首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Male Wistar rats at 2 and 12 months of age were sacrificed before, immediately following, and at 6 and 24 hours after a 3-hour immobilization stress period. Levels of noradrenaline (NA) and its major metabolite, 3-methoxy-4-hydroxyphenylethyleneglycol sulfate (MHPG-SO4), in eight brain regions and plasma corticosterone levels were fluorometrically determined. Immobilization stress caused significant increases of MHPG-SO4 levels in all brain regions examined and significant elevations in plasma corticosterone levels in both 2 and 12 month old rats. In 2 month old rats, the MHPG-SO4 levels in all brain regions returned to control levels within 6 hours after release from the stress. However, in 12 month old rats, the metabolite levels in the hypothalamus, amygdala, pons plus medulla oblongata (pons+med. obl .) and midbrain still remained at significantly increased levels at 6 and 24 hours after the stress. Moreover, in the amygdala of older rats, stress-induced decreases in NA levels persisted even 6 hours after stress. Plasma corticosterone levels also showed significant elevations at 6 and 24 hours after the stress only in 12 month old rats. These results suggest that brain NA metabolism during recovery periods from an acute exposure to a stressful situation is altered by the aging process in such a manner that NA neurons in the hypothalamus, amygdala, pons+med. obl . and midbrain in older rats remain activated by stressful stimuli for prolonged periods of time following release from stress.  相似文献   

2.
Reproductive aging in males is characterized by a diminution in sexual behavior beginning in middle age. We investigated the relationships among testosterone, androgen receptor (AR) and estrogen receptor alpha (ERα) cell numbers in the hypothalamus, and their relationship to sexual performance in male rats. Young (3 months) and middle-aged (12 months) rats were given sexual behavior tests, then castrated and implanted with vehicle or testosterone capsules. Rats were tested again for sexual behavior. Numbers of AR and ERα immunoreactive cells were counted in the anteroventral periventricular nucleus and the medial preoptic nucleus, and serum hormones were measured. Middle-aged intact rats had significant impairments of all sexual behavior measures compared to young males. After castration and testosterone implantation, sexual behaviors in middle-aged males were largely comparable to those in the young males. In the hypothalamus, AR cell density was significantly (5-fold) higher, and ERα cell density significantly (6-fold) lower, in testosterone- than vehicle-treated males, with no age differences. Thus, restoration of serum testosterone to comparable levels in young and middle-aged rats resulted in similar preoptic AR and ERα cell density concomitant with a reinstatement of most behaviors. These data suggest that age-related differences in sexual behavior cannot be due to absolute levels of testosterone, and further, the middle-aged brain retains the capacity to respond to exogenous testosterone with changes in hypothalamic AR and ERα expression. Our finding that testosterone replacement in aging males has profound effects on hypothalamic receptors and behavior has potential medical implications for the treatment of age-related hypogonadism in men.  相似文献   

3.
This study was conducted to investigate the effects of aging and long-term dietary antler supplementation on the calcium-regulating hormones and bone status in ovariectomized (Ovx) SAMP8 mice. The female SAMP8 mice were divided into four groups (in each group n = 6), Ovx or sham operated at the age of 2 months, and fed with 0.2% antler containing diet or control diet from the age of 2.5 months. The samples were collected at the age of 3, 6, 9, 12, and 15 months, respectively, for physicochemical analyses, biochemical analyses, and the determination of hormones by radioimmunoassay. The results showed that plasma calcium (Ca) concentrations were maintained in a narrow range in all groups throughout the whole experimental period. With aging and/or ovariectomy, plasma parathyroid hormone (PTH) and 1,25-dihydroxycholecalciferol (1,25-(OH)2-D3) levels increased, and plasma phosphorus (P) and calcitonin (CT) levels decreased, and the femoral bone densities and Ca contents increased during the earlier stage, and then decreased gradually in all groups. Plasma PTH and 1,25-(OH)2-D3 levels in the Ovx mice were significantly higher than those in the intact mice, and plasma P concentrations, plasma CT levels, femoral bone densities, and femoral Ca contents in the Ovx mice were significantly lower than those in the intact mice. In addition, the decreases of plasma P levels, plasma CT levels, femoral bone densities, and femoral Ca contents, and the increases of plasma PTH levels were moderated by antler administration in both Ovx and intact mice. However, there was no effect of the dietary antler supplementation on the plasma 1,25-(OH)2-D3 levels in the female mice. It is concluded that prolonged dietary antler supplementation has important positive effects on bone loss with age and/ or ovarian function deficiency.  相似文献   

