首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kinesin is a force-generating ATPase that drives the sliding movement of microtubules on glass coverslips and the movement of plastic beads along microtubules. Although kinesin is suspected to participate in microtubule-based organelle transport, the exact role it plays in this process is unclear. To address this question, we have developed a quantitative assay that allows us to determine the ability of soluble factors to promote organelle movement. Salt-washed organelles from squid axoplasm exhibited a nearly undetectable level of movement on purified microtubules. Their frequency of movement could be increased greater than 20-fold by the addition of a high speed axoplasmic supernatant. Immunoadsorption of kinesin from this supernatant decreased the frequency of organelle movement by more than 70%; organelle movements in both directions were markedly reduced. Surprisingly, antibody purified kinesin did not promote organelle movement either by itself or when it was added back to the kinesin-depleted supernatant. This result suggested that other soluble factors necessary for organelle movement were removed along with kinesin during immunoadsorption of the supernatant. A high level of organelle motor activity was recovered in a high salt eluate of the immunoadsorbent that contained only little kinesin. On the basis of these results we propose that organelle movement on microtubules involves other soluble axoplasmic factors in addition to kinesin.  相似文献   

2.
Kinesin molecules are motor proteins capable of moving along microtubule by hydrolyzing ATP. They generally have several forms of construct. This review focuses on two of the most studied forms: monomers such as KIF1A (kinesin-3 family) and dimers such as conventional kinesin (kinesin-1 family), both of which can move processively towards the microtubule plus end. There now exist numerous models that try to explain how the kinesin molecules convert the chemical energy of ATP hydrolysis into the mechanical energy to power their processive movement along microtubule. Here, we attempt to present a comprehensive review of these models. We further propose a new hybrid model for the dimeric kinesin by combining the existing models and provide a framework for future studies in this subject.  相似文献   

3.
An enzyme is frequently conceived of as having a single functional mechanism. This is particularly true for motor enzymes, where the necessity for tight coupling of mechanical and chemical cycles imposes rigid constraints on the reaction pathway. In mixtures of substrate (ATP) and an inhibitor (adenosine 5'-(beta,gamma-imido)triphosphate or AMP-PNP), single kinesin molecules move on microtubules in two distinct types of multiple-turnover "runs" that differ in their susceptibility to inhibition. Longer (less susceptible) runs are consistent with movement driven by the alternating-sites mechanism previously proposed for uninhibited kinesin. In contrast, kinesin molecules in shorter runs step with AMP-PNP continuously bound to one of the two active sites of the enzyme. Thus, in this mixture of substrate and inhibitor, kinesin can function as a motor enzyme using either of two distinct mechanisms. In one of these, the enzyme can accomplish high-duty-ratio processive movement without alternating-sites ATP hydrolysis.  相似文献   

4.
Conventional kinesin is a highly processive molecular motor that takes several hundred steps per encounter with a microtubule. Processive motility is believed to result from the coordinated, hand-over-hand motion of the two heads of the kinesin dimer, but the specific factors that determine kinesin's run length (distance traveled per microtubule encounter) are not known. Here, we show that the neck coiled-coil, a structure adjacent to the motor domain, plays an important role in governing the run length. By adding positive charge to the neck coiled-coil, we have created ultra-processive kinesin mutants that have fourfold longer run lengths than the wild-type motor, but that have normal ATPase activity and motor velocity. Conversely, adding negative charge on the neck coiled-coil decreases the run length. The gain in processivity can be suppressed by either proteolytic cleavage of tubulin's negatively charged COOH terminus or by high salt concentrations. Therefore, modulation of processivity by the neck coiled-coil appears to involve an electrostatic tethering interaction with the COOH terminus of tubulin. The ability to readily increase kinesin processivity by mutation, taken together with the strong sequence conservation of the neck coiled-coil, suggests that evolutionary pressures may limit kinesin's run length to optimize its in vivo function.  相似文献   

5.
Three phase model of the processive motor protein kinesin   总被引:1,自引:0,他引:1  
Kinesin is a stepping motor that successively produces forward and backward 8-nm steps along microtubules. Under physiological conditions, the steps powering kinesin's motility are biased in one direction and drive various biological motile processes. So far, the physical mechanism underlying the unidirectional bias of the kinesin is not fully understood. Recently, Martin Bier have provided a stepper model [Martin Bier, 2003, Processive motor protein as an overdamped Brownian stepper, Phys. Rev. Lett. 91, 148104], in which the stepping cycle of kinesin includes two distinguished phases: (i) a power stroke phase and (ii) a ratcheted diffusion phase which is characterized as a "random diffusional search". At saturating ATP level, this model can fit the experimental results accurately. In this paper, we'll provide a modified Brownian stepper model, in which the dependence of ATP concentration is considered. In our model, the stepping cycle of kinesin is distinguished into three phases: an ATP-binding phase, a power stroke phase and a ratcheted diffusion phase. This modified model can reconstruct most of the experimental results accurately.  相似文献   

