Henry Huxley published a long review of German cell theory in which he roundly criticized the basic tenets of the Schleiden-Schwann model of the cell. Although historians of cytology have dismissed Huxley’s criticism as based on an erroneous interpretation of cell physiology, the review is better understood as a contribution to embryology. “The Cell-theory” presents Huxley’s “epigenetic” interpretation of histological organization emerging from changes in the protoplasm to replace the “preformationist” cell theory of Schleiden and Schwann (as modified by Albert vonKölliker), which posited the nucleus as the seat of organic vitality. Huxley’s views influenced a number of British biologists, who continued to oppose German cell theory well into the twentieth century. Yet Huxley was pivotal in introducing the new German program of “scientific zoology” to Britain in the early 1850s,championing its empiricist methodology as a means to enact broad disciplinary and institutional reforms in British natural history.  相似文献   

10.
锌转运蛋白基因研究进展   总被引:1,自引:1,他引:0  
锌作为一种重要的微量元素参与了植物体内广泛的生理和生化过程,本文详细介绍了涉及Zn^2+吸收转运的ZIP基因家族(ZRT/IRT相关蛋白)和CDF(Cation diffusion facilitator)家族。ZIP家族转运蛋白主要负责将Zn^2+等二价阳离子跨膜转运进细胞内,以完成细胞内多种生理生化反应。CDF家族转运蛋白主要负责将过量Zn^2+运出细胞,或者将细胞内过量Zn^2+进行区室化隔离,降低Zn^2+对细胞的危害作用。ZIP家族转运蛋白和CDF家族转运蛋白的相互协调使得Zn^2+在细胞和有机体水平上维持着稳态,进而为细胞内各种生理生化反应的进行供一种保障机制。  相似文献   

11.
As the brain develops, proliferating cells organize into structures, differentiate, migrate, extrude long processes, and connect with other cells. These biological processes produce mechanical forces that further shape cellular dynamics and organ patterning. A major unanswered question in developmental biology is how the mechanical forces produced during development are detected and transduced by cells to impact biochemical and genetic programs of development. This gap in knowledge stems from a lack of understanding of the molecular players of cellular mechanics and an absence of techniques for measuring and manipulating mechanical forces in tissue. In this review article, we examine recent advances that are beginning to clear these bottlenecks and highlight results from new approaches that reveal the role of mechanical forces in neurodevelopmental processes.  相似文献   

12.
Developing models of biological mechanisms, such as those involved in respiration in cells, often requires collaborative effort drawing upon techniques developed and information generated in different disciplines. Biochemists in the early decades of the 20th century uncovered all but the most elusive chemical operations involved in cellular respiration, but were unable to align the reaction pathways with particular structures in the cell. During the period 1940–1965 cell biology was emerging as a new discipline and made distinctive contributions to understanding the role of the mitochondrion and its component parts in cellular respiration. In particular, by developing techniques for localizing enzymes or enzyme systems in specific cellular components, cell biologists provided crucial information about the organized structures in which the biochemical reactions occurred. Although the idea that biochemical operations are intimately related to and depend on cell structures was at odds with the then-dominant emphasis on systems of soluble enzymes in biochemistry, a reconceptualization of energetic processes in the 1960s and 1970s made it clear why cell structure was critical to the biochemical account. This paper examines how numerous excursions between biochemistry and cell biology contributed a new understanding of the mechanism of cellular respiration.  相似文献   

13.
Since the development of the 2-deoxy-D-glucose procedure by L. Sokoloff considerable advances have been made in the design of radiotracers for estimation of in-vivo biochemical parameters. Many of these advances are due to the development of positron emission tomography. As a result key biochemical processes can now be evaluated with newly developed positron-emitting labeled enzyme probes in man, in-vivo, allowing the study of a wide range of specific cellular processes in health and disease states.Special issue dedicated to Dr. Louis Sokoloff.  相似文献   

