首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary The reaction of nerve endings in the median eminence of the rat to zinc iodide-osmium tetroxide (ZIO) staining was examined electron microscopically under normal and experimental conditions. The experimental condition of catecholamine exhaustion in the nerve endings was induced by the administration of H44/68 and reserpine. Vesicles in the terminals of catecholaminergic nerves reacted similarly to ZIO staining in both normal and experimental material. The majority of synaptic vesicles in various terminals gave a positive ZIO reaction. The neurosecretory elementary granules, however, failed to react with ZIO. On the other hand, some nerve terminals in the external layer of the median eminence showed a strong positive reaction in the cytoplasmic matrix, in mitochondria as well as in synaptic vesicles. These findings strongly suggest that the ZIO-positive substance in nerve terminals is not the transmitter itself, i.e. the monoamine, but rather represents a range of substances commonly found in various kinds of synaptic vesicles and is probably proteinaceous in nature. A brief discussion is also given on the difference in ZIO reactivity between neurosecretory elementary granules and small vesicles in the hypothalamo-hypophyseal tract.This work was supported in part by a research grant from the Ministry of Education, Japan  相似文献   

2.
Parallel observations on central synaptic and neurohaemal terminals of the same types of neurosecretory fibres in the polychaete annelid Nereis diversicolor reveal that their respective populations of inclusions exhibit identical, highly distinctive patterns of affinity for the zinc iodide-osmium tetroxide (ZIO) reagent. The method highlights the duality of possible secretory inclusions in nerve terminals. Many typical synaptic/synaptoid vesicles have ZIO-positive contents, but intermingle with unreactive vesicles. Both positively and negatively reacting vesicles contribute to the unusual dense clusters associated with sites of release of neurochemical mediators, characteristic of polychaete nervous systems. Fewer dense-cored synaptic/synaptoid vesicles have reactive cores. The larger ‘storage granules’ typically have unreactive contents, but dense deposits form within a small minority. A possible cytophysical, in contradistinction from a cytochemical, basis of affinity for ZIO is discussed. The results further support the postulated fundamental identity of synaptic and synaptoid vesicles.  相似文献   

3.
The fine structural characteristics of ZIO reaction was studied in the cerebral and cerebellar cortex and olfactory bulb of the rat and in synaptosomes prepared from rat cerebellar cortex. It was concluded that: 1. Organelles of different nerve cell types exhibit different ZIO reactions provided that the impregnation was carried out under standardized conditions. 2. 6...10 times more synaptic vesicles were stained by ZIO in the inhibitory terminals than in the excitatory ones. 3. ZIO positivity was found in all types of synaptosomes prepared from cerebral cortex. Following electrical or chemical (KCl) depolarization there was a decrease in the number of ZIO positive synaptic vesicles, which decrease was directly proportional to the parameters of stimulation. 4. By x-ray microanalysis Os, Zn and Ca were consistently detected in the ZIO precipitates. Iodine, however, could not always be found. After stimulation the presence of Ca was observed even in those synaptosomes in which the ZIO reaction product was absent. 5. On the basis of the staining characteristics the reaction, under standard conditions, can reflect certain functional states of the nerve terminals.  相似文献   

4.
—The aim of the experiments was to determine whether a direct correlation exists between cholinergic transmission and zinc-iodide-osmium (ZIO) positivity of the synaptic vesicles of the preganglionic terminals in sympathetic ganglia of the cat. It was found that hemicholinium (HC-3) pretreatment with or without preganglionic stimulation did not cause any significant changes in the ZIO positivity of cholinergic nerve terminals. The authors suppose that there is no direct relation between the ZIO positivity of axon terminals and the functioning of cholinergic transmission.  相似文献   