4.
Changes in nociceptive sensitivity and the level of steroid hormones (corticosterone and testosterone) in the plasma of male Wistar rats were studied in repeatedly applied painful stimuli. According to the changes in nociceptive sensitivity the animals were divided into 6 groups. A reliable corticosterone increment and testosterone decrement in the plasma were caused by repeatedly applied painful stimuli. The data observed could be used as individual indices characteristic of animals of this strain.  相似文献   

5.
Testis samples were taken from young (3 months), middle-aged (12 months) and aged (24 months) male rats, processed, stained and examined via a light microscope. There were no prominent abnormal germinal epithelium and interstitial tissue. However, the aging process promoted a significant decrease in the mean amount of spermatids 19 per cross tubular section, and in the amount of Sertoli cells per cross tubular section in 24-month-old rats. The concentration of spermatozoa in the cauda epididymidis showed a gradual decrease from 3 to 12 and 24 months. After hCG injection all groups of animals exhibited an increase in plasma testosterone level, although the response was smaller in 12- and 24-month animals compared to the young mature (3 months) ones.  相似文献   

6.
The aging process is generally associated with marked decreases in the activities of numerous enzymes as well as lower levels of sex hormones such as testosterone. We therefore examined testosterone metabolism in liver microsomes from individual 3- and 24-month-old male rats. Although the old rats exhibited lower 16 alpha-, 6 beta-, and 2 alpha-hydroxylase activities than the young rats, the old rats had a higher 7 alpha-hydroxylase activity. Immunoquantitation of P450a, a known 7 alpha-hydroxylase, showed that the level of this protein was elevated in the old rats, and was correlated with 7 alpha-hydroxylase activity. The mRNA for P450a was measured with a cDNA probe and its level was fivefold higher in the old rats, whereas levels of mRNA coding for a 6 beta-hydroxylase P450 were markedly decreased. The increased expression of cytochrome P450a demonstrates that the observed common decrease in cytochrome P450-catalyzed activities with senescence is not a universal phenomenon. Thus, constitutive expression of specific cytochrome P450 genes is repressed or activated in senescent rats.  相似文献   

7.
The present study investigated the effects of aging in the testis interstitium in Sprague Dawley rats. Rats of 3, 6 and 24 months of age were used. Testes of rats (n = 5) were fixed by whole body perfusion using a fixative containing 2.5% glutaraldehyde in cacodylate buffer, processed and embedded in eponaraldite. Using 1 μm sections stained with methylene blue, qualitative and quantitative morphological studies were performed. Purified Leydig cell preparations, obtained by collagenase digestion followed by elutriation and density gradient centrifugation, were used to determine luteinizing hormone (LH; 100 ng/ml) stimulated testosterone secretory capacity per Leydig cell in vitro. Testosterone levels in the incubation medium, and testosterone and luteinizing hormone levels in serum of these three groups of rats were determined via radioimmunoassay. Morphological studies revealed that Leydig cells were more abundant in the testis interstitium at 6 and 24 months when compared to 3 months. Moreover, collagen fiber bundles were more frequently observed in the testis interstitium at older ages. Blood vessels of the testis interstitium in 24-month-old rats frequently showed partial and complete occlusion of their lumen and thickening of vessel walls. This feature was also present at 6 months, but less frequently. The results of the sterological studies revealed that the volumes of seminiferous tubules, interstitium and Leydig cells per testis was significantly higher (P < 0.05), at 6 and 24 months of age than those at 3 months. Moreover, volume of macrophages per testis was observed to be significantly higher (P < 0.05) at 6 months when compared to 3 and 24 months, and volume of connective tissue cells per testis was observed to be significantly lower (P < 0.05) at 6 and 24 months when compared to 3 months of age. No significant difference (P > 0.05) was observed for the volume of lymphatic space per testis in the three age groups studied. Volume of interstitial blood vessels per testis was not significantly different at 3 and 6 months of age, but a significantly greater (P < 0.05) volume was observed at 24 months. However, at 6 and 24 months, only 71% and 31% of the total blood vessel volumes respectively had completely open lumen in them; the rest of the blood vessels were either partially (12.5% at 6 months and 17% at 24 months) or completely (16.5% at 6 months and 52% at 24 months) occluded. The number of Leydig cells per testis was doubled at 6 and 24 months of age compared to 3 months. The average volume of a Leydig cell was not significantly different between 3 and 6 months of age, however, at 24 months a significantly lower (P < 0.05) value was observed. LH stimulated testosterone secretory capacity per Leydig cell in vitro was reduced by 50% at 6 months of age compared to 3 months; a further significant (P < 0.05) reduction was observed at 24 months. Serum testosterone and LH levels were not significantly different between 3 and 6 months of age but at 24 months a significantly lower (P < 0.05) value was observed for both of these hormones.In summary, the present study demonstrated many changes in the components of the testis interstitium in the aged Sprague Dawley rat. Modifications in the blood vessels and the occurrence of abundant collagen fibers in the interstitial space could possibly contribute to the reduced testosterone secretory capacity per Leydig cell with advancing in age. The observed Leydig cell hyperplasia could be suggested as a compensatory effort to maintain the normal androgen status of the aged rat, which is rather successful at 6 months but unsuccessful at 24 months. This investigation further revealed that these characteristic changes in the aged testis interstitium at 24 months are also present to some extent at 6 months of age in Sprague Dawley rats, suggesting that aging of the testis in this strain of rats commences early in life.  相似文献   

