首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Ubiquitin (Ub) is regarded as a stress protein involved in many stress responses. In this paper, sense and antisense transgenic tobacco plants, as well as the wild type and vector control, were used to study the role of Ub in salt tolerance of plants. In sense Ta-Ub2 transgenic tobacco plants, there was higher expression of Ub protein conjugates than in the wild type and vector control, but the reverse trend was observed in antisense Nt-Ub1 transgenic plants. The germination rate of tobacco seed, growth status and photosynthesis of the tobacco plants suggested that over-expressing Ub promoted the growth of transgenic tobacco plants and enhanced their salt tolerance, but the opposite effect was seen in plants with repressed Ub expression. Changes in antioxidant capacity may be one of the mechanisms underlying Ub-regulated salt tolerance. Furthermore, improved tolerance to a combination of stresses was also observed in the sense transgenic tobacco plants. These findings imply that Ub is involved in the tolerance of plants to abiotic stress.  相似文献   

2.
3.
CBF/DREB是一类植物中特有的转录因子,在植物抵抗逆境胁迫过程中发挥重要功能。本研究从陆地棉(Gossypium hirsutum L.)Coker 312中克隆获得1个棉花CBF/DREB基因,命名为Gh CBF2,该基因编码一个由216个氨基酸组成的CBF蛋白。序列分析结果显示,Gh CBF2与其他植物的CBF蛋白类似,含有AP2转录因子典型的保守结构域。干旱或高盐胁迫处理明显增加了Gh CBF2基因的表达量。亚细胞定位分析结果发现Gh CBF2定位在细胞核中。将Gh CBF2基因构建到由35S启动子调控的植物表达载体p MD上并转化拟南芥(Arabidopsis thaliana L.),结果表明,在干旱和盐胁迫条件下,过量表达Gh CBF2基因拟南芥的成活率显著高于野生型,并且游离脯氨酸和可溶性糖含量也高于野生型,说明转Gh CBF2基因提高了拟南芥的耐盐抗旱能力。采用实时荧光定量PCR方法分析胁迫相关标记基因COR15A、RD29A和ERD6的表达情况,结果显示转基因株系中的表达量显著高于野生型,说明Gh CBF2参与调控拟南芥干旱和盐胁迫相关基因的表达。  相似文献   

4.
Expansins are cell wall proteins that are grouped into two main families, α-expansins and β-expansins, and they are implicated in the control of cell extension via the disruption of hydrogen bonds between cellulose and matrix glucans. TaEXPA2 is an α-expansin gene identified in wheat. Based on putative cis-regulatory elements in the TaEXPA2 promoter sequence and the expression pattern induced when polyethylene glycol (PEG) is used to mimic water stress, we hypothesized that TaEXPA2 is involved in plant drought tolerance and plant development. Through transient expression of 35S::TaEXPA2-GFP in onion epidermal cells, TaEXPA2 was localized to the cell wall. Constitutive expression of TaEXPA2 in tobacco improved seed production by increasing capsule number, not seed size, without having any effect on plant growth patterns. The transgenic tobacco exhibited a significantly greater tolerance to water-deficiency stress than did wild-type (WT) plants. We found that under drought stress, the transgenic plants maintained a better water status. The accumulated content of osmotic adjustment substances, such as proline, in TaEXPA2 transgenic plants was greater than that in WT plants. Transgenic plants also displayed greater antioxidative competence as indicated by their lower malondialdehyde (MDA) content, relative electrical conductivity, and reactive oxygen species (ROS) accumulation than did WT plants. This result suggests that the transgenic plants suffer less damage from ROS under drought conditions. The activities of some antioxidant enzymes as well as expression levels of several genes encoding key antioxidant enzymes were higher in the transgenic plants than in the WT plants under drought stress. Collectively, our results suggest that ectopic expression of the wheat expansin gene TaEXPA2 improves seed production and drought tolerance in transgenic tobacco plants.  相似文献   

5.