5.
When the nerves of isolated frog sartorius muscles were stimulated at 10 Hz, synaptic vesicles in the motor nerve terminals became transiently depleted. This depletion apparently resulted from a redistribution rather than disappearance of synaptic vesicle membrane, since the total amount of membrane comprising these nerve terminals remained constant during stimulation. At 1 min of stimulation, the 30% depletion in synaptic vesicle membrane was nearly balanced by an increase in plasma membrane, suggesting that vesicle membrane rapidly moved to the surface as it might if vesicles released their content of transmitter by exocytosis. After 15 min of stimulation, the 60% depletion of synaptic vesicle membrane was largely balanced by the appearance of numerous irregular membrane-walled cisternae inside the terminals, suggesting that vesicle membrane was retrieved from the surface as cisternae. When muscles were rested after 15 min of stimulation, cisternae disappeared and synaptic vesicles reappeared, suggesting that cisternae divided to form new synaptic vesicles so that the original vesicle membrane was now recycled into new synaptic vesicles. When muscles were soaked in horseradish peroxidase (HRP), this tracerfirst entered the cisternae which formed during stimulation and then entered a large proportion of the synaptic vesicles which reappeared during rest, strengthening the idea that synaptic vesicle membrane added to the surface was retrieved as cisternae which subsequently divided to form new vesicles. When muscles containing HRP in synaptic vesicles were washed to remove extracellular HRP and restimulated, HRP disappeared from vesicles without appearing in the new cisternae formed during the second stimulation, confirming that a one-way recycling of synaptic membrane, from the surface through cisternae to new vesicles, was occurring. Coated vesicles apparently represented the actual mechanism for retrieval of synaptic vesicle membrane from the plasma membrane, because during nerve stimulation they proliferated at regions of the nerve terminals covered by Schwann processes, took up peroxidase, and appeared in various stages of coalescence with cisternae. In contrast, synaptic vesicles did not appear to return directly from the surface to form cisternae, and cisternae themselves never appeared directly connected to the surface. Thus, during stimulation the intracellular compartments of this synapse change shape and take up extracellular protein in a manner which indicates that synaptic vesicle membrane added to the surface during exocytosis is retrieved by coated vesicles and recycled into new synaptic vesicles by way of intermediate cisternae.  相似文献   

6.
In addition to demonstrating synaptic vesicles, staining with the zinc-iodide-osmium tetroxide (ZIO) method reveals the presence of positively reacting GERL membranes in association with the Golgi complex and lysosomes in the nerve cell bodies within ganglia from the locust Schistocerca gregaria and the gastropod molluscs, Limnaea stagnalis and Helix aspersa. A positive response to ZIO occurs in certain Golgi vesicles and saccules, in GERL (Golgi-endoplasmic-reticulum-lysosomes), in multivesicular bodies as well as residual bodies and in small vesicles and cisternae of axonal smooth endoplasmic reticllum (ER). The interrelationships between these organelles are considered in view of the similarity of the ZIO localization to phosphatase-rich sites in the neuronal perikarya and with respect to the possibility that components of the synaptic vesicles are formed in the Golgi region of the cell and migrate via the axonal smooth ER to the synaptic regions.  相似文献   

7.
Summary Routine electron microscopy and a zinc iodide-osmium tetroxide technique (ZIO), recently found to be specific for synaptic vesicles, were used to study the origin of synaptic vesicles during postnatal development in the lumbosacral enlargement of the albino rat. In immature nervous tissue, a large number of vesicles, indistinguishable from synaptic vesicles (S vesicles), were found in the Golgi apparatus and in different portions of the axon where they were often intermingled with elements of the smooth endoplasmic reticulum (SER). Ten to twenty percent of these S vesicles within the Golgi apparatus as well as the majority of these vesicles in all parts of the axon were positive to ZIO. Much of the SER in axons was also positive. The number of vesicles and elements of the SER showed some decrease in the non-terminal portion of axons on day 21 and even more of a decrease in adult neurons. These data suggest that synaptic vesicles are produced in the Golgi apparatus and SER in immature neurons. The decrease in S vesicles and SER in adult neurons suggests a drop in synaptic vesicle production after synaptogenesis has ended. In addition, the material that has been studied shows that ZIO staining is not limited to synaptic vesicles during development since oligodendroglia and endothelial cells are also stained during this period.  相似文献   