8.
Oral glucose tolerance tests were performed under pentobarbital anesthesia in 43 male Wistar rats 2 to 18 months of age in order to determine if insulin and glucagon secretion are altered with aging. Although any linear correlation was not demonstrated between aging and blood glucose, plasma insulin or glucagon levels, post-glucose levels of blood glucose were significantly suppressed and those of plasma glucagon were significantly elevated at 4 to 6 months of age. No significant difference was found between young (2 months of age) and aged rats (12 to 14 and 17 to 18 months of age) in either blood glucose or plasma insulin levels during oral glucose load. On the other hand, post-glucose plasma glucagon levels of the aged rats were significantly higher than those of the young ones. Furthermore, comparisons of various kinds of indices among the different age groups, such as insulinogenic index, insulin/glucagon and so forth during oral glucose tolerance tests also indicate the significant alteration of glucagon secretion during aging process. It is concluded from the present data that glucose tolerance does not apparently deteriorate during aging process in rats but that glucagon responses to oral glucose administration are elevated with aging.  相似文献   

9.
In aging quail, an increasing proportion of males show no sexual behavior. A decrease in the mean size of the tests, cloacal gland, and sternotracheal muscles is also observed. In both sexually active and inactive males, plasma testosterone decreases with age but more so in inactive birds. The behavioral and morphological changes observed during aging are correlated with shifts in the intracellular testosterone metabolism resulting in a change in the ratio of active versus inactive metabolites. In the hypothalamus there is a steady decrease with age of 5 beta-reductase activity in all birds and an increase in 5 alpha-reductase activity only in the birds which remain sexually active. In the cloacal gland, the 5 beta-reductase activity markedly increases with age but more so in the birds which become sexually inactive. These data support the notion that the effects of testosterone are controlled by enzymatic shifts which could modulate the sensitivity to the hormone at the cellular level.  相似文献   

10.
Changes in the brain’s neuroactive steroid levels, behavior in the open field, and the anxious-phobic status of male and female rats in the course of development have been studied. An increase in the motor and exploratory activity and emotionality in rats of both sexes in the pubertal period and a decrease in their values in mature and old animals have been detected. Anxiety has no sexual dimorphism in adult animals; it is significantly higher in males than in females in the prepubertal and pubertal periods of development and is higher in old females than in males of the same age. An increase in the level of corticosterone in some brain structures in maturing and old rats has been found; the testosterone concentration increases in one-month-old and adult animals but decreases in old individuals, while the estradiol concentration in all studied brain structures of male and female rats was low in all periods of postnatal life. Correlation analysis has shown modulation by steroid hormones of the changes in behavioral responses during development.  相似文献   