Key message

Overexpressing TaUb2 promoted stem growth and resulted in early flowering in transgenic tobacco plants. Ubiquitin are involved in the production, metabolism and proper function of gibberellin.

Abstract

The ubiquitin–26S proteasome system (UPS), in which ubiquitin (Ub) functions as a marker, is a post-translational regulatory system that plays a prominent role in various biological processes. To investigate the impact of different Ub levels on plant growth and development, transgenic tobacco (Nicotiana tabacum L.) plants were engineered to express an Ub gene (TaUb2) from wheat (Triticum aestivum L.) under the control of cauliflower mosaic virus 35S promoter. Transgenic tobacco plants overexpressing TaUb2 demonstrated an accelerated growth rate at early stage and an early flowering phenotype in development. The preceding expression of MADS-box genes also corresponded to the accelerated developmental phenotypes of the transgenic tobacco plants compared to that of wild-type (WT). Total gibberellin (GA) and active GA contents in transgenic tobacco plants were higher than those in WT at the corresponding developmental stages, and some GA metabolism genes were upregulated. Treatment with GA3 conferred a similarly accelerated grown rate in WT plants to that of transgenic tobacco plants, while growth was inhibited when transgenic tobacco plants were treated with a GA biosynthesis inhibitor. Thus, the results suggest that Ub are involved in the production, metabolism and proper function of GA, which is important in the regulation of plant growth and development.  相似文献   

6.
冷调节蛋白(cold regulated proteins, CORPs)是植物在冷驯化下产生的特异性蛋白, 与植物的抗寒性密切相关。然而, 大量研究表明, 绝大多数植物冷诱导基因同样会响应水分胁迫。采用半定量RT-PCR分析天山雪莲(Sasussured involucrata)冷调节蛋白基因siCOR的表达, 结果表明siCOR是一个受干旱胁迫诱导表达的基因。为研究siCOR基因是否与抗旱性相关, 以siCOR转基因烟草为研究材料, 利用水分胁迫处理进行抗旱性分析。结果表明与野生型(wild-type, WT)相比, 转siCOR植株叶片萎蔫较迟且程度较轻, 复水后恢复快且较完全; 其叶片相对含水量和PSII相对量子产率的降低幅度、相对电导率和丙二醛含量的升高幅度均低于野生型烟草植株。采用PEG6000模拟干旱胁迫, 发现转siCOR植株T3代种子的萌发率较高, 主根生长的受抑制程度较野生型轻。以上结果表明, siCOR基因在植物对干旱胁迫的响应中起重要作用。  相似文献   

7.
High salinity is one of the most serious environmental stresses that limit crop growth. Expansins are cell wall proteins that regulate plant development and abiotic stress tolerance by mediating cell wall expansion. We studied the function of a wheat expansin gene, TaEXPA2, in salt stress tolerance by overexpressing it in tobacco. Overexpression of TaEXPA2 enhanced the salt stress tolerance of transgenic tobacco plants as indicated by the presence of higher germination rates, longer root length, more lateral roots, higher survival rates and more green leaves under salt stress than in the wild type (WT). Further, when leaf disks of WT plants were incubated in cell wall protein extracts from the transgenic tobacco plants, their chlorophyll content was higher under salt stress, and this improvement from TaEXPA2 overexpression in transgenic tobacco was inhibited by TaEXPA2 protein antibody. The water status of transgenic tobacco plants was improved, perhaps by the accumulation of osmolytes such as proline and soluble sugar. TaEXPA2‐overexpressing tobacco lines exhibited lower Na+ but higher K+ accumulation than WT plants. Antioxidant competence increased in the transgenic plants because of the increased activity of antioxidant enzymes. TaEXPA2 protein abundance in wheat was induced by NaCl, and ABA signaling was involved. Gene expression regulation was involved in the enhanced salt stress tolerance of the TaEXPA2 transgenic plants. Our results suggest that TaEXPA2 overexpression confers salt stress tolerance on the transgenic plants, and this is associated with improved water status, Na+/K+ homeostasis, and antioxidant competence. ABA signaling participates in TaEXPA2‐regulated salt stress tolerance.  相似文献   