8.
Curarized cutaneous pectoris nerve-muscle preparations from frogs were stimulated at 10/s or at 2/s for periods ranging from 20 min to 4 h. End plate potential were recorded intracellularly and used to estimate the quantity of transmitter secreted during the period of stimulation. At the ends of the periods of stimulation the preparations were either fixed for electron microscopy or treated with black widow spider venom to determine the quantities of transmitter remainind in the terminal. Horseradish peroxidase or dextran was added to the bathing solution and used as a tracer to detect the formation of vesicles from the axolemma. During 4 h of stimulation at 2/s many new vesicles were formed from the axolemma and the quantity of transmitter secreted was several times greater than the quantity in the initial store. After this period of stimulation, the terminals were severely depleted of transmitter, but not of vesicles, and their general morphological organization was normal. During 20 min of stimulation at 10/s the nerve terminals swelled and were severely depleted both of vesicles and of transmitter. During a subsequent hour of rest the changes in morphology were largely reversed, many new vesicles were formed from the axolemma and the stores of transmitter were partially replenished. These results suggest (a) that synaptic vesicles fuse with, and re-form from, the membrane of the nerve terminal during and after stimulation and (b), that the re-formed vesicles can store and release transmitter.  相似文献   

9.
Synaptic vesicle pools at the frog neuromuscular junction   总被引:12,自引:0,他引:12  
We have characterized the morphological and functional properties of the readily releasable pool (RRP) and the reserve pool of synaptic vesicles in frog motor nerve terminals using fluorescence microscopy, electron microscopy, and electrophysiology. At rest, about 20% of vesicles reside in the RRP, which is depleted in about 10 s by high-frequency nerve stimulation (30 Hz); the RRP refills in about 1 min, and surprisingly, refilling occurs almost entirely by recycling, not mobilization from the reserve pool. The reserve pool is depleted during 30 Hz stimulation with a time constant of about 40 s, and it refills slowly (half-time about 8 min) as nascent vesicles bud from randomly distributed cisternae and surface membrane infoldings and enter vesicle clusters spaced at regular intervals along the terminal. Transmitter output during low-frequency stimulation (2-5 Hz) is maintained entirely by RRP recycling; few if any vesicles are mobilized from the reserve pool.  相似文献   

10.
Summary The innervation of the islets of Langerhans of normal albino rats and of albino rats treated with several daily doses of 125 mg/kg of alloxan was studied by electron microscopy. In the normal rat, nerve endings containing either agranular vesicles (200–400 Å) alone or in combination with large granular vesicles (500–800 Å) were found on both alpha and beta cells. Infrequently a third type of nerve ending containing small granular synaptic vesicles could be observed. Bundles of unmyelinated axons were also seen, as were typical autonomic ganglion cells. Similar normal neural elements were noted in rats treated with alloxan. However, islets of alloxan-treated animals also possess large elliptical profiles which appear to be dystrophic nerve terminals. These structures most frequently contact degranulated beta cells. Islets of Langerhans fixed with zinc iodide-osmium (ZIO) reported to specifically impregnate synaptic vesicles were also studied. Synaptic vesicles of normal axons and nerve endings as well as of the dystrophic structures were filled with ZIO reactive material. These studies suggest that alloxan may induce autonomic nerve ending changes in the rat endocrine pancreas. This may result from neuronal hyperactivity in an attempt to secrete insulin from the post-alloxan insulin-depleted beta cell.  相似文献   

11.
Synapses in explant cultures of fetal rat neocortex at day 18 in vitro were stimulated by veratridine (10?4M) for 20 min. The cultures were subsequently processed for electron microscopy and the synapses were analyzed by quantitative techniques, incorporating set mathematical treatment. The mean values of area, perimeter, and form factor of the presynaptic elements significantly increased following veratridine stimulation, compared to the values of control synapses. The length of the postsynaptic thickening also increased, while synaptic curvature did not change significantly in the veratridine group. A fivefold reduction was observed in the mean number of synaptic vesicles per presynaptic element and in the vesicle-terminal area ratio, following veratridine stimulation. The cytoplasm-terminal area ratio and the occurrence of vacuoles/cisternae significantly increased after veratridine application. Planar measurement of membranes (boundary length) of different presynaptic organelles revealed that the total membrane did not change significantly in the veratridine group. The data indicated an increase in volume and swelling of the pre- and postsynaptic elements, considerable depletion of synaptic vesicles, and preservation of the total presynaptic membrane following veratridine stimulation in nerve tissue culture.  相似文献   