11.
Plasma membrane samples from rat brain, heart, and liver were examined for biochemical changes with age. A rise in superoxide radical (SOR) levels was followed by increases in thiobarbituric acid reactive substances and decreases in membrane fluidity with age. The earliest rise in SOR formation appeared in the plasma membrane from the brain. With age, protein synthesis also decreased significantly in tissue homogenates from brain and heart but was unchanged in the liver. Exposure of plasma membrane samples to in vitro-elevated SOR levels stimulated formation of lipid peroxides, as indicated by the thiobarbituric acid test, and resulted in a decrease in membrane fluidity in each tissue and in a decline in protein synthesis in brain and heart. Changes in brain lipid peroxidation and in membrane fluidity in brain and heart as a result of SOR supplementation were further enhanced due to age. In addition, the mechanism of SOR formation was examined in plasma membrane samples from the brain. SOR generation was Ca(2+)-sensitive, blocked by superoxide dismutase or vitamin E and inhibited by both indomethacin, a cyclooxygenase inhibitor, and bromophenacyl bromide, a phospholipase A2 inhibitor. These results show significant increases in SOR formation and biochemical alterations in plasma membranes from brain, heart, and liver in aging rats. SOR formation appears to be enzyme-mediated and elevated levels of this oxygen radical could be involved in membrane breakdown in older rats.  相似文献   

12.
The aging process is accompanied by decreased drug metabolism as well as lower levels of sex hormones such as testosterone. We examined the age-dependence of liver microsomal cytochromes P-450 from young (3 months) and old (24 months) male rats by absorption and ESR spectroscopy. Spectral perturbations by testosterone were used to identify testosterone-specific P-450 forms. Absorption difference spectra indicated that testosterone induced a greater conversion of P-450 to the high spin form in young rats than in old rats. ESR signals corresponding to total low spin P-450 were of higher intensity in the young rats and were increased by testosterone. Testosterone also interconverted one low spin P-450 species to another. These results demonstrate age-related differences in the types and amounts of testosterone-specific P-450's in rats.  相似文献   

13.
Age-dependent expression of cytochrome P-450s in rat liver   总被引:4,自引:0,他引:4  
Age-related changes in the levels of multiple forms of cytochrome P-450 as well as in the testosterone hydroxylation activities of hepatic microsomes of male and female rats of different ages from 1 week to 104 weeks (24 months) were investigated. The total cytochrome P-450 measured photometrically did not change much with age in either male and female rats. Testosterone 2 alpha-, 2 beta-, 6 beta-, 15 alpha-, 16 beta-hydroxylation activities of male rats were much higher than those in female rats and were induced developmentally. These activities in male rats declined with aging to the very low level in female rats by 104 weeks of age. Testosterone 7 alpha-hydroxylation activity was maximum at 3 weeks of age in rats of both sexes. The levels of individual cytochrome P-450s were measured by immunoblotting. P450IA1 and IA2 (3-methylcholanthrene-inducible forms) and P450IIB1 and IIB2 (phenobarbital-inducible forms) were detected at low levels in rats of both sexes at all ages. P450IIA2, IIC11 and IVA2 were detected in male rats only and were induced developmentally. These male-specific forms disappeared in male rat liver at 104 weeks of age. P450IIC12, a typical female-specific form, was induced developmentally in female rats and was also detected in male rats at 3 and 104 weeks of age. P450IIIA2 (testosterone 6 beta-hydroxylase) was induced developmentally in male rats, but disappeared when the rats were 104 weeks of age. In female rats, P450IIIA2 was detected only at 1 and 3 weeks of age. P450IIA1, IIC6, IIE1 and IVA3 were detected in rats of both sexes at any age. P450IIC6 and IVA3 were induced developmentally and detected at a similar level in rats of both sexes. The level of P450IIA1 was maximum at 3 weeks of age in rats of both sexes. The changes in the level of P450IIE1 during aging were small compared with the changes in other cytochrome P-450s used in this study. These observations provide concrete evidence to our earlier hypothesis that each of the forms of cytochrome P-450 in male rats alter with aging in different patterns resulting in a practical feminization of over-all cytochrome P-450 composition at old age.  相似文献   