8.
9.
To investigate the relationship between nuclear factor Y (NF-Y) and stress tolerance in garlic, we cloned a NF-Y family gene AsNF-YC8 from garlic, which was largely upregulated at dehydrate stage. Expression pattern analyses in garlic revealed that AsNF-YC8 is induced through abscisic acid (ABA) and abiotic stresses, such as NaCl and PEG. Compared with wild-type plants, the overexpressing-AsNF-YC8 transgenic tobacco plants showed higher seed germination rates, longer root length and better plant growth under salt and drought stresses. Under drought stress, the transgenic plants maintained higher relative water content (RWC), net photosynthesis, lower levels of malondialdehyde (MDA), and less ion leakage (IL) than wild-type control plants. These results indicate the high tolerance of the transgenic plants to drought stress compared to the WT. The transgenic tobacco lines accumulated less reactive oxygen species (ROS) and exhibited higher antioxidative enzyme activities compared with wild-type (WT) plants under drought stress, which suggested that the overexpression of AsNF-YC8 improves the antioxidant defense system by regulating the activities of these antioxidant enzymes, which in turn protect transgenic lines against drought stress. These results suggest that AsNF-YC8 plays an important role in tolerance to drought and salt stresses.  相似文献   

10.
The responses of antioxidant enzymes (AOE) ascorbate peroxidase (APX), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT) in soluble protein extracts from leaves and roots of tobacco (Nicotiana tabacum L. cv. Samsun NN) plants to the drought stress, salinity and enhanced zinc concentration were investigated. The studied tobacco included wild-type (WT) and transgenic plants (AtCKX2) harbouring the cytokinin oxidase/dehydrogenase gene under control of 35S promoter from Arabidopsis thaliana (AtCKX2). The transgenic plants exhibited highly enhanced CKX activity and decreased contents of cytokinins and abscisic acid in both leaves and roots, altered phenotype, retarded growth, and postponed senescence onset. Under control conditions, the AtCKX2 plants exhibited noticeably higher activity of GR in leaves and APX and SOD in roots. CAT activity in leaves always decreased upon stresses in WT while increased in AtCKX2 plants. On the contrary, the SOD activity was enhanced in WT but declined in AtCKX2 leaves. In roots, the APX activity prevailingly increased in WT while mainly decreased in AtCKX2 in response to the stresses. Both WT and AtCKX2 leaves as well as roots exhibited elevated abscisic acid content and increased CKX activity under all stresses while endogenous CKs and IAA contents were not much affected by stress treatments in either WT or transgenic plants.  相似文献   

11.
12.
该研究以转彩色马铃薯StAN1基因烟草为材料、野生型烟草(WT)为对照,测定分析转StAN1基因烟草在种子萌发期、幼苗期和苗期对干旱(甘露醇)处理的耐受情况,并对苗期旱热共同胁迫的耐受情况进行测定分析,以探讨彩色马铃薯StAN1基因的功能,为耐旱彩色马铃薯育种提供新路径。结果显示:(1)转StAN1基因烟草鉴定显示,阳性率为82.6%,且转基因烟草的叶片明显变紫,花青素含量极显著高于野生型烟草。(2)在培养基甘露醇浓度为150 mmol/L时,点播在培养基上的转基因烟草种子第5天时的萌发率达到了7%,是野生型烟草萌发率的2.3倍。(3)在甘露醇浓度为0和100 mmol/L的培养基上竖直培养时,转基因烟草的根长分别是野生型烟草的1.46和1.30倍,根长比野生型烟草显著增长。(4)在干旱胁迫下,转基因烟草幼苗叶片中的脯氨酸含量以及超氧化物歧化酶活性均显著高于野生型烟草,丙二醛含量均显著低于野生型烟草。(5)转基因烟草LEA基因和ERF基因在干旱和旱热处理中的相对表达量均高于野生型烟草。研究表明,StAN1基因在提高植物花青素含量的同时也提高了植物的耐旱性。  相似文献   