12.
Application of black widow spider venom to the neuromuscular junction of the frog causes an increase in the frequency of miniature end-plate potentials (min.e.p.p.) and a reduction in the number of synaptic vesicles in the nerve terminal. Shortly after the increase in min.e.p.p. frequency, the presynaptic membrane of the nerve terminal has either infolded or "lifted." Examination of these infoldings or lifts reveals synaptic vesicles in various stages of fusion with the presynaptic membrane. After the supply of synaptic vesicles has been exhausted, the presynaptic membrane returns to its original position directly opposite the end-plate membrane. The terminal contains all of its usual components with the exception of the synaptic vesicles. The only other alteration of the structures making up the neuromuscular junction occurs in the axon leading to the terminal. Instead of completely filling out its Schwann sheath, the axon has pulled away and its axoplasm appears to be denser than the control. The relation of these events to the vesicle hypothesis is discussed.  相似文献   

13.
The glial processes ensheathing the motor nerve terminals on the retractor unguis muscle of Locusta migratoria are described. Ultrastructural changes observed after electrical nerve stimulation (20 Hz, 7 min) without or with subsequent rest (2 min, 1 h) are analysed morphometrically. Immediately after stimulation both the average terminal circumference (+ 23%) and its proportion covered by glial processes (+ 16%) are significantly increased. The mean number of Schwann cell processes per micron of terminal circumference (without stimulation: 0.86 +/- 0.04) is also affected: Immediately after stimulation it is increased by about 15% and after 2 min of rest even by 36%. The periaxonal cleft (without stimulation: 16.5 nm +/- 0.36) becomes wider immediately after stimulation by about 19%, an effect which is almost reversed after 1 h of rest. It is suggested that these changes are a consequence of the enlargement of the nerve terminal's surface upon massive exocytotic activity and that they are possibly mediated by mechanical attachment between glial and terminal plasma membranes.  相似文献   

14.
The rab family of GTP-binding proteins regulates membrane transport between intracellular compartments. The major rab protein in brain, rab3A, associates with synaptic vesicles. However, rab3A was shown to regulate the fusion probability of synaptic vesicles, rather than their transport and docking. We tested whether rab3A has a transport function by analyzing synaptic vesicle distribution and exocytosis in rab3A null-mutant mice. Rab3A deletion did not affect the number of vesicles and their distribution in resting nerve terminals. The secretion response upon a single depolarization was also unaffected. In normal mice, a depolarization pulse in the presence of Ca(2+) induces an accumulation of vesicles close to and docked at the active zone (recruitment). Rab3A deletion completely abolished this activity-dependent recruitment, without affecting the total number of vesicles. Concomitantly, the secretion response in the rab3A-deficient terminals recovered slowly and incompletely after exhaustive stimulation, and the replenishment of docked vesicles after exhaustive stimulation was also impaired in the absence of rab3A. These data indicate that rab3A has a function upstream of vesicle fusion in the activity-dependent transport of synaptic vesicles to and their docking at the active zone.  相似文献   

15.
Frog nerve-muscle preparations were quick-frozen at various times after a single electrical stimulus in the presence of 4-aminopyridine (4-AP), after which motor nerve terminals were visualized by freeze-fracture. Previous studies have shown that such stimulation causes prompt discharge of 3,000-6,000 synaptic vesicles from each nerve terminal and, as a result, adds a large amount of synaptic vesicle membrane to its plasmalemma. In the current experiments, we sought to visualize the endocytic retrieval of this vesicle membrane back into the terminal, during the interval between 1 s and 2 min after stimulation. Two distinct types of endocytosis were observed. The first appeared to be rapid and nonselective. Within the first few seconds after stimulation, relatively large vacuoles (approximately 0.1 micron) pinched off from the plasma membrane, both near to and far away from the active zones. Previous thin-section studies have shown that such vacuoles are not coated with clathrin at any stage during their formation. The second endocytic process was slower and appeared to be selective, because it internalized large intramembrane particles. This process was manifest first by the formation of relatively small (approximately 0.05 micron) indentations in the plasma membrane, which occurred everywhere except at the active zones. These indentations first appeared at 1 s, reached a peak abundance of 5.5/micron2 by 30 s after the stimulus, and disappeared almost completely by 90 s. Previous thin-section studies indicate that these indentations correspond to clathrin-coated pits. Their total abundance is comparable with the number of vesicles that were discharged initially. These endocytic structures could be classified into four intermediate forms, whose relative abundance over time suggests that, at this type of nerve terminal, endocytosis of coated vesicles has the following characteristics: (a) the single endocytotic event is short lived relative to the time scale of two minutes; (b) earlier forms last longer than later forms; and (c) a single event spends a smaller portion of its lifetime in the flat configuration soon after the stimulus than it does later on.  相似文献   