6.
The purpose of this paper is to deduce whether the maximum force, steplike movement, and rate of ATP consumption of kinesin, as measured in buffer, are sufficient for the task of fast transport of vesicles in cells. Our results show that moving a 200-nm vesicle in viscoelastic COS7 cytoplasm, with the same steps as observed for kinesin-driven beads in buffer, required a maximum force of 16 pN and work per step of 1 +/- 0.7 ATP, if the drag force was assumed to decrease to zero between steps. In buffer, kinesin can develop a force of 6-7 pN while consuming 1 ATP/step, comparable to the required values. As an alternative to assuming that the force vanishes between steps, the measured COS7 viscoelasticity was extrapolated to zero frequency by a numerical fit. The force required to move the bead then exceeded 75 pN at all times and peaked briefly to 92 pN, well beyond the measured capabilities of a single kinesin in buffer. The work per step increased to 7 +/- 5 ATP, greatly exceeding the energy available to a single motor.  相似文献   

7.
The minimum motor domain of kinesin-1 is a single head. Recent evidence suggests that such minimal motor domains generate force by a biased binding mechanism, in which they preferentially select binding sites on the microtubule that lie ahead in the progress direction of the motor. A specific molecular mechanism for biased binding has, however, so far been lacking. Here we use atomistic Brownian dynamics simulations combined with experimental mutagenesis to show that incoming kinesin heads undergo electrostatically guided diffusion-to-capture by microtubules, and that this produces directionally biased binding. Kinesin-1 heads are initially rotated by the electrostatic field so that their tubulin-binding sites face inwards, and then steered towards a plus-endwards binding site. In tethered kinesin dimers, this bias is amplified. A 3-residue sequence (RAK) in kinesin helix alpha-6 is predicted to be important for electrostatic guidance. Real-world mutagenesis of this sequence powerfully influences kinesin-driven microtubule sliding, with one mutant producing a 5-fold acceleration over wild type. We conclude that electrostatic interactions play an important role in the kinesin stepping mechanism, by biasing the diffusional association of kinesin with microtubules.  相似文献   

8.
9.
The motility of single one-headed kinesin molecules (K351 and K340), which were truncated fragments of Drosophila two-headed kinesin, has been tested using total internal reflection fluorescence microscopy. One-headed kinesin fragments moved continuously along the microtubules. The maximum distance traveled until the fragments dissociated from the microtubules for both K351 and K340 was approximately 600 nm. This value is considerably larger than the space resolution of the measurement system (SD approximately 30 nm). Although the movements of the fragments fluctuated in forward and backward directions, statistical analysis showed that the average movements for both K340 and K351 were toward the plus end of the microtubules, i.e., forward direction. When BDTC (a 1.3-S subunit of Propionibacterium shermanii transcarboxylase, which binds weakly to a microtubule), was fused to the tail (C-terminus) of K351, its movement was enhanced, smooth, and unidirectional, similar to that of the two-headed kinesin fragment, K411. However, the travel distance and velocity of K351BDTC molecules were approximately 3-fold smaller than that of K411. These observations suggest that a single kinesin head has basal motility, but coordination between the two heads is necessary for stabilizing the basal motility for the normal level of kinesin processivity.  相似文献   

10.
Yildiz A  Tomishige M  Gennerich A  Vale RD 《Cell》2008,134(6):1030-1041
Kinesin advances 8 nm along a microtubule per ATP hydrolyzed, but the mechanism responsible for coordinating the enzymatic cycles of kinesin's two identical motor domains remains unresolved. Here, we have tested whether such coordination is mediated by intramolecular tension generated by the "neck linkers," mechanical elements that span between the motor domains. When tension is reduced by extending the neck linkers with artificial peptides, the coupling between ATP hydrolysis and forward stepping is impaired and motor's velocity decreases as a consequence. However, speed recovers to nearly normal levels when external tension is applied by an optical trap. Remarkably, external load also induces bidirectional stepping of an immotile kinesin that lacks its mechanical element (neck linker) and fuel (ATP). Our results indicate that the kinesin motor domain senses and responds to strain in a manner that facilitates its plus-end-directed stepping and communication between its two motor domains.  相似文献   