14.
The lower limits of cerebral blood flow autoregulation shift toward high pressures in aged compared with young rats. Intraluminal pressure stimulates contractile mechanisms in cerebral arteries that might, in part, cause an age-dependent shift in autoregulation. The present project tested two hypotheses. First, cerebral artery tone is greater in isolated arteries from aged compared with mature adult rats. Second, aging decreases the modulatory effect of endothelium-derived nitric oxide (NO) and increases vascular smooth muscle Ca2+ sensitivity. Isolated segments of middle cerebral arteries from male 6-, 12-, 20-, and 24-mo-old Fischer 344 rats were cannulated and loaded with fura-2. Diameter and Ca2+ responses to increasing pressure were measured in HEPES, during NO synthase inhibition [NG-nitro-l-arginine methyl ester (l-NAME)], and after removal of the endothelium. Cerebral artery tone (with endothelium) increased with age. Only at the lowest pressure (20 and 40 mmHg) was intracellular Ca2+ concentration ([Ca2+]i) greater in arteries from 24-mo-old rats compared with the other age groups. l-NAME-sensitive constriction increased significantly in arteries from 6- to 20-mo-old rats but declined significantly thereafter in arteries from 24-mo-old rats. [Ca2+]i was less in arteries from 24-mo-old rats compared with the other groups after treatment with l-NAME. Another endothelial-derived factor, insensitive to l-NAME, also decreased significantly with age. For example, at 60 mmHg, the l-NAME-insensitive constriction decreased from 47 +/- 10, 42 +/- 5, 21 +/- 2, and 3 +/- 1 microm in 6-, 12-, 20-, and 24-mo-old rats, respectively. Our data suggest that aging alters cerebral artery tone and [Ca2+]i responses through endothelial-derived NO synthase-sensitive and -insensitive mechanisms. The combined effect of greater cerebral artery tone with less endothelium-dependent modulation may in part contribute to the age-dependent shift in cerebral blood flow autoregulation.  相似文献   

15.
詹皓  刘传缋 《生理学报》1990,42(5):503-508
随着衰老过程雄性 Wistar 大鼠许多系统功能逐渐衰退。与青年鼠相比,中老年大鼠胸-腺明显萎缩。随着衰老,细胞免疫功能、血浆睾酮(T)和雌二醇(E_2)水平、肝微粒体细胞色素 P-450浓度和混合功能氧化酶(MFO)活力均明显衰退。  相似文献   

16.
Adolescents are at greatest risk for traumatic brain injury (TBI) and repeat TBI (RTBI). TBI‐induced hypopituitarism has been documented in both adults and juveniles and despite the necessity of pituitary function for normal physical and brain development, it is still unrecognized and untreated in adolescents following TBI. TBI induced hormonal dysfunction during a critical developmental window has the potential to cause long‐term cognitive and behavioral deficits and the topic currently remains unaddressed. The purpose of this study was to determine if four mild TBIs delivered to adolescent male rats disrupts testosterone production and adult behavioral outcomes. Plasma testosterone was quantified from 72 hrs preinjury to 3 months postinjury and pubertal onset, reproductive organ growth, erectile function and reproductive behaviors were assessed at 1 and 2 months postinjury. RTBI resulted in both acute and chronic decreases in testosterone production and delayed onset of puberty. Significant deficits were observed in reproductive organ growth, erectile function and reproductive behaviors in adult rats at both 1 and 2 months postinjury. These data suggest adolescent RTBI‐induced hypopituitarism underlies abnormal behavioral changes observed during adulthood. The impact of undiagnosed hypopituitarism following RTBI in adolescence has significance not only for growth and puberty, but also for brain development and neurobehavioral function as adults. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 193–202, 2015  相似文献   

17.
Ventricular myosin ATPase activity, V1 isomyosin content and serum T3 (tri-iodothyronine) values decrease with age in male Fischer 344 rats. To determine if the age decrement in ATPase activity and V1 isomyosin content are caused by decreased T3 levels or an age-related decrease in V1 isomyosin induction by T3, 3-, 12- and 24-month-old male Fischer 344 rats were given constant T3 infusions by osmotic minipump. Rats at all ages were given 0.75, 5 and 15 micrograms(/100 g per 24 h) doses of T3, whereas 12- and 24-month-old rats were given an additional 0.4 microgram dose. In control rats, T3 levels decreased from 97 +/- 2.7 at 3 months to 75 +/- 4.7 ng/100 ml at 24 months. Likewise, Ca2+-activated myosin ATPase activity decreased from 1.04 +/- 0.05 to 0.68 +/- 0.05 mumol of Pi/min per mg of protein, and the relative proportion of V1 of isomyosin decreased from 90 +/- 4.0 to 26 +/- 2.0%. The lowest (0.4 microgram) T3 dose, which was sufficient to restore T3 levels in 24-month-old animals to 3-month control values, abolished the age decrement in myosin ATPase activity and markedly increased the proportion of V1 isomyosin present in the ventricle. These findings indicate that the senescent ventricle responds readily to small doses of T3 and strongly suggest that the age decrement in serum T3 levels is sufficient to contribute to the age-related decrease in myosin ATPase activity and V1 isomyosin content. Since these parameters correlate with ventricular contractility, the age decrement in T3 levels may also contribute to the decreased ventricular contractility and cardiac output observed in senescent rats.  相似文献   