16.
We have studied the effects of 25 mM potassium, electrical stimulation of the phrenic nerve, and crude black widow spider venom on the ultrastructure, electrophysiology, and acetylcholine (ACh) contents of mouse diaphragms. About 65% of the ACh in diaphragms is contained in a depletable store in the nerve terminals. The rest of the ACh is contained in a nondepletable store that may correspond to the store that remains in denervated muscles and includes, in addition, ACh in the intramuscular branches of the phrenic nerve. About 4% of the ACh released from the depletable store at rest is secreted as quanta and may come from the vesicles, while 96% is secreted in a nonquantized form and comes from an extravesicular pool. The size of the extravesicular pool is uncertain: it could be less than 10%, or as great as 50%, of the depletable store. K causes a highly (but perhaps not perfectly) selective increase in the rate of quantal secretion so that quanta account for about 50% of the total ACh released from K- treated diaphragms. K, or electrical stimulation of the phrenic nerve, depletes both the vesicular and extravesicular pools of ACh when hemicholinium no. 3 (HC-3) is present. However, most of the vesicles are retained under these conditions so that the diaphragms are able to increase slightly their rates of release of ACh when K is added. Venom depletes the terminals of their vesicles and abolishes the release of quanta of ACh. It depletes the vesicular pool of ACh (since it depletes the vesicles), but may only partially deplete the extravesicular pool (since it reduces resting release only 10--40%). The rate of release of ACh from the residual extravesicular pool does not increase when 25 mM K is added. Although we cannot exclude the possibility that stimulation may double the rate of release of ACh from the extravesicular pool, our results are compatible with the idea that the ACh released by stimulation comes mainly from the vesicles and that, when synthesis is inhibited by HC-3, ACh may be exchanged between the extravesicular pool and recycled vesicles.  相似文献   

17.
In the present investigation certain stain properties of the zinc iodide-osmium tetroxide mixture were investigated. It was observed that the type of reaction of certain cell structures with a ZIO mixture largely depended on several factors, namely, the pH of the mixture, aldehyde prefixation and type (s) of buffer (s) used. The standardization of these parameters led to the development of four procedures, each one of them with distinct stain properties. A nomenclature to designate these methods is proposed. The following procedures were applied to material processed for electron microscopy: 1. C.4.4-ZIO-4 degree -18 h: the ZIO mixture was prepared in citric acid-disodium phosphate buffer pH 4.4 and the tissue was incubated at 4 degree C during 18 H; 2. K-P.7.4-C.4.4-ZIO-4 degree -18 h: the tissue was prefixed in Karnovsky fixative prepared in phosphate buffer pH 7.4 and then incubated in C.4.4-ZIO at 4 degree C during 18 h; 3. V.7.4-ZIO-4 degree -18 H: the ZIO was prepared in veronal buffer pH 7.4 and incubation of the tissue was at 4 degree during 18 H; 4.K-P.7.4-V.7.4-ZIO-4 degree -18 h: the tissue was prefixed in Karnovsky fixative prepared in phosphate buffer pH 7.4 and then incubated in V.7.4-ZIO at 4 degree C during 18 h. The chromaffin cells and the cholinergic endings of the rat adrenal medulla and the vas deferens nerves were studied. C.4.4-ZIO-4 degree -18 h: This procedure stained adrenaline and noradrenaline storing granules. Synaptic vesicles at cholinergic endings were not stained. K-P.7.4.4-ZIO-4 degree -18 h: One type of chromaffin granule (probably storing noradrenaline) and both, the small and the granulated synaptic vesicles of cholinergic endings were deeply stained with this method. The aminergic fibres of the vas deferens reacted synaptic vesicles at cholinergic endings were not stained. K-P.7.4.4-ZIO-4 degree -18 h: One type of chromaffin granule (probably storing noradrenaline) and both, the small and the granulated synaptic vesicles of cholinergic endings were deeply stained with this method. The aminergic fibres of the vas deferens reacted synaptic vesicles at cholinergic endings were not stained. K-P.7.4.4-ZIO-4 degree -18 h: One type of chromaffin granule (probably storing noradrenaline) and both, the small and the granulated synaptic vesicles of cholinergic endings were deeply stained with this method. The aminergic fibres of the vas deferens reacted negatively. V.7.4-ZIO-4 degree -18 H: Both types of chromaffin granules and only the small synaptic vesicles of cholinergic endings were revealed with this procedure. In addition, some compartments of the Golgi complex were also stained. K-P.7.4-V.7.4-ZIO-4 degree -18 h: This method did not stain adrenaline and noradrenaline storing granules. Cholinergic synaptic vesicles appeared stained. However, the most striking stain property of this procedure was the staining of many cell organelles. The probable mechanisms by which different factors affect the ZIO reaction are discussed.  相似文献   