11.
The atomic force microscope has been used to investigate microtubules and kinesin decorated microtubules in aqueous solution adsorbed onto a solid substrate. The netto negatively charged microtubules did not adsorb to negatively charged solid surfaces but to glass covalently coated with the highly positively charged silane trimethoxysilylpropyldiethylenetriamine (DETA) or a lipid bilayer of 1,2-dipalmitoyl-3-dimethylammoniumpropane. Using electron beam deposited tips for microtubules adsorbed on DETA, single protofilaments could be observed showing that the resolution is up to 5 nm. Under conditions where the silane coated surfaces are hydrophobic, microtubules opened, presumably at the seam, whose stability is lower than that of the bonds between the other protofilaments. This led to a “sheet” with a width of about 100 nm firmly attached to the surface. Microtubules decorated with a stoichiometric low amount of kinesin molecules in the presence of the non-hydrolyzable ATP-analog 5′-adenylylimidodiphosphate could also be adsorbed onto silane-coated glass. Imaging was very stable and the molecules did not show any scan-induced deformation even after hundreds of scans with a scan frequency of 100 Hz. Received: 23 February 1999 / Revised version: 19 July 1999 / Accepted: 17 August 1999  相似文献   

12.
I Crevel  N Carter  M Schliwa    R Cross 《The EMBO journal》1999,18(21):5863-5872
We show using single molecule optical trapping and transient kinetics that the unusually fast Neurospora kinesin is mechanically processive, and we investigate the coupling between ATP turnover and the mechanical actions of the motor. Beads carrying single two-headed Neurospora kinesin molecules move in discrete 8 nm steps, and stall at approximately 5 pN of retroactive force. Using microtubule-activated release of the fluorescent analogue 2'-(3')-O-(N-methylanthraniloyl) adenosine 5'-diphosphate (mantADP) to report microtubule binding, we found that initially only one of the two motor heads binds, and that the binding of the other requires a nucleotide 'chase'. mantADP was released from the second head at 4 s(-1) by an ADP chase, 5 s(-1) by 5'-adenylylimidodiphosphate (AMPPNP), 27 s(-1) by ATPgammaS and 60 s(-1) by ATP. We infer a coordination mechanism for molecular walking, in which ATP hydrolysis on the trailing head accelerates leading head binding at least 15-fold, and leading head binding then accelerates trailing head unbinding at least 6-fold.  相似文献   

13.
Rapid movement of microtubules in axons   总被引:1,自引:0,他引:1  
Wang L  Brown A 《Current biology : CB》2002,12(17):1496-1501
Cytoskeletal and cytosolic proteins are transported along axons in the slow components of axonal transport at average rates of about 0.002-0.1 microm/s. This movement is essential for axonal growth and survival, yet the mechanism is poorly understood. Many studies on slow axonal transport have focused on tubulin, the subunit protein of microtubules, but attempts to observe the movement of this protein in cultured nerve cells have been largely unsuccessful. Here, we report direct observations of the movement of microtubules in cultured nerve cells using a modified fluorescence photobleaching strategy combined with difference imaging. The movements are rapid, with average rates of 1 microm/s, but they are also infrequent and highly asynchronous. These observations indicate that microtubules are propelled along axons by fast motors. We propose that the overall rate of movement is slow because the microtubules spend only a small proportion of their time moving. The rapid, infrequent, and highly asynchronous nature of the movement may explain why the axonal transport of tubulin has eluded detection in so many other studies.  相似文献   

14.
Conventional kinesins are two-headed molecular motors that move as single molecules micrometer-long distances on microtubules by using energy derived from ATP hydrolysis. The presence of two heads is a prerequisite for this processive motility, but other interacting domains, like the neck and K-loop, influence the processivity and are implicated in allowing some single-headed kinesins to move processively. Neurospora kinesin (NKin) is a phylogenetically distant, dimeric kinesin from Neurospora crassa with high gliding speed and an unusual neck domain. We quantified the processivity of NKin and compared it to human kinesin, HKin, using gliding and fluorescence-based processivity assays. Our data show that NKin is a processive motor. Single NKin molecules translocated microtubules in gliding assays on average 2.14 micro m (N = 46). When we tracked single, fluorescently labeled NKin motors, they moved on average 1.75 micro m (N = 182) before detaching from the microtubule, whereas HKin motors moved shorter distances (0.83 micro m, N = 229) under identical conditions. NKin is therefore at least twice as processive as HKin. These studies, together with biochemical work, provide a basis for experiments to dissect the molecular mechanisms of processive movement.  相似文献   