13.
We have recently isolated the AlSAP (stress-associated protein) gene from the halophyte grass Aeluropus littoralis and demonstrated that AlSAP expression improves tolerance to continuous salt and drought stresses in transgenic tobacco. To extend these findings to an important crop, we generated marker-free transgenic durum wheat plants of the commercial cv. Karim expressing the AlSAP gene. The integration and expression of AlSAP in T3 homozygous plants were ascertained by Southern, Northern and Western blotting respectively. AlSAP wheat lines exhibited improved germination rates and biomass production under severe salinity and osmotic stress conditions. Following a long-term salt or drought stress greenhouse trial, AlSAP lines produced normally filled grains whereas wild-type (WT) plants either died at the vegetative stage under salt stress or showed markedly reduced grain filling under drought stress. Measurements of the RWC (relative water content) and endogenous Na+ and K+ levels in leaves of AlSAP plants, showed a lower water loss rate and a higher Na+ accumulation in senescent-basal leaves, respectively, compared to those of WT plants. Taken together, these results extend to cereals the high potential of the AlSAP gene for engineering effective drought and salt tolerance.  相似文献   

14.
陈霞  杨鹏军  张旭强  杨宁 《广西植物》2016,36(12):1498-1504
该研究以转高山离子芥的CbPLDα、CbPLDβ基因烟草为材料,研究了渗透调节物质和保护酶系对PEG6000溶液模拟干旱胁迫的响应机制.结果表明:渗透调节物质脯氨酸、可溶性糖、可溶性蛋白分别以各自不同的响应方式在干旱胁迫下增强转基因烟草的抗旱性,且在所有浓度PEG6000模拟的干旱胁迫下,转基因烟草的脯氨酸、可溶性糖、可溶性蛋白的含量始终显著高于野生型烟草(P<0.05).说明干旱胁迫下两种转基因烟草的渗透调节能力要强于野生型烟草.保护酶系中,超氧化物歧化酶(SOD)和过氧化物酶(POD)在减轻干旱胁迫下转基因烟草膜脂过氧化伤害中起到协同互补作用,而过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)在干旱胁迫下转基因烟草清除过氧化氢机制中发挥主要作用,说明保护酶系在抵制干旱胁迫和保护转基因烟草免受干旱伤害方面具有重要的生物学功能,这从生理角度揭示了高山离子芥CbPLDα、CbPLDβ响应干旱的生理生态机理.综上,高山离子芥CbPLDα、CbPLDβ基因参与了干旱胁迫下烟草的膜稳定性调节、渗透调节物质的积累和抗氧化酶系的调控.该研究结果为提高植物抗旱性研究及应用提供了新的基因资源,对于加强PLD功能研究、补充植物抗干旱理论及抗低温干旱育种种质资源的开发利用具有重要意义.  相似文献   

15.
The suadea salsa full-length S-adenosylmethionine synthetase (SsSAMS2) was introduced into tobacco (Nicotiana tabacum L.) by Agrobacterium tumefaciens-mediated transformation. The gene transformation and expression in tobacco were confirmed by PCR, RT-PCR and Northern blotting analysis. Several transgenic lines (ST lines) overexpressing SsSAMS2 gene under the control of cauliflower mosaic virus 35S promoter showed more seeds number and weight, and accumulated higher free total polyamines (PAs) than wild-type plants (WT lines) and transformants with blank vector (BT lines). Salt stress-induced damage was attenuated in these transgenic plants, in the symptom of maintaining higher photosynthetic rate and biomass. These results that the transgenic plants overexpressing suadea salsa SAMS2 are more tolerant to salt stress than wild-type plants suggest that PAs may play an important role in contributing salt tolerance to plants.  相似文献   