18.
Curarized cutaneous pectoris nerve muscle preparations from frogs were subjected to prolonged indirect stimulation at 2/sec while recording from end plate regions. At the ends of the periods of stimulation, the curare was removed and the preparations were fixed for electron microscopy or treated with black widow spider venom to determine the degree to which their stores of transmitter had been depleted. After 6–8 hr of stimulation the nerve terminals were almost completely depleted of their stores of transmitter and of their population of vesicles. Most of the transmitter release occurred during the first 4 hr of stimulation, and after this time most (about 80%) of the fibers were depleted of about 80% of their transmitter. The organization of the nerve terminals in 4-hr preparations appeared normal and the terminals still contained many vesicles. When peroxidase was present in the bathing medium, terminals from stimulated preparations showed many vesicles that contained peroxidase, whereas the rested control preparations showed few such vesicles The fact that after 4 hr the total number of vesicles is not markedly changed while a large fraction (up to 45%) contained peroxidase suggests that in our experiments vesicles were continuously fusing with and reforming from the axolemma.  相似文献   

19.
In vertebrates, nerve muscle communication is mediated by the release of the neurotransmitter acetylcholine packed inside synaptic vesicles by a specific vesicular acetylcholine transporter (VAChT). Here we used a mouse model (VAChT KDHOM) with 70% reduction in the expression of VAChT to investigate the morphological and functional consequences of a decreased acetylcholine uptake and release in neuromuscular synapses. Upon hypertonic stimulation, VAChT KDHOM mice presented a reduction in the amplitude and frequency of miniature endplate potentials, FM 1–43 staining intensity, total number of synaptic vesicles and altered distribution of vesicles within the synaptic terminal. In contrast, under electrical stimulation or no stimulation, VAChT KDHOM neuromuscular junctions did not differ from WT on total number of vesicles but showed altered distribution. Additionally, motor nerve terminals in VAChT KDHOM exhibited small and flattened synaptic vesicles similar to that observed in WT mice treated with vesamicol that blocks acetylcholine uptake. Based on these results, we propose that decreased VAChT levels affect synaptic vesicle biogenesis and distribution whereas a lower ACh content affects vesicles shape.  相似文献   

20.
GTP phosphohydrolase (cell regulating) (EC 3.6.1.47, ADP-ribosylation factor6, ARF6) has been shown to play an important role in different steps of membrane trafficking. It also regulates chromaffin granule exocytosis through phosphatidylcholine phosphatidohydrolase (EC 3.1.4.14, PLD) activation. In this study, the role of ARF6 in neurotransmitter release from both dense-core granules (DCGs) and synaptic vesicles (SVs) in rat brain cortex nerve endings was investigated. We observed that synaptosomal ARF6 is largely particulate but moves to a less easily pelleted compartment upon nerve ending stimulation. We also found that direct inhibition of ARF6 by a specific antibody or interference with ARF6 downstream effects by a myristoylated N-terminal ARF6 peptide both significantly decreased both [3H]-noradrenaline and [14C]-glutamate exocytosis. Addition of phosphatidic acid (PA) and phosphatidylinositol 4,5-bisphosphate (PIP2) partially or completely restored exocytosis. These findings suggest that ARF6 plays important regulatory roles for both DCG and SV exocytosis by activating PLD and ATP:1-phosphatidyl-1D-myo-inositol 4-phosphate 5-phosphotransferase (EC 2.7.1.68, PI4P-5K) to enhance PIP2 synthesis and nerve ending membrane trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号