15.
16.
Kinesin from porcine brain was prepared by a procedure based on the strong binding of the protein to microtubules in the presence of sodium fluoride and ATP. The protocol reduces the requirement for taxol and AMP-PNP. The kinesin is active in terms of its ability to move microtubules on glass slides and its ATPase. The ATPase of this kinesin is about 8 nmol/min/mg; it is activated to 19 nmol/min/mg in the presence of microtubules. The relationship between gliding velocity and ATP concentration follows Michaelis-Menten kinetics. Using the motility assay, the maximal velocity is 0.78 micron/sec, and the Km value is 150 microM for ATP. For GTP the corresponding values are 0.38 micron/sec and 1.7 mM. ADP is a competitive inhibitor (Ki = 0.29 mM). Crude preparations of kinesin do not support motility on glass slides, whereas gel-filtered kinesin does. A search for potential inhibitory factors showed that one of them is MAP2; however, its inhibitory effect becomes visible only in certain conditions. MAP2 bound to microtubules does not inhibit kinesin-induced motility. However, when MAP2 and kinesin are preadsorbed to the glass surface independently of microtubules, MAP2 prevents the interaction of kinesin with microtubules, as if it formed a "lawn" that acted as a spacer and thus repelled the MAP-free microtubules or crosslinked the MAP-containing ones. The repelling effect of MAP2 domains (projection or assembly fragments obtained by chymotryptic cleavage) added separately is less pronounced and can be overcome by kinesin. These results reinforce the view of MAP2 as a spacer molecule.  相似文献   

17.
The role of ATP hydrolysis for kinesin processivity   总被引:1,自引:0,他引:1  
Conventional kinesin is a highly processive, plus-end-directed microtubule-based motor that drives membranous organelles toward the synapse in neurons. Although recent structural, biochemical, and mechanical measurements are beginning to converge into a common view of how kinesin converts the energy from ATP turnover into motion, it remains difficult to dissect experimentally the intermolecular domain cooperativity required for kinesin processivity. We report here our pre-steady-state kinetic analysis of a kinesin switch I mutant at Arg(210) (NXXSSRSH, residues 205-212 in Drosophila kinesin). The results show that the R210A substitution results in a dimeric kinesin that is defective for ATP hydrolysis and a motor that cannot detach from the microtubule although ATP binding and microtubule association occur. We propose a mechanistic model in which ATP binding at head 1 leads to the plus-end-directed motion of the neck linker to position head 2 forward at the next microtubule binding site. However, ATP hydrolysis is required at head 1 to lock head 2 onto the microtubule in a tight binding state before head 1 dissociation from the microtubule. This mechanism optimizes forward movement and processivity by ensuring that one motor domain is tightly bound to the microtubule before the second can detach.  相似文献   

18.
19.
The kinesin motor proteins generate directional movement along microtubules and are involved in many vital processes, including cell division, in eukaryotes. The kinesin superfamily is characterized by a conserved motor domain of approximately 320 residues. Dimeric constructs of N and C class kinesins, with the motor domains at opposite ends of the heavy chain, move towards microtubule plus and minus ends, respectively. Their crystal structures differ mainly in the region linking the motor domain core to the alpha-helical coiled coil dimerization domain. Chimeric kinesins show that regions outside of the motor domain core determine the direction of movement and mutations in the linker region have a strong effect on motility. Recent work on chimeras and mutants is discussed in a structural context giving insights to possible molecular mechanisms of kinesin directionality and motility.  相似文献   

20.
The role of microtubules in platelet aggregation and secretion has been analyzed using platelets permeabilized with digitonin and monoclonal antibodies to alpha (DM1A) and beta (DM1B) subunits of tubulin. Permeabilized platelets were able to undergo aggregation and secretory release. However, threshold doses of agonists capable of eliciting a second wave of aggregation and the platelet release reaction were higher than in control platelets exposed to dimethyl sulfoxide, the solvent for digitonin. Both antibodies to alpha and beta tubulin caused a further increase in the threshold concentration of agonists and inhibited the secretory release of permeabilized platelets, but were ineffective using intact platelets. Neither monoclonal antibody inhibited polymerization or depolymerization of platelet tubulin in vitro. Antibodies to platelet actin and myosin also exhibited an inhibitory activity on platelet aggregation albeit less severe than that observed with the antibodies to alpha and beta tubulin. There was evidence of an interaction between DM1A and DM1B and the antibodies to actin and myosin. The interaction of platelet tubulin and myosin was investigated by two different methods. (1) Coprecipitation of the proteins at low ionic strength at which tubulin by itself did not precipitate and (2) affinity chromatography on columns of immobilized myosin. Tubulin freed of its associated proteins (MAPs) by phosphocellulose chromatography bound to myosin in a molar ratio which approached 2. Platelet actin competed with tubulin for 1 binding site on the myosin molecule. MAPs also reduced the binding stoichiometry of tubulin/myosin. Treatment of microtubule protein with p-chloromercuribenzoate or colchicine did not influence its binding to myosin. DM1A and DM1B inhibited the interaction of tubulin and myosin. This effect could also be demonstrated by reaction of electrophoretic transblots of extracted platelet tubulin with the respective proteins. We interpret these results as evidence for an interference of the two monoclonal antibodies to the tubulin subunits (DM1A and DM1B) with the translocation of microtubule protein from its submembranous site to a more central one during the activation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号