16.
Expansins are proteins that are the key regulators of wall extension during plant growth. To investigate the role of TaEXPB23, a wheat expansin gene, we analyzed TaEXPB23 mRNA expression levels in response to water stress in wheat and examined the drought resistance of transgenic tobaccos over-expressing TaEXPB23. We found that the expression of TaEXPB23 corresponded to wheat coleoptile growth and the response to water stress. The results also indicated that the transgenic tobacco lines lost water more slowly than the wild-type (WT) plants under drought stress; their cells could sustain a more integrated structure under water stress than that of WT. Other physiological and biochemical parameters under water stress, such as electrolyte leakage, malondialdehyde (MDA) level, photosynthetic rate, Fv/Fm and ΦPSII, also suggested that the transgenic tobaccos were more drought resistant than WT plants.  相似文献   

17.
Increase of glycinebetaine synthesis improves drought tolerance in cotton   总被引:1,自引:0,他引:1  
The tolerance to drought stress of the homozygous transgenic cotton (Gossypium hirsutum L.) plants with enhanced glycinebetaine (GB) accumulation was investigated at three development stages. Among the five transgenic lines investigated, lines 1, 3, 4, and 5 accumulated significantly higher levels of GB than the wild-type (WT) plants either before or after drought stress, and the transgenic plants were more tolerant to drought stress than the wild-type counterparts from young seedlings to flowering plants. Under drought stress conditions, transgenic lines 1, 3, 4, and 5 had higher relative water content, increased photosynthesis, better osmotic adjustment (OA), a lower percentage of ion leakage, and less lipid membrane peroxidation than WT plants. The GB levels in transgenic plants were positively correlated with drought tolerance under water stress. The results suggested that GB may not only protect the integrity of the cell membrane from drought stress damage, but also be involved in OA in transgenic cotton plants. Most importantly, the seedcotton yield of transgenic line 4 was significantly greater than that of WT plants after drought stress, which is of great value in cotton production.  相似文献   

18.
Calreticulin (CRT) is a highly conserved and abundant multifunctional protein that is encoded by a small gene family and is often associated with abiotic/biotic stress responses in plants. However, the roles played by this protein in salt stress responses in wheat (Triticum aestivum) remain obscure. In this study, three TaCRT genes were identified in wheat and named TaCRT1, TaCRT2 and TaCRT3-1 based on their sequence characteristics and their high homology to other known CRT genes. Quantitative real-time PCR expression data revealed that these three genes exhibit different expression patterns in different tissues and are strongly induced under salt stress in wheat. The calcium-binding properties of the purified recombinant TaCRT1 protein were determined using a PIPES/Arsenazo III analysis. TaCRT1 gene overexpression in Nicotiana tabacum decreased salt stress damage in transgenic tobacco plants. Physiological measurements indicated that transgenic tobacco plants showed higher activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) than non-transgenic tobacco under normal growth conditions. Interestingly, overexpression of the entire TaCRT1 gene or of partial TaCRT1 segments resulted in significantly higher tolerance to salt stress in transgenic plants compared with their WT counterparts, thus revealing the essential role of the C-domain of TaCRT1 in countering salt stress in plants.  相似文献   

19.
20.
胡杨是典型的抗旱树种。挖掘和鉴定胡杨的耐旱基因对于提高植物抗旱性具有重要意义。木葡聚糖内转糖苷酶/水解酶(XTH)是植物细胞壁重构过程中的关键酶,在植物逆境胁迫响应中发挥重要作用。我们前期已从胡杨叶片中克隆了PeXTH基因。本文利用Real-time PCR检测PeXTH基因在干旱胁迫下的表达水平。在此基础上,构建植物表达载体pMDC85-PeXTH,通过农杆菌介导法将PeXTH基因转入烟草,分析过表达PeXTH基因烟草的抗旱性。研究发现,胡杨叶片中PeXTH基因的表达受干旱胁迫诱导。干旱处理后,转PeXTH基因烟草的萌发率明显高于野生型烟草;与野生型植株相比,转基因植株的叶片失水速率明显降低。干旱胁迫下,转基因烟草的气孔开度仅为野生型烟草的51.2%~53.6%。结果表明,过表达PeXTH基因能够提高烟草的抗旱性。本研究丰富了对胡杨PeXTH基因功能的认识,为植物抗旱分子育种提供了重要的基因资源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号