18.
Many neurotransmitter systems appear to be altered with aging. The effects of aging on the regulation of tyrosine hydroxylase, the rate-limiting enzyme in the synthesis of catecholamines in the brain has been examined. The endogenous basal activity of tyrosine hydroxylase was lower in the hypothalamus of 24 month old Fisher 344 rats than in the hypothalamus of 3 month old or 6 month old animals. There was no difference in the basal activity of tyrosine hydroxylase in the locus ceruleus, frontal cortex, hippocampus, substantia nigra, or the striatum of rats of ages 3 months, 6 months and 24 months. Tyrosine hydroxylase activity was increased in the striatum of 3 month old (60%) and 6 month old (28%) rats after treatment with haloperidol or reserpine, whereas no change in enzyme activity followed administration of these drugs to 24 month old animals. In conclusion, increases in tyrosine hydroxylase activity in the brain that normally occur in the striatum of 3 month old rats after haloperidol or reserpine treatment are significantly decreased in 6 month old rats and not apparent in 24 month old rats.  相似文献   

19.
In an earlier study, oxidation of tryptophan hydroxylase was implicated as its affinity was decreased with aging in rat brain. To establish any potential link between its oxidative damage and aging, we have determined the activities of antioxidant enzymes in midbrain, pons and medulla of 2, 12 and 24 month old Fisher 344 BNF1 rats. The results obtained suggest that the activities of antioxidant enzymes varied considerably with age and brain regions studied. Activities of Cu/Zn superoxide dismutase and glutathione peroxidase were found to increase from 2 to 12 months and then decrease in 24 month old rats. However catalase activity decreased consistently with the age. A parallel increase in the carbonyl content was observed in these brain regions indicating the oxidation of proteins. Reactive oxygen species when included in the incubation mixture decreased the activity of tryptophan hydroxylase in a concentration dependent manner. The loss of tryptophan hydroxylase activity induced by hydrogen peroxide and superoxide anion was prevented by catalase. However superoxide dismutase did not provide such protection. Sulfhydryl agents, cysteine, glutathione and dithiothreitol partially prevented the loss of activity. These studies suggest an involvement of reactive oxygen species for sulfhydryl oxidation of tryptophan hydroxylase in aging.  相似文献   

20.
Cancer increases with age and often arises from the selective clonal growth of altered cells. Thus, any environment favoring clonal growth per se poses a higher risk for cancer development. Using a genetically tagged animal model, we investigated whether aging is associated with increased clonogenic potential. Groups of 4-, 12-, 18-, and 24-month-old Fischer 344 rats were infused (via the portal vein) with 2x10(6) hepatocytes isolated from a normal syngenic 2-month-old donor. Animals deficient in dipeptidyl-peptidase type IV (DPP-IV-) enzyme were used as recipients, allowing for the histochemical detection of injected DPP-IV+ cells. Groups of animals were sacrificed at various times thereafter. No growth of DPP-IV+ transplanted hepatocytes was present after either 2 or 6 months in the liver of rats transplanted at young age, as expected. In striking contrast, significant expansion of donor-derived cells was seen in animals transplanted at the age of 18 months: clusters comprising 7-10 DPP-IV+ hepatocytes/cross-section were present after 2 months and were markedly enlarged after 6 months (mean of 88+/-35 cells/cluster/cross-section). These results indicate that the microenvironment of the aged liver supports the clonal expansion of transplanted normal hepatocytes. Such clonogenic environments can foster the selective growth of pre-existing altered cells, thereby increasing the overall risk for cancer development associated with aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号