14.
Protein–protein interactions are central to all cellular processes. Understanding of protein–protein interactions is therefore fundamental for many areas of biochemical and biomedical research and will facilitate an understanding of the cell process-regulating machinery, disease causative mechanisms, biomarkers, drug target discovery and drug development. In this review, we summarize methods for populating and analyzing the interactome, highlighting their advantages and disadvantages. Applications of interactomics in both the biochemical and clinical arenas are presented, illustrating important recent advances in the field.  相似文献   

15.
T Lenn  MC Leake 《Open biology》2012,2(6):120090
In recent years, single molecule experimentation has allowed researchers to observe biological processes at the sensitivity level of single molecules in actual functioning, living cells, thereby allowing us to observe the molecular basis of the key mechanistic processes in question in a very direct way, rather than inferring these from ensemble average data gained from traditional molecular and biochemical techniques. In this short review, we demonstrate the impact that the application of single molecule bioscience experimentation has had on our understanding of various cellular systems and processes, and the potential that this approach has for the future to really address very challenging and fundamental questions in the life sciences.  相似文献   

16.
Avian-like breathing mechanics in maniraptoran dinosaurs   总被引:3,自引:0,他引:3  
In 1868 Thomas Huxley first proposed that dinosaurs were the direct ancestors of birds and subsequent analyses have identified a suite of 'avian' characteristics in theropod dinosaurs. Ossified uncinate processes are found in most species of extant birds and also occur in extinct non-avian maniraptoran dinosaurs. Their presence in these dinosaurs represents another morphological character linking them to Aves, and further supports the presence of an avian-like air-sac respiratory system in theropod dinosaurs, prior to the evolution of flight. Here we report a phylogenetic analysis of the presence of uncinate processes in Aves and non-avian maniraptoran dinosaurs indicating that these were homologous structures. Furthermore, recent work on Canada geese has demonstrated that uncinate processes are integral to the mechanics of avian ventilation, facilitating both inspiration and expiration. In extant birds, uncinate processes function to increase the mechanical advantage for movements of the ribs and sternum during respiration. Our study presents a mechanism whereby uncinate processes, in conjunction with lateral and ventral movements of the sternum and gastral basket, affected avian-like breathing mechanics in extinct non-avian maniraptoran dinosaurs.  相似文献   

17.
18.
Shin JH 《Biotechnology letters》2008,30(11):2007-2012
Helicase involves many cellular processes that separate double-stranded nucleic acid into single strands. Although it is believed that helicase translocates nucleic acids, it is difficult to show the direct evidence of translocation on nucleic acids. In this study, an avidin-biotinylated nucleotides-based method for helicase translocation assay has been described, and the biochemical assay results have been demonstrated.  相似文献   

19.
Thomas Huxley was one of the 19th century's most active defenders of Darwin's idea that life has evolved through natural processes. An anatomist and paleontologist, he extended his energies to science and education policy, the democratization of science, and the broad societal implications of evolution. Since his time the fossil record has greatly improved and the genetic 'revolution' has occurred, deepening our understanding of primate and human evolution in ways that would please Huxley: improved systematics relies heavily on genetic data, and molecular technologies are opening our understanding of the genetic basis of complex traits of traditional anthropological interest-but in ways that are thoroughly dependent on the fact of evolution. A more unified biological synthesis is forming that unites genes, developmental process, structure, and inheritance. But the tempo and mode of evolution remain unresolved. Huxley was one of many who have had trouble accepting Darwin's gradual natural selection as the central evolutionary mechanism, and views spanning the antipodes of gradualism and saltation find advocates even in our genetic era.  相似文献   

20.
Posttranslational phosphorylation of proteins is an important event in many cellular processes. Whereas phosphoesters of serine, threonine and tyrosine have been extensively studied, only limited information is available for other amino acids modified by a phosphate group. The formation of phosphohistidine residues in proteins has been discovered in prokaryotic organisms as well as in eukaryotic cells. The ability to biochemically analyze phosphohistidine residues in proteins, however, is severely hampered by its extreme lability under acidic conditions. In our studies we have found that by replacing the phosphate linked to the histidine residue with a thiophosphate, a phosphohistidine derivative with increased stability is formed. This allows the analysis of phosphohistidine-containing proteins by established biochemical techniques and will greatly aid in the investigation of the role of this posttranslational modification in cellular processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号